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 Framework
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Estimation of covariance matrices is one of the fundamental
problems in multivariate analysis (even a wikipedia page!)

Principal component analysis
Spatio-temporal data
Model-based classification and clustering
...

Given a random sample {X1, . . . , Xn}, with Xi ∼ Np(0,Θ), for
i = 1, . . . , n, the log-likelihood is

ℓ(Θ) ∝ − log |Θ| − tr(Θ−1S)

It is easy to show that

Θ̂MLE = S =
1

n

n∑
i=1

Xi X⊤i



 Where the problems start
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Number of free variance/covariance parameters to estimate is

|Θ|= p(p+ 1)

2

thus growing quadratically with the dimension p

“The computational ease with which this abundance of
parameters can be estimated should not be allowed to obscure
the probable unwisdom of such estimation from limited data”

Dempster (1972)



 Digging into the problem
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In large dimensional scenarios, with p and p/n are large, the
sample covariance matrix is known to be an highly unstable
estimate ofΘ (Stein’s paradox intuition)
Idea: error of standard MLE increases for larger p and sparser
parameter vector. Easier to beat Θ̂MLE in case of sparsity

Bet on sparsity principle
Use a procedure that does well in sparse problems, since no

procedure does well in dense problems

This intuition has led to a growing stream of literature



 What’s out there?
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1. Matrix decomposition: among the oldest approaches to provide
parsimonious representation ofΘ (e.g. latent factor models)

2. Methods betting on sparsity: obtain sparse estimates ofΘ.
We might have two different tasks: 1) structure learning; 2)
parameter estimation

Banding, tapering, thresholding
Thresholding general idea

Θ̂TR,jk =

{
Sjk if j = k
Tλ(Sjk) if j , k

with Sjk the (j, k)-th element of S and Tλ(·) a general
thresholding function, depending on tuning parameter λ

Hard thresholding example: Θ̂TR,jk = Sjk1(|Sjk | > λ)



 What’s out there?
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Penalized likelihood estimator
most common approaches to induce sparsity in Θ̂ (or more
commonly in the precision matrix Θ̂

−1→ graphical lasso)

General idea
maximize ℓ(Θ) − pλ(Θ) where pλ(Θ) encourages shrinkage

towards 0 ofΘ off-diagonal elements

Covariance graphical lasso (Bien and Tibshirani, 2011)

argmax
Σ

ℓ(Θ) − λ∥Θ∥1

where ∥A∥1 =
∑
ij |Aij | and λ a tuning parameter

Pros: connection with covariance graphical models
Cons: produces biased estimates of the non-zero elements



 Composite likelihood - crash course

6/21

Composite likelihood - What is it?
CL function is a type of approximation of a complex

likelihood function obtained through the combination of
several low-dimensional likelihood objects

Let X ∈ Òp a r.v. with pdf f(x;ω), for ω ∈ Ω ⊆ Òd, being difficult
to specify or to compute, and {H1, . . . ,HK} a set of events with
likelihood Lk(ω; x) ∝ f(x ∈ Hk;ω).
The composite likelihood is then defined as

LCL(ω,w) =
K∏

k=1

Lk(ω; x)wk

with wk, k = 1, . . . , K, weights to be chosen
Hk determines the type of composite likelihood

Marginal CL
Conditional CL



 All that glitters...
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Given a sample X = {X1, . . . , Xn}, the estimator ω̂CL is obtained
as the solution of the unbiased estimating equation

u(ω,w;X) =
n∑
i=1

K∑
k=1

wkuk(ω; Xi) = 0

where uk(ω; Xi) = +ω logLk(ω; xi) and for an appropriate wk
Popularity of CL-estimator stems from its properties, resembling
those of ML-estimator. In fact

ω̂CL
a∼ N(ω0,G(ω0,w)−1)

But there’s more
For common exponential families, some specific composite
likelihood estimators retain the full efficiency of the ML ones

(Mardia, 2009)



 ...with some open questions
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Issues - Lindsay et al. (2011)
Virtually infinite flexibility but less attention on how

to properly design composite likelihood

Focus on the weights wk as their choice determines both the
statistical properties and the computational efficiency of the
CL-estimator

Theory of unbiased estimation equation allows to find optimal
weights but their computation is unfeasible (Heyde, 2008)

Oǒten selected heuristically or in application-oriented manner



 Sparsifying the composite likelihood

9/21

Idea: start from all potential sub-likelihoods and find a
data-driven way to select the “useful” ones
How to: select wk’s by minimizing the penalized score distance

1

2
Å


uML(ω;X) − u(ω,w;X)



2
2︸                                   ︷︷                                   ︸

Statistical efficiency

+λ
∑
j<k

|wjk |︸     ︷︷     ︸
Sparsity

,

where uML is the ML score, ∥ · ∥2 denotes the L2-norm and λ a
tuning parameter
When λ > 0, properties of the L1-penalty discourage the
inclusion of too many sub-scores
The minimizer ŵλ(θ) is used for parameter estimation by solving
u(θ, ŵλ(θ)) = 0 and estimator still enjoys good properties



 Connecting the dots
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Main question
How can we exploit this sparse composite likelihood
framework to sparsely estimate covariance matrices?

Idea: build composite likelihood where each sub-likelihood
contains one distinct element ofΘ

How to: consider a pairwise likelihood where K =
p(p+1)

2 and
where the score component will be

uk(Θ;X) = uij(Θ;X) =


∂ log f(Xi;Θ)

∂Θ if i = j

∂ log f(Xi, Xj;Θ)

∂Θ if i , j



 Main proposal

11/21

Rationale
info about Θij is contained only in the sub-score uij(Θ;X)

⇓
When ith and jth variable have negligible correlation,
the score uij(Θ;X) does not contribute meaningful

information and we should have wij = 0

Idea
Model selection problem of determining non-zero covariance

entries is recast in terms of selecting informative
sub-scores among p(p − 1)/2 possible contributions



 Practical estimation
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For a given λ ≥ 0, we estimate the weight vector ŵ = {ŵjk}j≤k
by minimizing the empirical objective function

d̂λ(w) =
1

2
w⊤Ĵw+ w⊤diag(Ĵ) + λ

n

∑
j<k

|wjk |
S2jk

where Ĵ is the sample estimate of the score covariance matrix
Convex minimization problem, solved via coordinate descent
algorithm. Solutions provide insights on the selection process
Given ŵ, the final estimator is found by solving u(Θ, ŵ;X) = 0.
We have the thresholding mechanism

Θ̂TPL,jk =

{
Sjk if ŵjk , 0

0 if ŵjk = 0



 Theoretical guarantees

13/21

Let E = {jk : j < k,Θjk , 0}, Ê its estimated counterpart.
Under some regularity conditions we have

Selection consistency for large p
Ð(Ê = E) → 1 as n → ∞, with p potentially exponentially
increasing with n

Convergence to the oracle maximum likelihood estimator
Under the assumption used to prove selection consistency

lim
n→∞

Ð(Θ̂TPL = Θ̂OML) = 1

where Θ̂OML is the ML estimator which assume
the knowledge of the location of non-zero entries



 Additional insights
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Estimation of the weight vector ŵ shed light on the sub-score
selection mechanism
In particular

Ê =

{
jk : |diag{Ĵ}jk − Ĵjk, ·ŵ|≥

λ

nS2jk
1(j , k)

}

Rationale
The jkth sub-score is included when it contributes relatively

large information in the overall pairwise likelihood.

Contribution is measured by the difference between
marginal Fisher information and information already

present in previously selected score



 Relationships with adaptive thresholding
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Adaptive thresholding introduces the following estimator

Θ̂ATR,jk = Sjk1
( |Sjk |
SEjk
> λ

)
Pro: extremely simple in high-dim problems
Con: it is marginal

Our estimator can be expressed as

Θ̂TPL,jk = Sjk1
©­«
|Sjk |
SEadjjk

> λ
ª®¬

with SEadjjk the adjusted std error, computed removing the
portion of variance already explained by already selected scores



 Some thoughts on λ selection
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Usually different heuristic can be followed
Example: stop adding sub-scores (i.e., decreasing λ) as soon as
they do not increase substantially the explained variability

We (try to) exploit the connection with adaptive thresholding
whose condition resembles the rejection region of a test
Idea: propose a data-driven criterion to select λ based on
sequential testing of null hypotheses

H0 : Θjk = 0 | ŵjk , 0

H1 : Θjk , 0 | ŵjk , 0

based on a level α (type I error control)



 Synthetic data exploration
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We considered n = {40, 100, 250} and p = {20, 50, 150} for
different levels of sparsity τ = {0.5, 0.9} and two structures

Block diagonal
Sparse at random

Insights from simulations
Method works better when τ = 0.9 (as expected)
Sparse at random is more challenging
 structurally, a lot of non-zero entries are closed to zero
 with τ = 0.5 we have visible over-sparsification
producing many false negatives but leading to better
MSE with respect to Θ̂OML



 Some results - Urban land cover data
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n = 675 aerial images for 9 types
of different urban land cover

p = 147 numerical features
⇓

21 variables repeated at 7 different
scales

n < p for all the classes
shadow: nshadow = 45

Changes in α produces the
expected effect in λ selection and
the amount of sparsity

Correlation
α = 0.05

α = 0.2



 Some results - Wine data
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n = 178 wine samples
G = 3 different types
p = 27 chemical measurements

Sparse estimates might lead to
easier interpretation

Data oǒten considered in the
clustering literature

⇓
Possible to embed the estimation
strategy into classification tools?

Correlation
Barolo

Barbera



 Wrapping up
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We introduce a method which is able to produce reliable sparse
estimate of covariance matrices even when p > n

Different from standard CL penalized strategies
⇒ sparsity is a byproduct of clever sub-scores selection
Penalty on the sub-likelihoods rather than on the parameters
⇒ not introducing bias in the final estimates

The method enjoys asymptotically model selection consistency and
shares ML estimator properties

Issues and future directions
Possible to extend it to precision matrix estimation?
Possible to embed it into predictive tools?
Closer look to efficient computational solutions
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