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Classification and regression trees (CART)

Example:

Smoking juveniles

friends_smoke
p < 0.001
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R-packages party (Hothorn, Hornik, Strobl and Zeileis) and partykit
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Statistical problems of the early algorithms

Breiman et al. (1984), Quinlan (1986)

▶ variable selection bias

▶ pruning vs. early stopping

e.g.: Hothorn, Hornik and Zeileis (2006, Journal of Computational

and Graphical Statistics), Strobl, Boulesteix and Augustin (2007,

Computational Statistics & Data Analysis); tutorial paper: Strobl,

Malley and Tutz (2009, Psychological Methods)
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Model-based recursive partitioning (MOB)

Zeileis, Hothorn and Hornik (2008, JCGS)

Example: Income as a function of age (ALLBUS 2008)

Kopf, Augustin and Strobl (2013)
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MOB for psychometric models (package psychotree)

▶ Bradley-Terry models

Strobl, Wickelmaier and Zeileis (2011, Journal of Educational

and Behavioral Statistics); Eugster, Leisch and Strobl (2014,

Computational Statistics & Data Analysis); Müller, Strobl et

al. (2015, Journal of Applied Ecology)

▶ binary Rasch models

Strobl, Kopf and Zeileis (2015, Psychometrika)

▶ polytomous Rasch models

Komboz, Strobl, Zeileis (2016, Educational and Psychological

Measurement )

▶ 2PL etc. models

Schneider, Strobl, Zeileis and Debelak (2021, Behavior

Research Methods); Debelak and Strobl, (2019, Educational

and Psychological Measurement)
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Example: MOB for BT models – Topmodels

▶ sample: n = 192 (96 female and 96 male) raters between the

age of 15 and 77

▶ covariates: gender, age and

(q1) Do you know the women on the photos? Do you know

the TV show Germany’s Next Topmodel?

(q2) Did you watch the latest season of Germany’s Next

Topmodel regularly? (2007)

(q3) Have you seen the final of the latest season of

Germany’s Next Topmodel? Do you know who won the

latest season of Germany’s Next Topmodel?

where “yes” to one or more parts = overall “yes”

▶ design: forced choice full paired comparison of photos
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Example: MOB for BT models – Topmodels

Strobl et al. (2011)
different groups of persons prefer different girls on photos

age
p < 0.001

1

≤≤ 52 >> 52

q2
p = 0.017
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Example: MOB for BT models – Beetles
Müller et al. (2015)
different types of habitats attract different types of beetles
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Example: MOB for BT models – Benchmarking
Eugster, Leisch and Strobl (2014)
different types of data sets let different learners perform well

e.g. node 9: low linear separability,

few predictors ⇒ LDA has high error rate
obs.n

p < 0.001
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MOB for psychometric models (package psychotree)

▶ Bradley-Terry models

Strobl, Wickelmaier and Zeileis (2011, Journal of Educational

and Behavioral Statistics); Eugster, Leisch and Strobl (2014,

Computational Statistics & Data Analysis); Müller, Strobl et

al. (2015, Journal of Applied Ecology)

▶ binary Rasch models

Strobl, Kopf and Zeileis (2015, Psychometrika)

▶ polytomous Rasch models

Komboz, Strobl, Zeileis (2016, Educational and Psychological

Measurement )

▶ 2PL etc. models

Schneider, Strobl, Zeileis and Debelak (2021, Behavior

Research Methods); Debelak and Strobl, (2019, Educational

and Psychological Measurement)
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MOB for binary Rasch models

+ identifies previously unknown groups with DIF

+ straightforward interpretation
gender

p = 0.006

1

male female

age
p = 0.018

2

≤ 35 > 35
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Strobl, Kopf and Zeileis (2015, Psychometrika)

cutpoint stopping
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Selection of splitting variables

identify groups of people with different parameters

by means of tests for parameter instability (score tests, LM tests):

▶ individual contributions to the score-funktion

ψ(yi , θ) =
∂Ψ(yi , θ)

∂θ

▶ cumulated over all values of covariate ℓ

Wℓ(t) = V̂−1/2n−1/2
⌊n·t⌋∑
i=1

ψ(y(i|ℓ), θ̂)
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▶ under H0 the path fluctuates randomly around zero

(→ Brownian bridge, Zeileis & Hornik, 2007)
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Selection of cutpoints

maximize partitioned log-likelihood tree
−

91
0

−
90

5
−

90
0

−
89

5

age

lo
g−

lik
el

ih
oo

d

25 30 35 40 45 50 55 60 65

∑
i∈L(ξ) Ψ

(
yi , θ̂

(L)
)
+
∑

i∈R(ξ) Ψ
(
yi , θ̂

(R)
)



Detecting

parameter

heterogeneity

CART

Early statistical

problems

MOB

for BT models

for Rasch models

for non-Rasch models

Can we trust the

results?

Stability

Effect size stopping

Summary

References

Stopping criteria

▶ p value > 0.05 tree

Node 1 Node 2 Node 3 ...

Age Statistic 41.237 48.448 28.924 ...

p value 0.171 0.018∗ 0.593 ...

Gender Statistic 41.479 — — ...

p value 0.006∗ — — ...

Motivation Statistic 112.368 94.680 84.078 ...

p value 0.290 0.740 0.432 ...

▶ minimal node-size < 20
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Properties

as shown by Strobl et al. (2015):

▶ no alpha inflation

▶ correct distributions for optimally selected statistics,

closed testing procedure, Bonferroni adjustment

▶ even in the presence of ability differences due to CML

▶ higher power than the LR test to detect DIF

▶ in numeric variables (where the true cutpoint is

unknown/misspecified)

▶ for other non-standard groups (formed, e.g., by

interaction or u-shaped patterns)
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Example: MOB for RM – Students’ PISA

indAbiBL
p < 0.001

1

andere BL {Hessen, Rheinl.−Pfalz}

Node 2 (n = 27309)
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(note: this plot shows item easiness)

Nr. 4: Where is Hessen? (indicate location on a map)

Nr. 5: What is the capital of Rheinland-Pfalz? (Mainz)

skip PCM
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MOB for psychometric models (package psychotree)

▶ Bradley-Terry models

Strobl, Wickelmaier and Zeileis (2011, Journal of Educational

and Behavioral Statistics); Eugster, Leisch and Strobl (2014,

Computational Statistics & Data Analysis); Müller, Strobl et

al. (2015, Journal of Applied Ecology)

▶ binary Rasch models

Strobl, Kopf and Zeileis (2015, Psychometrika)

▶ polytomous Rasch models

Komboz, Strobl, Zeileis (2016, Educational and Psychological

Measurement )

▶ 2PL etc. models

Schneider, Strobl, Zeileis and Debelak (2021, Behavior

Research Methods); Debelak and Strobl, (2019, Educational

and Psychological Measurement)
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MOB for polytomous Rasch models

“Effect plots”, inspired by Van der Linden and Hambleton

(1997) and Fox and Hong (2009)

Index

P
ro

ba
bi

lit
y

Ability

δj1 δj2 δj3δj4

βj + τ1 βj + τ2 βj + τ3βj + τ4

Latent trait θ
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Example: MOB for PCM – Verbal Agression

Komboz, Strobl and Zeileis (2017, Psychological Measurement)

Gender
p = 0.031

1

female male

Anger
p = 0.032

2

≤ 23 > 23

Node 3 (n = 191)
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Differential Step Functioning (DSF)
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▶ 2PL etc. models
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and Psychological Measurement)



Detecting

parameter

heterogeneity

CART

Early statistical

problems

MOB

for BT models

for Rasch models

for non-Rasch models

Can we trust the

results?

Stability

Effect size stopping

Summary

References

MOB for psychometric models (package psychotree)

▶ Bradley-Terry models

Strobl, Wickelmaier and Zeileis (2011, Journal of Educational

and Behavioral Statistics); Eugster, Leisch and Strobl (2014,

Computational Statistics & Data Analysis); Müller, Strobl et

al. (2015, Journal of Applied Ecology)

▶ binary Rasch models

Strobl, Kopf and Zeileis (2015, Psychometrika)

▶ polytomous Rasch models

Komboz, Strobl, Zeileis (2016, Educational and Psychological

Measurement )

▶ 2PL etc. models

Schneider, Strobl, Zeileis and Debelak (2021, Behavior

Research Methods); Debelak and Strobl, (2019, Educational

and Psychological Measurement)



Detecting

parameter

heterogeneity

CART

Early statistical

problems

MOB

for BT models

for Rasch models

for non-Rasch models

Can we trust the

results?

Stability

Effect size stopping

Summary

References

MOB for non-Rasch models

Schneider, Strobl, Zeileis and Debelak (2021, Beh. Res. Meth.)

MML ⇒ need to model true group differences in means of

person parameter distributions (impact)
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Example: MOB for RM – Students’ PISA 2

Gender
p < 0.001

1

Male Female, Missing

Occupation
p < 0.001

2

Student, 
PhD, 

Full Time, 
Part Time, 
Retired, 

Not in Employment

Pupil, 
in Education, 
Unemployed, 

Retired + Activity, 
Others

Student
p = 0.01

3

No Yes

Node 4 (n = 1047)

1 2 4 6 8 9

−1.05

1.21
Node 5 (n = 919)

1 2 4 6 8 9

−1.05

1.21
Node 6 (n = 664)

1 2 4 6 8 9

−1.05

1.21

Age
p < 0.001

7

≤ 18 > 18

Node 8 (n = 311)

1 2 4 6 8 9

−1.05

1.21

Student
p < 0.001

9

No Yes

Age
p = 0.021

10

≤ 24 > 24

Node 11 (n = 359)

1 2 4 6 8 9

−1.05

1.21
Node 12 (n = 397)

1 2 4 6 8 9

−1.05

1.21
Node 13 (n = 623)

1 2 4 6 8 9

−1.05

1.21

now: Natural Science items, tree for 5000 students
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Can we trust the results?

1. stability:

if we drew another random sample from the data,

would the tree still look the same?

2. power vs. effect size:

the group differences are significant – but are they

practically relevant?
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Example: MOB for RM – Students’ PISA 2

Which cutpoints were selected in trees for 125 re-samples?

R
ep

et
iti

on
s

Female Male Missing

0
20

40
60

80
10

0
12

0

1

Gender

C
ou

nt
s

10 20 30 40 50 60

0
50

10
0

15
0

2 4

Age

R
ep

et
iti

on
s

Pupil PhD Full Time Retired Others

0
20

40
60

80
10

0
12

0

2

Occupation

nothing to plot

Student

(variable Age appears more than once in many trees ⇒
more than 125 times in total)

Philipp, Zeileis, Strobl (2016, COMPSTAT Proceedings)
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Example: MOB for RM – Students’ PISA 2

Which variables were selected in trees for 125 re-samples?

Variable selections

R
ep

et
iti

on
s

0
20

40
60

80
10

0
12

0

Gen
de

r
Age

Occ
up

at
ion

Stu
de

nt



Detecting

parameter

heterogeneity

CART

Early statistical

problems

MOB

for BT models

for Rasch models

for non-Rasch models

Can we trust the

results?

Stability

Effect size stopping

Summary

References

Example: MOB for RM – Students’ PISA 2

Structural vs. semantic similarity of tree results

x1

x2 x2

T1 T2 T3 T4

≤ 0.5 > 0.5

≤ 0.4 > 0.4 ≤ 0.6 > 0.6

x2

x1

x2

T1

T2

T3 T4

≤ 0.4 > 0.4

≤ 0.5 > 0.5

≤ 0.6 > 0.6

x10 0.5 1

x2

0

0.4

0.6

1

T1

T2

T3

T4

x10 0.5 1

x2

0

0.4

0.6

1

T1

T2

T3

T4

Philipp, Rusch, Hornik and Strobl (2018, JCGS)
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Example: MOB for RM – Students’ PISA 2

Are trees always instable?
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given enough observations, tree shows high stability for step-function (orange results), but not for

smooth function (blue results)

stability = f(learner × dgp)
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Can we trust the results?

1. stability:

if we drew another random sample from the data,

would the tree still look the same?

2. power vs. effect size:

the group differences are significant – but are they

practically relevant?
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Can we trust the results?

1. stability:

if we drew another random sample from the data,

would the tree still look the same?

2. power vs. effect size:

the group differences are significant – but are they

practically relevant?
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Example: MOB for RM – Students’ PISA 2

Gender
p < 0.001

1

Male Female, Missing

Occupation
p < 0.001

2

Student, 
PhD, 

Full Time, 
Part Time, 
Retired, 

Not in Employment

Pupil, 
in Education, 
Unemployed, 

Retired + Activity, 
Others

Student
p = 0.01

3

No Yes

Node 4 (n = 1047)

1 2 4 6 8 9

−1.05

1.21
Node 5 (n = 919)

1 2 4 6 8 9

−1.05

1.21
Node 6 (n = 664)

1 2 4 6 8 9

−1.05

1.21

Age
p < 0.001

7

≤ 18 > 18

Node 8 (n = 311)

1 2 4 6 8 9

−1.05

1.21

Student
p < 0.001

9

No Yes

Age
p = 0.021

10

≤ 24 > 24

Node 11 (n = 359)

1 2 4 6 8 9

−1.05

1.21
Node 12 (n = 397)

1 2 4 6 8 9

−1.05

1.21
Node 13 (n = 623)

1 2 4 6 8 9

−1.05

1.21

Natural Science items, tree for 5000 students
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Example: MOB for RM – Students’ PISA 2

Gender
p < 0.001

1

Male Female, Missing

Node 2 (n = 235)

1 2 4 6 8 9

−0.75

0.87
Node 3 (n = 178)

1 2 4 6 8 9

−0.75

0.87

Natural Science items, tree for 500 students
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Example: MOB for RM – Students’ PISA 2

Henninger, Debelak and Strobl (2022, Edu. and Psy. Measurement)

additional stopping criterion: Mantel-Haenszel odds ratio =

effect size measure for DIF

Educational Testing Service (ETS) classification criteria:

A = negligible DIF

B = medium DIF

C = large DIF
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Example: MOB for RM – Students’ PISA 2

tree stopped with Mantel-Haenszel criterion

Gender
p < 0.001______________

ETS−MH: A:8; B:0; C:1; 

1

Male Female, Missing

Occupation
p < 0.001______________

ETS−MH: A:8; B:1; C:0; 

2

Student, 
PhD, 

Full Time, 
Part Time, 
Retired, 

Not in Employment

Pupil, 
in Education, 
Unemployed, 

Retired + Activity, 
Others

Node 3 (n = 1966)

1 2 4 6 8 9

−0.85

1.19
Node 4 (n = 664)

1 2 4 6 8 9

−0.85

1.19

Age
p < 0.001______________

ETS−MH: A:7; B:2; C:0; 

5

≤ 18 > 18

Node 6 (n = 311)

1 2 4 6 8 9

−0.85

1.19
Node 7 (n = 1379)

1 2 4 6 8 9

−0.85

1.19

summary
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Summary

▶ What I have talked about: (package: psychotree)

model-based recursive partitioning can

▶ detect groups of observations with different parameters

▶ need not be specified a priori (data-driven, exploratory)

▶ can be used to detect DIF and DSF

▶ can we trust the results?

▶ stability assessment (package: stablelearner)

▶ effect-size-based stopping (currently on

github.com/mirka-henninger)

▶ What I haven’t talked about:

▶ anchoring: making parameters comparable between

groups (= end nodes, possibly many) in the presence of

DIF and DSF

movie MH anchoring

https://psychmeth.shinyapps.io/app_anchorpoint/
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Stability of cutpoints

x0 0.5 1

f(x)

0

1

x0 0.5 1

f(x)

0

1

C
ou

nt
s

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0
50

0

2 1

C
ou

nt
s

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0
50

0

1



Detecting

parameter

heterogeneity

CART

Early statistical

problems

MOB

for BT models

for Rasch models

for non-Rasch models

Can we trust the

results?

Stability

Effect size stopping

Summary

References

Example: MOB for RM – Students’ PISA 2

Which cutpoints were selected in trees for 125 re-samples?
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Example: MOB for RM – Students’ PISA 2

tree stopped with Mantel-Haenszel criterion

Gender
p < 0.001______________

ETS−MH: A:8; B:0; C:1; 

1

Male Female, Missing

Occupation
p < 0.001______________

ETS−MH: A:8; B:1; C:0; 

2

Student, 
PhD, 

Full Time, 
Part Time, 
Retired, 

Not in Employment

Pupil, 
in Education, 
Unemployed, 

Retired + Activity, 
Others

Node 3 (n = 1966)

1 2 4 6 8 9

−0.87

1.33
Node 4 (n = 664)

1 2 4 6 8 9

−0.87

1.33

Age
p < 0.001______________

ETS−MH: A:7; B:2; C:0; 

5

≤ 18 > 18

Node 6 (n = 311)

1 2 4 6 8 9

−0.87

1.33
Node 7 (n = 1379)

1 2 4 6 8 9

−0.87

1.33
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