
Simulation of SDEs and mean-field SDEs: some
recent results

Gonçalo dos Reis
University of Edinburgh (UK) & CMA/FCT/UNL (PT)

joint work with X. Chen & Z. Wilde (Edinb), and W. Stockinger (Imperial)

StatMath Research Seminar

WU, Wien, 09 Apr 2025

Partial funding by UIDB/00297/2020 and UIDP/00297/2020

Goncalo dos Reis (U. of Edin. + CMA) Numerics for SDEs and Mean-field SDEs Wien 09 Apr 2025 1 / 52



Outline

1 Mean-field equations and Propagation of chaos

2 A setting of interest: super-linear Interaction MF kernel
Our results
Numerical results

3 Another setting of interest: Mean-field Langevin
Our results
Numerical results

Goncalo dos Reis (U. of Edin. + CMA) Numerics for SDEs and Mean-field SDEs Wien 09 Apr 2025 2 / 52



Outline

1 Mean-field equations and Propagation of chaos

2 A setting of interest: super-linear Interaction MF kernel
Our results
Numerical results

3 Another setting of interest: Mean-field Langevin
Our results
Numerical results

Goncalo dos Reis (U. of Edin. + CMA) Numerics for SDEs and Mean-field SDEs Wien 09 Apr 2025 3 / 52



McKean-Vlasov stochastic differential equations

MV-SDE⋆ are SDE whose coefficients depend on the law of the solution:

dXt = b̂(t ,Xt , µt)dt + σ(t ,Xt , µt)dWt , X0 ∈ Lp
0(R

d ), (MV − SDE)

where µt is the law of Xt , and W is a standard Rd -BM. −→ All in Rd .

W2(µ, ν) is the 2-Wasserstein distance between µ, ν over space of finite 2nd
moment prob. measure P2(Rd ).

Example (Convolution kernel MV-SDE)

Xt = X0 +

∫ t

0

{
− X 3

s +
(
E[Xs]− Xs

)}
ds + σWt

Xt =X0 +

∫ t

0
b(s,Xs, µs)ds +

∫ t

0

∫
Rd

K (Xs − y)dµs(y)ds +

∫ t

0
σ(s,Xs, µs)dWs

In particle dynamics: b is Confining Potential and K is Interaction Kernel
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Applications
These equations appear in many places.

Controlling MV-SDE leads to Mean-field games
Finance, interacting agents in economics or opinion networks
Statistical mechanics, Molecular and fluid dynamics, Plasma Physics,
Dynamics of granular materials,
Chemistry of crystallisation

Machine Learning:
MV-SDE as limits of (Deep) Neural networks
Generative Adversarial Networks (GAN): MFGs have the structure of GANs;
and GANs are MFGs under the Pareto Optimality.

Less trivial than it looks,
1 No Flow property in Rd but in L2(Ω, (Ft)t≥0,P) or Rd × P2(Rd ):

X 0,x
t ̸= X s,X 0,x

s
t , for t ∈ [0,∞], r ∈ [0, t)

2 This leads to infinite dimensional calculus and difficult “PDEs”

[0,T ]× Rd × P2(Rd ) ∋ (t , x , µ) 7→ u
(
t , x , µ

)
⇒ What is ∂µu ?
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Its the kernels!

In many situations the kernel K falls short of neat assumptions:1

Example (Difficult kernels)
Coloumb interaction: K (x) = x

|x|d

Bio-Savart law: K (x) = x⊥

|x|2 on R2

Cucker-Smale flocking models: K (x) = 1
|x|α , α > 0

Crystallisation: Kp(x) = |x |−2p − 2|x |−p and take p → ∞

Aside specific cases (e.g Coloumb in d = 1,2, a general Wellposedness &
PoC to all such cases is open).

In many situations a smooth and bounded approximation of the kernel is
employed for modelling and theory.

1Harang and Mayorcas, “Pathwise Regularisation of Singular Interacting Particle Systems and their Mean
Field Limits”, 2020.
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Approximation of MV-SDE – the IPS

LLN & Monte Carlo idea: E[Xt ] ≈
1
N

N∑
j=1

X j,N
t This is in (Rd )N

A common technique for simulating MV-SDEs: interacting particle system:

dX i,N
t = b̂

(
t ,X i,N

t , µX ,N
t

)
dt + σ

(
t ,X i,N

t , µX ,N
t

)
dW i

t , −→ This is in (Rd )N

µX ,N
t (dx) :=

1
N

N∑
j=1

δX j,N
t
(dx), i = 1, · · · ,N

where δX j,N
t

is the Dirac measure at point X j,N
t , and the Brownian motions

W i , i = 1, . . . ,N are independent. “Propagation of chaos” (Sznitman ’91)2 :

under appropriate conditions, as N → ∞, for every i , the process X i,N

converges to X i , the solution of the MV-SDE driven by the Brownian motion
W i .

lim
N→∞

sup
1≤i≤N

E
[

sup
0≤t≤T

|X i,N
t − X i

t |2
]
= 0 .

2Sznitman, “Topics in propagation of chaos”, 1991.
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Strong and weak Quantitative PoC

Strong PoC (based on3)

(in Lp, p > 4) sup
1≤i≤N

E
[

sup
0≤t≤T

|X i
t − X i,N

t |2
] !

≤ C


N−1/2 if d < 4,
N−1/2 log(N) if d = 4,
N−2/d if d > 4.

Weak PoC is much harder:

sup
h∈F

∣∣∣E[h(X i)
]
− E

[ 1
N

N∑
k=1

h(X k,N)
]∣∣∣ !

= O
( 1

N

)
(for some class F)

For T < ∞: Chassagneux et al ’224 and Haji-Ali et al ’215

For T ≥ 0: Bernou & Duerinckx ’246 (so called "Uniform in time PoC")

3Carmona and Delarue, Probabilistic Theory of Mean Field Games with Applications I, 2017.
4Chassagneux, Szpruch, and Tse, “Weak quantitative propagation of chaos via differential calculus on the

space of measures”, 2022.
5Haji-Ali, Hoel, and Tempone, “A simple approach to proving the existence, uniqueness, and strong and

weak convergence rates for a broad class of McKean–Vlasov equations”, 2021.
6Bernou and Duerinckx, “Uniform-in-time estimates on the size of chaos for interacting Brownian particles”,

2024.
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Approximation of MV-SDE: Objects of interest

Let X i,N,n
t be the i-th component of the particle system, discretized on [0,T ]

over n steps. The Monte Carlo estimator of θ = E[G(X )] writes
(eg pricing contracts in finance or summary statistics for statistical inference)

θ̂N,n =
1
N

N∑
i=1

G(X i,N,n).

This approximation is affected by three sources of error:
The statistical error: difference between θ̂N,n and E[G(X i,N,n)]. The
standard deviation of the statistical error is of order 1√

N
.

The discretization error: difference between E[G(X i,N,n)] and E[G(X i,N)].
Under Lipschitz assumptions the Euler scheme has weak error of order 1

n .

The propagation of chaos error: difference between E[G(X i,N)] and
E[G(X )]. For G and X nice enough this error is also of order 1√

N
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Our setting: Super linear

Wrap up: σ is unif. Lip. in space-measure;
Drift: b̂ := b + K ⋆ µ such that: b is superlinear in space & Lip is measure;
K is odd & superlinear growth (one-sided Lipschitz)

Assumption (“super-measure-super-space”)
∃L > 0 such that for a.a. s ∈ [0,T ], ∀µ, ν ∈ P2(Rd ) and ∀x , y ∈ Rd ,

⟨b(s, x , µ)− b(s, y , µ), x − y⟩ ≤ L∥x − y∥2,

∥σ(s, x , µ)− σ(s, y , µ)∥ ≤ L∥x − y∥,
∥b(s, x , µ)− b(s, x , ν)∥+ ∥σ(s, x , µ)− σ(s, x , ν)∥ ≤ LW2(µ, ν).

∃L > 0, ∃α ∈ (0, 1] such that ∀s, t ∈ [0,T ], ∀µ ∈ P2(Rd ) and ∀x ∈ Rd ,

∥σ(t , x , µ)− σ(s, x , µ)∥ ≤ L∥t − s∥α.

K (0) = 0, K (x) = −K (−x) and ∃L ∈ R such that ∀x , y ∈ Rd ,〈
K (x)− K (y), x − y

〉
≤ L∥x − y∥2,

∥K (x)− K (y)∥ ≤ C∥x − y∥
(
1 + ∥x∥r−1 + ∥y∥r−1), ∥K (x)∥ ≤ C

(
1 + ∥x∥r ).
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The simulation problem

Wellposedness//stability//PoC//invariant distribution//LDPs:
Growing collection of results under varied conditions7,8,9

Numerics
PDE/FPE10,11

Stochastic Euler schemes: Malrieu ’0312, Malrieu & Talay ’0613

Fully implicit scheme under strong structural assumptions (σ const)
If µ 7→ b̂(·, ·, µ) is unif. Lip. then the answer is known

▷ Standard Euler, ▷ Taming , ▷ Time-adaptive, ▷ Split-Step methods,
▷ Randomised Milstein

7Zhang, “Existence and non-uniqueness of stationary distributions for distribution dependent SDEs”, 2021.
8Dos Reis, Salkeld, and Tugaut, “Freidlin–Wentzell LDP in path space for McKean–Vlasov equations and the

functional iterated logarithm law”, 2019.
9Adams et al., “Large Deviations and Exit-times for reflected McKean-Vlasov equations with self-stabilizing

terms and superlinear drifts”, 2020.
10Baladron et al., “Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and

FitzHugh-Nagumo neurons”, 2012.
11Goddard et al., “Noisy bounded confidence models for opinion dynamics: the effect of boundary conditions

on phase transitions”, 2022.
12Malrieu, “Convergence to equilibrium for granular media equations and their Euler schemes”, 2003.
13Malrieu and Talay, “Concentration inequalities for Euler schemes”, 2006.
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MV-SDEs with super linear growth and standard Euler

The MV-SDE in Rd for p ≥ 2

dXt = b̂(t ,Xt , µ
X
t )dt + σ(t ,Xt , µ

X
t )dWt , X0 ∈ Lp

0(R
d ),

The particle approximation in (Rd )N

dX i,N
t = b̂

(
t ,X i,N

t , µX ,N
t

)
dt + σ

(
t ,X i,N

t , µX ,N
t

)
dW i

t , µX ,N
t (dx) :=

1
N

N∑
j=1

δX j,N
t
(dx)

where δX j,N
t

is the Dirac measure at point X j,N
t , and the Brownian motions

W i , i = 1, . . . ,N are independent.

Given a time partition {tk}k=0,··· ,M , the explicit Euler scheme:

X̄ i,N,M
tk+1

= X̄ i,N,M
tk + b̂

(
tk , X̄

i,N,M
tk , µ̄X ,N

tk

)
h + σ

(
tk , X̄

i,N,M
tk , µ̄X ,N

tk

)
∆W i

tk ,

where µ̄X ,N
tk (dx) := 1

N

∑N
j=1 δX̄ j,N,M

tk

(dx), ∆W i
tk := W i

tk+1
− W i

tk and X̄ i,N,M
0 := X i

0.
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Euler goes wrong
The stochastic Ginzburg Landau equation and with added mean field term,

dXt =
(σ2

2
Xt − X 3

t + cE[Xt ]
)

dt + σXt dWt , X0 = x .

We simulate N = 5000 particles with a time step h = 0.05, T = 2 and X0 = 1,
we also take σ = 3/2 and c = 1/2.

Time
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12
Realisations in the particle system

Other Particles

Corrupt Particle

Figure: ‘Particle corruption’: the dashed particle is starting to oscillate and is taking
larger values than its surrounding particles.
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Split-Step method (SSM)

dXt =
[
b(t ,Xt , µ

X
t ) + v(t ,Xt , µ

X
t )
]
dt + σ(t ,Xt , µ

X
t )dWt , X0 ∈ Lp

0(R
d ),

with v(t , x , µ) = (K ⋆ µ)(x) conv. kernel.

The Split-Step method (SSM) scheme

Y i,⋆,N
tk = X̂ i,N

tk + hv(tk ,Y
i,⋆,N
tk , µX ,N

tk ), µ̂Y ,N
tk (dx) :=

1
N

N∑
j=1

δY j,⋆,N
tk

(dx) (1)

X̂ i,N
tk+1

= Y i,⋆,N
tk + b(tk ,Y

i,⋆,N
tk , µ̂Y ,N

tk )h + σ(tk ,Y
i,⋆,N
tk , µ̂Y ,N

tk )∆W i
n. (2)

In a nutshell: solve super-linear/convolution component implicitly, then in (2), use the
empirical measure of Y i,⋆,N

tk
and deal with other terms.

Some advantages
Implicit method for the bad drift components → more stable than explicit method.

Time step restriction for solvability of implicit step is artificial: just ±γx

(This is a type of Lie-Trotter splitting method)
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Convergence results: Lipschitz diffusion

Theorem (Chen & GdR ’22: SSM’s MSE Conv (I))

Under monotonicity + Holder in time hold + X0 ∈ Lm(Rd ) and σ unif. Lip

Let X i be the solution to the MV-SDE (driven by W i ), and X i,N,M be the SSM
scheme. Then we obtain the following convergence result

MSE := sup
1≤i≤N

E[ sup
0≤t≤T

|X i,N
t − X i,N,M

t |2] ≤ Ch1−ε, ε > 0.

Its very difficult to obtain Lp-moment bounds (p > 2) for the scheme.
critical to have suptime inside expectation is that somewhere we use:
1|X i,N,M |>R + 1|X i,N,M |≤R

Exploit convolution structure but use that K is an odd function ⌢
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Convergence results: super linear growth diffusion

Theorem (Chen, GdR, & Stockinger ’23: SSM’s MSE Conv (II))

Under monotonicity + Holder in time hold + X0 ∈ Lm(Rd ) and σ polynomial ⌣

Let X i be the solution to the MV-SDE (driven by W i ), and X i,N,M be the SSM
scheme. Then we obtain the following convergence result

MSEsup outside := sup
1≤i≤N

sup
0≤t≤T

E[|X i,N
t − X i,N,M

t |2] ≤ Ch.

Its much easier to obtain this result. One gets away with just L2 estimates.
We can have additionally a polynomial growth diffusion map

let’s see some comparative numerics (Euler, taming, time-adaptive, SSM)
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Other schemes: Tamed Euler scheme &
Time-adaptive

Taming: tamed Euler explicit scheme.14 With the notation above

consider the following scheme h := T/M

X̄ i,N,M
tk+1

= X̄ i,N,M
tk +

b̂
(

tk , X̄
i,N,M
tk , µ̄X ,N

tk

)
1 + hα

∣∣∣b̂(tk , X̄
i,N,M
tk , µ̄X ,N

tk

)∣∣∣h
+ σ

(
tk , X̄

i,N,M
tk , µ̄X ,N

tk

)
∆W i

tk ,

where µ̄X ,N
tk (dx) = 1

N

∑N
j=1 δX̄ j,N,M

tk

(dx) and α ∈ (0,1/2] with X̄ i,N,M
0 = X i

0.

Time-adaptive.15

Just like standard explicit Euler. Timestep h is now h(x) such that
|b̂(t , x , µ)h(x)| ≤ C(1 + |x |).

14Reis, Engelhardt, and Smith, “Simulation of McKean-Vlasov SDEs with super-linear growth”, Jan. 2021.
15Reisinger and Stockinger, “An adaptive Euler-Maruyama scheme for McKean SDEs with super-linear

growth and application to the mean-field FitzHugh-Nagumo model”, 2020.
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A stylised example

dXt =
(

v(Xt , µ
X
t ) + E[Xt ]

)
dt +

3
10

(1 − X 2
t )dWt , X0 ∼ N (2,2),

v(x , µ) = −1
4

x3 +

∫
Rd

−
(
x − y

)3
µ(dy),

Figure: Simulations: N = 100 particles, h = 0.05, T = 2. Newton method w =
√

h.
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Granular media type equation with additive noise

dXt = v(Xt , µ
X
t )dt +

√
2 dWt with v(x , µ) =

∫
Rd

(
− sign(x − y)|x − y |2

)
µ(dy),

Figure: N = 1000 particles, h = 0.01. Density maps at T = 1, 3, 10 and strong
convergence rates with X0 ∼ N (2, 16).
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Double-well with Multiplicative noise

dXt =
(
v(Xt , µ

X
t ) + Xt

)
dt + XtdWt with v(x , µ) = − 1

4 x3 +
∫
Rd −

(
x − y

)3
µ(dy)

Figure: N = 1000< h = 0.01 at times T = 1, 3, 10. Last Fig t ∈ [0, 3] and with
X0 ∼ N (3, 9).
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Mean-field Langevin equations

We consider the 1-d mean-field Langevin (MFL) equation for (Xt)t≥0 ∈ R1:

Xt = ξ −
∫ t

0

(
∇U(Xs) +∇V ∗ µs(Xs)

)
ds + σWt , (3)

where µt is the law of Xt , and W is a 1-d Brownian motion.

For functions U,V with some suitable regularity and convexity then

Xt admits a unique stationary distribution µ∗, i.e., Law(Xt)
d→ µ∗ as t → ∞

µ∗ has well-known implicit form

µ∗(x) ∝ exp
(
− 2

σ2 U(x)− 2
σ2

∫
R

V (x − y)µ∗(dy)
)
. (4)

Thus,
▷ how sample from µ∗ better than Euler/Milstein? (What is "better"?)
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Preparation for main result
The IPS to (3) is for i = 1, · · · ,N

X i,N
t = ξi,N −

∫ t

0

(
∇U(X i,N

s ) +
1
N

N∑
j=1

∇V (X i,N
s − X j,N

s )
)

ds + σW i
t .

Or written as a RN -valued map B as

RN ∋ x = (x1, . . . , xN) 7→ B(x) :=
(
B1(x1, . . . , xN), . . . ,BN(x1, . . . , xN)

)
,

with Bi(x) = Bi(x1, . . . , xN) := −∇U(xi)−
1
N

N∑
j=1

∇V (xi − xj),

and we re-write the IPS for (X N
t )t≥0 := (X 1,N

t , . . . ,X N,N
t )t≥0 as

X N
t = ξ +

∫ t

0
B(X N

s )ds + σW t (5)

(Euler Scheme) ⇒ X N,h
i+1 = X N,h

i + hB(X N,h
i ) + σ∆W i+1. (6)
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The non-Markovian Euler scheme

The scheme introduced in Leimkuhler et al ’1416 for our IPS as a RN -valued
SDE

X N
t = ξ +

∫ t

0
B(X N

s )ds + σW t

(n-ME Scheme) ⇒ X N,h
i+1 = X N,h

i + hB(X N,h
i ) + σ

1
2
(∆W i+1 +∆W i). (7)

16Leimkuhler, Matthews, and Tretyakov, “On the long-time integration of stochastic gradient systems”, 2014.
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The results for standard SDEs
Results for SDEs17 → setting ∇V = 0 in our case; U ∈ C7 (in Rd )

(σ = cId ) Strong (T < ∞) Weak (T < ∞) Weak (T = ∞)

Euler / Milstein 1 1 1
non-ME

1

Weak ErrorEuler(h;T ) = CT h +O(h2) where lim
T→∞

CT = Const > 0.

but for the non Markovian scheme (Theorem 3.418)

lim
T→∞

CT = 0 ⇒ lim
T→∞

Weak Errornon-Mark. Euler(h;T ) = O(h2),

Lemma (Proposition 2.2)
a Under Lip. the non-ME pointwise strong error is 1/2 (also when ∇V ̸= 0)

aChen et al., “Improved weak convergence for the long time simulation of Mean-field Langevin equations”,
2024.

17Leimkuhler, Matthews, and Tretyakov, “On the long-time integration of stochastic gradient systems”, 2014.
18Ibid.
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How to understand the results?

The SDE
dX (t) = B

(
X (t)

)
dt + σdW (t), X (0) = X0

New view: Vilmart ’1519 conceptualised "Postprocessed Integrators" to study
algorithms as T → ∞. Instead of

X̄n+1 = X̄n + hB
(
X̄n
)
+

1
2
σ
√

h (ξn + ξn+1)

rewrite it as a "predictor-corrector" (postprocessed) method

Xn+1 = Xn + hB
(

Xn +
1
2
σ
√

hξn

)
+ σ

√
hξn,

X̄n+1 = Xn+1 +
1
2
σ
√

hξn+1

Intuition... and our case

19Vilmart, “Postprocessed integrators for the high order integration of ergodic SDEs”, 2015.
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Assumptions

Assumption 1:
Let The potentials U,V ∈ C2(R). Further suppose that

(1) U is uniformly convex : there exists λ > 0 such that for all x , y ∈ R,(
∇U(x)−∇U(y)

)(
x − y

)
≥ λ|x − y |2. (8)

(2) V is even (thus ∇V is odd), and convex, i.e., for all x , y ∈ R,(
∇V (x)−∇V (y)

)
(x − y) ≥ 0,

and there exists KV > 0 such that |∇2V |∞ ≤ KV .
Assumption 2:

(1) The potentials U,V ∈ C7(R), and all derivatives of ∇U,∇V are uniformly
bounded, with λ,KV satisfy λ ≥ 7KV .

(2) Let N ∈ N with N ≫ 6. For any n ≤ 6 and (γ1, . . . , γ|γ|) = γ ∈
⋃n

k=1 Π
N
k ,

with integers γj ∈ {1, . . . ,N}, the function g : RN → R, satisfies
|∂|γ|

xγ1 ,...,xγ|γ|
g|∞ = O(N−Ô(γ)), with an implied constant independent of N.
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Weak error and the test functions g
We analyse the weak error:

E[g(X N
T )]− E[g(X N,h

T )], X N
T ,X

N,h
T ∈ RN

Typical test functions g are

g(x) = g̃

(
1
N

N∑
i=1

f (xi)

)
, for some nice diff f , g̃,

using the associated Backward Kolmogorov equation20,21

How does g behave? (more difficult than the weak PoC test functions)

|∂3
x1,x2,x3

g|∞ = O(N−3)

|∂3
x1,x1,x3

g|∞ = O(N−2).
If f = id then for any |γ|-order derivative, one has automatically
|∂|γ|

xγ1 ,...,xγ|γ|
g|∞ = O(N−|γ|).

20Talay and Tubaro, “Expansion of the global error for numerical schemes solving stochastic differential
equations”, 1990.

21Milstein and Tretyakov, Stochastic numerics for mathematical physics, 2004.
Goncalo dos Reis (U. of Edin. + CMA) Numerics for SDEs and Mean-field SDEs Wien 09 Apr 2025 32 / 52



Main result

Theorem

Let Assumptions hold, let ξ ∈ L10(Ω,R) and let 0 < h ≪ min{1/2λ,1}.
Then ∣∣∣E[g(X N

T )]− E[g(X N,h
T )]

∣∣∣ ≈ K exp(−λ0T )h + Kh3/2 +O(h2),

where g : RN → R is the weak-error test function for some positive constants
λ0,K independent of h,T ,M and N.

▷ Main difficulties:
Start point: RN ∋ x 7→ u(t ,x) = E

[
g(X N,t,x

T )
∣∣ X N,t,x

t = x
]
.

▷ Taylor expansions

(a) K , λ0 independent of N,T + exponentially decay over time and
(b) across 6-variation orders of u(t ,x)
thus

RN ∋ x 7→ X N,x
T , i.e., ∇xX N,x

T , ∇2
xxX N,x

T ...
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Some results

Proposition

|∂2
xj ,xk

u(t ,x)|2

=

∣∣∣∣E[ N∑
i=1

∂xi g(X
t,x,N
T )X t,xi ,i,N

T ,xj ,xk

]
+ E

[ N∑
i=1

N∑
i′=1

∂2
xi ,xi′

g(X t,x,N
T )X t,xi ,i,N

T ,xj
X t,xi′ ,i

′,N
T ,xk

]∣∣∣∣2
|∂n

xγ1 ,...,xγn
u(t ,x)|2

=

∣∣∣∣∣E
[ ∑

α,β∈
⋃n−1

k=0 ΠN
k ,

γ\(γ1)∈α�β

N∑
i=1

(
∂xi g(X

t,x,N
T )

)
xα1 ,...,xα|α|

(
X t,xi ,i,N

T ,xγ1

)
xβ1 ,...,xβ|β|

]∣∣∣∣∣
2

.

For the first variation process (K indep. of N)

N∑
i=1

E
[
|X t,xi ,i,N

s,xj |p
]
≤ Ke−λp(s−t), and

N∑
i=1,i ̸=j

E
[
|X t,xi ,i,N

s,xj |p
]
≤ K

Np−1 e−λ1p(s−t).
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A basic example

Take the linear example:

dXt =
(
− α

(
Xt − E[Xt ]

)
− Xt

)
dt + σdWt , X0 ∈ L10(Ω,R), (9)

where α, σ > 0. We have E[Xt ] = E[X0]e−t and

µ∗(x) =
1
Z

exp
(
− α+ 1

σ2 x2
)
, Z :=

∫
R
µ∗(x)dx . (10)

We compute the relative entropy error and the L2-Error (of the density)

Relative Entropy Error =

Nbins∑
i=1

µtrue
i ln

( µtrue
i

µapprox
i

)

L2(R)-Error =

√√√√Nbins∑
i=1

|µtrue
i − µapprox

i |2,

where Nbins ∼ 100 is partition of R.
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Numerical results in a stylised (linear) example

(a) Relative Entropy Error (b) L2-Error (c) PoC L2-Error (log-scale)

Figure: Simulation of the linear MV-SDE with α = 0.5, σ = 0.8, N = 107, h = 0.16, and
X0 ∼ N (π, 1). (a) Entropy Error of the Euler method and non-Markovian method in
log-scale over time. (b) L2-Error of the Euler method and non-Markovian method in
log-scale over time. (c) L2-Error in particle size N of the Euler method and
non-Markovian method in log-scale with different N at T = 9.
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Numerical results in a stylized (linear) example

(a) Weak err. at t = 1 (b) Weak err. at t = 7

Figure: Simulation of the linear MV-SDE with α = 0.5, σ = 0.8, N = 107, h = 0.16, and
X0 ∼ N (π, 1). (a) Weak error in particle size N of the Euler method and non-Markovian
method in log-scale with different N at T = 1 (b) L2-Error in particle size N of the Euler
method and non-Markovian method in log-scale with different N at T = 7.
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Error in number of particles

α σ a b Nbins N Entropy Error L2-Error
Euler NM Euler NM

0.5 0.8 −1.8 1.8 72

103 - - 2.89E-02 3.28E-02
104 - - 1.01E-02 1.04E-02
105 8.21E-04 4.83E-04 4.29E-03 3.10E-03
106 2.74E-04 4.66E-05 2.31E-03 1.26E-03
107 2.33E-04 4.71E-06 2.37E-03 3.56E-04

Table: Simulation results for MV-SDE (9) with h = 0.04 and T = 8.64 for increasing
numbers of particles N. (As for Fig. 5: X0 ∼ N (π, 1) and both schemes run on the
exact same samples of the initial condition and Brownian increments.)
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Thank you!

Thank you for your time!

22 CHEN, XINGYUAN, AND GDR, (2024) Euler simulation of interacting particle systems
and McKean–Vlasov SDEs with fully super-linear growth drifts in space and
interaction. IMA Journal of Numerical Analysis 44, no. 2 (2024): 751-796.

23 CHEN, XINGYUAN, GDR, WOLFGANG STOCKINGER, AND ZAC WILDE, (2024)
Improved weak convergence for the long time simulation of Mean-field Langevin
equations,

▷ preprint arXiv:2405.01346

22Chen and Dos Reis, “Euler simulation of interacting particle systems and McKean–Vlasov SDEs with fully
super-linear growth drifts in space and interaction”, 2024.

23Chen et al., “Improved weak convergence for the long time simulation of Mean-field Langevin equations”,
2024.
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The Wasserstein metric

Wasserstein distance W (2)(µ, ν).

Over Rd , set the space of probability measures as P(Rd ) and its subset
P2(Rd ) of those with finite second moment.

The Wasserstein distance metricizes the weak convergence of probability
measures and is defined as

W2(µ, ν) = inf
π∈Π(µ,ν)

(∫
Rd×Rd

|x − y |2π(dx ,dy)
) 1

2
, µ, ν ∈ P2(Rd ),

where Π(µ, ν) ⊂ P(Rd × Rd ) is the set of couplings for µ and ν such that
π ∈ Π(µ, ν) is a probability measure on Rd × Rd such that π(· × Rd ) = µ and
π(Rd × ·) = ν.
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Weak error methodologies

How does one go about showing weak errors?
Talay-Tubaro24 but see Milstein Tretyakov book (2nd edition 2021)25

▷ Feynman-Kac and exogenous PDE result

Itô-Taylor expansions26

▷ Expansions of drift and diffusion using the SDE itself and over a simplex

Malliavin calculus + Duality27

▷ Integration by parts, and pathwise analysis

Parametrix expansions28

▷ Expansion of the densities

ad-hoc // by hand

24Talay and Tubaro, “Expansion of the global error for numerical schemes solving stochastic differential
equations”, 1990.

25Milstein and Tretyakov, Stochastic numerics for mathematical physics, 2004.
26Kloeden and Platen, Numerical solution of stochastic differential equations, 1992.
27Clément, Kohatsu-Higa, and Lamberton, “A duality approach for the weak approximation of stochastic

differential equations”, 2006.
28Konakov and Menozzi, “Weak error for stable driven stochastic differential equations: Expansion of the

densities”, 2011.
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Back to the Analysis: Kolmogorov backward equation
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Kolmogorov backward equation

We introduce X t,x,N
s = (X t,x1,1,N

s , . . . ,X t,xN ,N,N
s ), where for i ∈ {1, . . . ,N}

X t,xi ,i,N
s = xi +

∫ s

t
Bi(X

t,x1,1,N
u , . . . ,X t,xN ,N,N

u )du + σ(W i
s − W i

t ).

The generator for is defined by

LN =
N∑

i=1

Bi∂xi +
1
2
σ2∂2

xi ,xi
,

We introduce the Kolmogorov backward equation:

∂tu + LNu = 0, t ∈ [0,T ), u(T ,x) = g(x), (11)

for the above test function g : RN → R, by the Feynman-Kac formula the
solution of the above PDE is given by

u(t ,x) = E
[
g(X N

T )
∣∣ X i,N

t = xi , i ∈ {1, . . . ,N}
]
. (12)
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Weak-Error expansions

E
[
g(X N

T )
]
− E

[
g(X N,h

T )
]
= h2E

[
M−1∑
m=0

L(tm,X N,h
tm )

]
+ E

[
M−1∑
m=0

R(tm,X N,h
tm )

]
,

(13)

where the map L : R+ × RN → R is defined via the maps u and (Bi)i∈{1,...,N}:

L(t ,x) =
1
2

[ N∑
i,j=1

Bj(x)∂xj Bi(x)∂xi u(t ,x) +
σ2

2

N∑
i,j=1

∂xj Bi(x)∂2
xi ,xj

u(t ,x)

+
σ2

2

N∑
i,j=1

∂2
xj ,xj

Bi(x)∂xi u(t ,x)
]
. (14)

The remainder term R(·, ·) will later be written as a linear combination of 8
remainder terms, we need to control all the summations...
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Kolmogorov backward equation Examples

Consider the first derivatives, by chain rule, we need to analysis the
derivatives of g and the variation processes

|∂xj u(t ,x)|2

=
∣∣∣E[ N∑

i=1

(
∂xi g(X

t,x,N
T )

)
·
(
X t,xi ,i,N

T ,xj

)]∣∣∣2
≤ 2

∣∣∣E[|∂xj g(X
t,x,N
T )| |X t,xj ,j,N

T ,xj
|
]∣∣∣2 + 2

∣∣∣E[ N∑
i=1, i ̸=j

(
∂xi g(X

t,x,N
T )

)
·
(
X t,xi ,i,N

T ,xj

)]∣∣∣2
≤ K

N2E
[
|X t,xj ,j,N

T ,xj
|2
]
+ KN

N∑
i=1, i ̸=j

E
[∣∣∣|∂xi g(X

t,x,N
T )| |X t,xi ,i,N

T ,xj
|
∣∣∣2]

≤ K
N2E

[
|X t,xj ,j,N

T ,xj
|2
]
+

K
N

N∑
i=1, i ̸=j

E
[
|X t,xi ,i,N

T ,xj
|2
]
,

where we want ∂xj u(t ,x) ∼ O(1/N) so that |∂xj u(t ,x)|2 ∼ O(1/N2)
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Kolmogorov backward equation Examples-3

Similarly for the second derivatives

|∂2
xj ,xk

u(t ,x)|2

=

∣∣∣∣E[ N∑
i=1

∂xi g(X
t,x,N
T )X t,xi ,i,N

T ,xj ,xk

]
+ E

[ N∑
i=1

N∑
i′=1

∂2
xi ,xi′

g(X t,x,N
T )X t,xi ,i,N

T ,xj
X t,xi′ ,i

′,N
T ,xk

]∣∣∣∣2
The n-th derivatives

|∂n
xγ1 ,...,xγn

u(t ,x)|2

=

∣∣∣∣∣E
[ ∑

α,β∈
⋃n−1

k=0 ΠN
k ,

γ\(γ1)∈α�β

N∑
i=1

(
∂xi g(X

t,x,N
T )

)
xα1 ,...,xα|α|

(
X t,xi ,i,N

T ,xγ1

)
xβ1 ,...,xβ|β|

]∣∣∣∣∣
2

Basically, we need to analysis and take many summations so to match all the
orders in derivatives of g and the variation processes....
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Orders: Properly grouping + Jensen’s inequality

Consider now the specific two-dimensional example of xγ1,γ2 = N1−Ô(γ)

(corresponding to a 2 × 2 matrix with diagonal entries 1 and otherwise 1/N).

∣∣∣ ∑
γ∈ΠN

2

xγ1,γ2

∣∣∣2 = N4
∣∣∣ 1
N2

∑
γ∈ΠN

2

xγ1,γ2

∣∣∣2 ≤ N2
N∑

i,j=1

|xi,j |2

= N2
N∑

i=1

|xi,i |2 + N2
N∑

i,j=1,i ̸=j

|xi,j |2 = N3 + N2 ≤ 2N3.

This estimate is too naive and can be improved, as we can instead consider

∣∣∣ ∑
γ∈ΠN

2

xγ1,γ2

∣∣∣2 ≤ 2
∣∣∣ N∑

i=1

xi,i

∣∣∣2 + 2
∣∣∣ N∑

i,j=1,i ̸=j

xi,j

∣∣∣2 ≤ 2N
N∑

i=1

|xi,i |2 + 2N2
N∑

i,j=1,i ̸=j

|xi,j |2

= 2N2 +
2N3(N − 1)

N2 ≤ 4N2,

which is indeed a sharper upper bound.
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The variation processes

The first variation process of (X t,x,N
s )s≥t≥0 is given by

X t,xi ,i,N
s,xj = δi,j +

∫ s

t

N∑
l=1

∂xl Bi(X t,x,N
u )X t,xl ,l,N

u,xj du,

The n−variation process of (X t,x,N
s )s≥t≥0 is given by

X t,xi ,i,N
s,xγ1 ,...,xγn

=

∫ s

t

( N∑
l=1

∂xl Bi(X t,x,N
u )X t,xl ,l,N

u,xγ1

)
xγ2 ,...,xγn

du (15)

=

∫ s

t

N∑
l=1

∂xl Bi(X t,x,N
u )X t,xl ,l,N

u,xγ1 ,...,xγn
du

+
∑

α,β∈
⋃n−1

k=0 ΠN
k ,

|α|>0, γ\(γ1)∈α�β

∫ s

t

N∑
l=1

(
∂xl Bi(X t,x,N

u )
)

xα1 ,...,xα|α|

(
X t,xl ,l,N

u,xγ1

)
xβ1 ,...,xβ|β|

du,
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Some interesting results of the variation processes
Under the assumptions we have with the the starting positions xi ∈ L2(Ω,R)
are Ft -measurable random variables that are identically distributed over all
i ∈ {1, . . . ,N}. For each 1 ≤ n ≤ 6, there exist constants λ

(n)
0 ∈ (0, λ) and

K > 0 (both independent of s, t ,T and N) such that for any
m ∈ {1, . . . ,n + 1}, we have∑

γ∈ΠN
n+1, Ô(γ)=m

E
[
|X t,xγ1 ,γ1,N

s,xγ2 ,...,xγn+1
|p
]
≤ K

Np(m−1)−m e−λ
(n)
0 p(s−t).

This implies that, for all γ ∈ ΠN
n+1, such that Ô(γ) = m, m ∈ {1, . . . ,n + 1}:

E
[
|X t,xγ1 ,γ1,N

s,xγ2 ,...,xγn+1
|p
]
≤ K

Np(m−1) e−λ
(n)
0 p(s−t).

Example (The first variation process)

N∑
i=1

E
[
|X t,xi ,i,N

s,xj |p
]
≤ Ke−λp(s−t), and

N∑
i=1,i ̸=j

E
[
|X t,xi ,i,N

s,xj |p
]
≤ K

Np−1 e−λ1p(s−t).
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More results

There exists a constant K > 0 (independent of t ,T ,N), such that for any
n ∈ N,1 ≤ n ≤ 6, γ ∈ ΠN

n , and x ∈ RN

|∂n
xγ1 ,...,xγn

u(t ,x)|2

≤ K
n∑

m=0

∑
ℓ∈

⋃n
k=1 Π

N
k ,

Ô(ℓ
⋃

γ)=Ô(γ)+m

Nm−2Ô(ℓ)
∑

α1,...,α|ℓ|∈
⋃n

k=1 Π
N
k ,⋃|ℓ|

i=1 αi≃γ

E
[ |ℓ|∏

i=1

∣∣∣X t,xℓi ,ℓi ,N
T ,αi,1,...,αi,|αi |

∣∣∣2 ],

where αi = (αi,1, . . . , αi,|αi |) and αi,j ∈ {1, . . . ,N} for j ∈ {1, . . . , |αi |}.

Further, assuming that the starting points xi are Ft -measurable random
variables in L2(Ω,R) sampled from the same distribution for all i ∈ {1, . . . ,N},
we have

E
[∣∣∂n

xγ1 ,...,xγn
u(t ,x)

∣∣2] ≤ Ke−λ0(T−t)N−2Ô(γ).
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