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Motivation
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Motivating Example: Radiology

Typical workflow
Prof. Ingrisch (LMU)
Clinical Data Science
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Motivating Example: Radiology

Typical workflow
Patient data
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Motivating Example: Radiology

Typical workflow
Patient data
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Motivating Example: Radiology

Patient data2-step procedure
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Semi-Structured Regression

Idea:
● Jointly train statistical model
● and deep neural network(s)
● in one large unifying neural network end-to-end

Semi-Structured Distributional Regression
Rügamer et al., TAS 2024
A New PHO-rmula for Improved Performance of Semi-Structured Networks
Rügamer, ICML 2023 9
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How?
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Semi-Structured Regression
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Semi-Structured Regression

Deep Neural Network
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Semi-Structured Regression

Deep Neural Network
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Semi-Structured Regression

Structured Predictor

Deep Neural Network

Patient 
data
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𝜂+

Semi-Structured Regression

Patient 
data
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Patient 
data
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𝜂+

Semi-Structured Regression

θ
h Optimization via Maximum Likelihood

by minimizing

Patient 
data
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𝜂+

Semi-Structured Regression

h

Implemented in
deepregression (CRAN/Github)

Optimization via Maximum Likelihood
by minimizingθ

deepregression: a Flexible Neural Network Framework for Semi-Structured Deep Distributional Regression
DR, Kolb, …, Kook, et al., JSS 2023

Patient 
data
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Example: Predicting Airbnb Prices in Munich

● Tabular information:
○ bathrooms, bedrooms, room type,
○ latitude, longitude,
○ information on the host,
○ reviews,
○ ...
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Example: Predicting Airbnb Prices in Munich

● Tabular information:
○ bathrooms, bedrooms, room type,
○ latitude, longitude,
○ information on the host,
○ reviews,
○ ...

● Text description
● Image

My appartment located in schwabing, Station for Metro, 
Bus,
Tram are ony 1 minute walking.
The room is 16 square meters, Free WIFI.
We use together Bathroom and Kichen.
I prepare your Bath  Towel.
you get Breakfast, cafe oder Tee, Bread..
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Example: Predicting Airbnb Prices in Munich
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Example: Predicting Airbnb Prices in Munich
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Example: Predicting Airbnb Prices in Munich
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tl;dl: Motivation

Semi-structured models allow you 

● to work with non-tabular data
● while estimating a structured model predictor
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Flexibility
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𝜂+

Semi-Structured Regression
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𝜂1+

Semi-Structured Distributional Regression
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𝜂1+
h1

Semi-Structured Distributional Regression

θ1
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Semi-Structured Distributional Regression

 

𝜂1+

 

𝜂2 +
h1 h2

θ1 θ2
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Semi-Structured Distributional Regression

 

𝜂1+

 

𝜂2 +
h1 h2

Optimization via Maximum Likelihood

θ1 θ2
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Example: Predicting Airbnb Prices in Munich
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Example: Predicting Airbnb Prices in Munich
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Example: Predicting Airbnb Prices in Munich
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Not flexible enough?

⇒ Mixture regression models (mixdistreg)
⇒ Transformation models (deeptrafo)

Mixture of Experts Distributional Regression
DR, Pfisterer, Bischl and Grün, AStA 2023
Deep Conditional Transformation Models
Baumann, Hothorn Rügamer, ECML 2021
Estimating Conditional Distributions with Neural Networks Using R Package deeptrafo
Kook, Baumann, Sick, Dürr and DR, JSS 2024
How Inverse Conditional Flows Can Serve as a Substitute for Distributional Regression
Kook, et al. and DR, UAI 2024 37



Other Model Classes

● Time Series (Schiele et al., ‘22)

● Survival (Kopper et al., DR, AAAI ‘20; PAKDD ‘22)

● Functional Data (Rügamer et al., NeurIPS ‘24)

● Density Data (Jung et al., ‘25+)

● … 
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tl;dl: Flexibility

Embedding structured models into neural networks

● provides a flexible toolbox
● allows previously unimagined modeling combinations
● using Stochastic Gradient Descent (SGD) → model-agnostic
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Scalability

40



Other Model Classes

● Time Series (Schiele et al., ‘22)

● Survival (Kopper et al., DR, AAAI ‘20; PAKDD ‘22)

● Functional Data (Rügamer et al., NeurIPS ‘24)

● Density Data (Jung et al., ‘25+)

● … 

41



Other Model Classes

● Time Series (Schiele et al., ‘22)

● Survival (Kopper et al., DR, AAAI ‘20; PAKDD ‘22)

● Functional Data (Rügamer et al., NeurIPS ‘24)

● Density Data (Jung et al., ‘25+)

● … 

42



Functional Regression Models

A Functional Extension of Semi-Structured Networks
DR et al., NeurIPS 2024 43
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Functional Regression Models

A Functional Extension of Semi-Structured Networks
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Functional Regression Models

A Functional Extension of Semi-Structured Networks
DR et al., NeurIPS 2024

Stoch. Optimization

Basis Recycling

Array Computations
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Large-Scale Applications

Prof. Stachl (St. Gallen)
Behavioral Psychology
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Large-Scale Applications
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Large-Scale Applications
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Rügamer et al., ECML-PKDD 2022

Factorized Structured Regression for Large-Scale Varying Coefficient Models
DR et al., ECML-PKDD 2022



tl;dl: Scalability

Embedding structured models into neural networks

● provides an easy way to scale for large datasets
● offers many ways to also scale to high dimensions

and more complex model predictors

57



Challenge: 
Structured Sparsity
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Sparsity in Neural Networks

Smoothing the Edges: Smooth Optimization for Sparse Regularization using Hadamard Overparametrization and Path(ologie)s
Kolb, Müller, Bischl, DR, 2023 59
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Sparsity in Neural Networks – Problem Setup

Lasso: 

SGD will not work

cont. + convex cont. + convex
but non-smooth

Smoothing the Edges: Smooth Optimization for Sparse Regularization using Hadamard Overparametrization and Path(ologie)s
Kolb, Müller, Bischl, DR, 2023 62



Comparison with Proximal-type Routines

Smoothing the Edges: Smooth Optimization for Sparse Regularization using Hadamard Overparametrization and Path(ologie)s
Kolb, Müller, Bischl, DR, 2023 63



Hadamard Product Parameterization
for Lasso

● Parametrize 
● Replace non-smooth

   by smooth

Smoothing the Edges: Smooth Optimization for Sparse Regularization using Hadamard Overparametrization and Path(ologie)s
Kolb, Müller, Bischl, DR, 2023 64
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⇒ Optimal solution is the same, 
    & introduces no additional local minima
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Hadamard Product Parameterization
for Lasso

● Parametrize 
● Replace non-smooth

   by smooth

Smoothing the Edges: Smooth Optimization for Sparse Regularization using Hadamard Overparametrization and Path(ologie)s
Kolb, Müller, Bischl, DR, 2023

⇒ Optimal solution is the same, 
    & introduces no additional local minima

General guarantees: Theorem 2.10 in Kolb et al., 2023
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tl;dl: Sparsity

When using (S)GD-type optimization

● sparsity penalties doesn’t work
● use a smooth surrogate penalty

70Deep Weight Factorization: Sparse Learning Through the Lens of Artificial Symmetries
Kolb, Weber, Bischl, DR, ICLR 2025



Current & Future:
Statistical Inference
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Statistical Inference

Being Bayesian helps …
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● Subspace Inference
➢ Approximate Deep NN part using a subspace

Bayesian Semi-structured Subspace Inference
Dold, Dr, et al., AIStats 2024
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Statistical Inference
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Statistical Inference

Being Bayesian helps …

● Subspace Inference
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common sampling approaches possible
➢ Unbiasedly estimates structured parameters

● Full-Space Inference
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Statistical Inference

Being Bayesian helps …

● Subspace Inference
➢ Approximate Deep NN part using a subspace
➢ For small enough subspace, 

common sampling approaches possible
➢ Unbiasedly estimates structured parameters

● Full-Space Inference
➢ Deemed to be too expensive

Towards Efficient MCMC Sampling in Bayesian Neural Networks by Exploiting Symmetry
Wiese, et al., DR, ECML 2023
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Statistical Inference

Being Bayesian helps …

● Subspace Inference
➢ Approximate Deep NN part using a subspace
➢ For small enough subspace, 

common sampling approaches possible
➢ Unbiasedly estimates structured parameters

● Full-Space Inference
➢ Deemed to be too expensive
➢ O(Sampling) = O(Optimization)

Towards Efficient MCMC Sampling in Bayesian Neural Networks by Exploiting Symmetry
Wiese, et al., DR, ECML 2023
Connecting the Dots: Is Mode-Connectedness the Key to Feasible Sample-Based Inference in Bayesian Neural Networks?
Sommer, et al., DR, ICML 2024
Microcanonical Langevin Ensembles: Advancing the Sampling of Bayesian Neural Networks
Sommer et al., DR, ICLR 2025
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Statistical Inference

What about frequentist inference?
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Statistical Inference

What about frequentist inference?

➢ Challenging
➢ Pre-trained?
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Inference using Pre-Trained Networks

Patient data2-step procedure

Image Representation

Text Representation

Pre-trained Image Model

Pre-trained Text Model

84



Statistical Inference with Non-tabular data

… using representations from pre-trained networks with               

Adjustment for Confounding using Pre-Trained Representations
Schulte, DR, Nagler, 2025 85



● Even if relevant information is contained in U 
● Representations typically not identifiable

Non-Identifiability of Pre-trained Representations

Adjustment for Confounding using Pre-Trained Representations
Schulte, DR, Nagler, 2025 86
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● Even if relevant information is contained in U 
● Representations typically not identifiable
● In the model head information does not

change under bijective transformations

Non-Identifiability of Pre-trained Representations

➥ Assumptions should hold for Inverse Linear Transformations (ILTs)

Adjustment for Confounding using Pre-Trained Representations
Schulte, DR, Nagler, 2025 92



Convergence Rates and Invariances

Adjustment for Confounding using Pre-Trained Representations
Schulte, DR, Nagler, 2025 93



Convergence Rates and Invariances

Adjustment for Confounding using Pre-Trained Representations
Schulte, DR, Nagler, 2025

❌
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Convergence Rates and Invariances

Adjustment for Confounding using Pre-Trained Representations
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Convergence Rates and Invariances

Adjustment for Confounding using Pre-Trained Representations
Schulte, DR, Nagler, 2025

Smoothness

✅
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Convergence Rates and Invariances

Adjustment for Confounding using Pre-Trained Representations
Schulte, DR, Nagler, 2025

Smoothness
Intrinsic Dimensionality

✅
✅
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Convergence Rates and Invariances

Adjustment for Confounding using Pre-Trained Representations
Schulte, DR, Nagler, 2025

Smoothness
Intrinsic Dimensionality

✅
✅
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Convergence Rates for Nuisance Function Estimation

Adjustment for Confounding using Pre-Trained Representations
Schulte, DR, Nagler, 2025

Z
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Convergence Rates for Nuisance Function Estimation

Adjustment for Confounding using Pre-Trained Representations
Schulte, DR, Nagler, 2025

U
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Convergence Rates for Nuisance Function Estimation

Adjustment for Confounding using Pre-Trained Representations
Schulte, DR, Nagler, 2025

➢ Image data and its latent representations often of low ID

U
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Convergence Rates for Nuisance Function Estimation

Adjustment for Confounding using Pre-Trained Representations
Schulte, DR, Nagler, 2025

➢ Image data and its latent representations often of low ID
➢ NN can adapt to low ID and achieve fast conv. rates

U
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Convergence Rates for Nuisance Function Estimation

Adjustment for Confounding using Pre-Trained Representations
Schulte, DR, Nagler, 2025

U
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Convergence Rates for Nuisance Function Estimation

Adjustment for Confounding using Pre-Trained Representations
Schulte, DR, Nagler, 2025

Estimating Average Treatment Effect T ➝ Y using 
Double Machine Learning (DML)

U
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Estimating Average Treatment Effect T ➝ Y using 
Double Machine Learning (DML)

Convergence Rates for Nuisance Function Estimation

Adjustment for Confounding using Pre-Trained Representations
Schulte, DR, Nagler, 2025

U
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Estimating Average Treatment Effect T ➝ Y using 
Double Machine Learning (DML)

➢ Random Forest fails, Doubly robust estimation superior
(RF: axis-aligned splits not compatible with ILTs)

Convergence Rates for Nuisance Function Estimation

Adjustment for Confounding using Pre-Trained Representations
Schulte, DR, Nagler, 2025

U
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Estimating Average Treatment Effect T ➝ Y using 
Double Machine Learning (DML)

Convergence Rates for Nuisance Function Estimation

Adjustment for Confounding using Pre-Trained Representations
Schulte, DR, Nagler, 2025

U
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Estimating Average Treatment Effect T ➝ Y using 
Double Machine Learning (DML)

➢ Pre-trained can work better than from-scratch training (CNN)

Convergence Rates for Nuisance Function Estimation

Adjustment for Confounding using Pre-Trained Representations
Schulte, DR, Nagler, 2025

U
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Estimating Average Treatment Effect T ➝ Y using 
Double Machine Learning (DML)

Convergence Rates for Nuisance Function Estimation

Adjustment for Confounding using Pre-Trained Representations
Schulte, DR, Nagler, 2025

U
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Assuming
1. Validity of representation
2. Low ID dim. of representation
3. Hierarchical composition of target function

Convergence Rates for Nuisance Function Estimation

Adjustment for Confounding using Pre-Trained Representations
Schulte, DR, Nagler, 2025

Estimating Average Treatment Effect T ➝ Y using 
Double Machine Learning (DML)

U
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Assuming
1. Validity of representation
2. Low ID dim. of representation
3. Hierarchical composition of target function

We derive 
➢ Convergence rates for NN-based (nuisance) estimation
➢ Asym. normality for doubly-robust

Convergence Rates for Nuisance Function Estimation

Adjustment for Confounding using Pre-Trained Representations
Schulte, DR, Nagler, 2025

Estimating Average Treatment Effect T ➝ Y using 
Double Machine Learning (DML)

U
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tl;dl: Statistical Inference

Statistical Inference for semi-structured models

● Bayes POV: possible in subspace and maybe also full space
● Frequentist POV: with some assumptions and pre-trained models 
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● Semi-Structured Regression: 
Combine statistical models & neural networks

● Flexibility & Scalability
Many model classes & easier to make scalable

● Sparsity in Neural Networks
Can be achieved by an optimization transfer

● Inference in Semi-Structured Regression
Pre-trained models or Bayesian approaches

Summary
Joint work with 
many others …
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Appendix
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Challenge: 
(Implicit) Regularization
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(Implicit) Regularization

Working with stochastic gradient descent (SGD)-type optimization can be challenging
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(Implicit) Regularization

Additive Model Boosting: New Insights and Path(ologie)s
Schulte and DR, AIStats 2025

Working with stochastic gradient descent (SGD)-type optimization can be challenging

Ridge

GD paths
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(Implicit) Regularization

Additive Model Boosting: New Insights and Path(ologie)s
Schulte and DR, AIStats 2025

Working with stochastic gradient descent (SGD)-type optimization can be challenging

➢ Implicit regularization of (NN) optimizers behaves differently than classical 
Ridge-type regularization
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(Implicit) Regularization

Additive Model Boosting: New Insights and Path(ologie)s
Schulte and DR, AIStats 2025

Working with stochastic gradient descent (SGD)-type optimization can be challenging

➢ Implicit regularization of (NN) optimizers behaves differently than classical 
Ridge-type regularization
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TL;DL: Regularization

When using (S)GD-type optimization

● there is implicit regularization
● it’s not clear, what we are actually optimizing — even in a 

linear model
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