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Semi-Structured Regression

Intro: Motivation & Implementation
Advantages: Flexibility & Scalability
Challenges: Structured Sparsity
Current & Future: Statistical Inference
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Motivating Example: Radiology

Typical workflow
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Motivating Example: Radiology

Typical workflow

Patient data
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Motivating Example: Radiology @
2-step procedure Patient data \
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Semi-Structured Regression

ldea:

e Jointly train statistical model
e and deep neural network(s)

e in one large unifying neural network end-to-end

Semi-Structured Distributional Regression
RUgamer et al., TAS 2024

A New PHO-rmula for Improved Performance of Semi-Structured Networks
Rigamer, ICML 2023

M [




Semi-Structured Regression

ldea:

e Jointly train statistical model
e and deep neural network(s) W= (B’ ®, 5)

e in one large unifying neural network end-to-end

Semi-Structured Distributional Regression
RUgamer et al., TAS 2024

A New PHO-rmula for Improved Performance of Semi-Structured Networks
Rigamer, ICML 2023
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Semi-Structured Regression

ldea:

e Jointly train statistical model
e and deep neural network(s) W= (B’ ®, 5)

e in one large unifying neural network end-to-end

n==a' B+ NNy (2img) + NN¢(2teqt)
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Semi-Structured Distributional Regression
RUgamer et al., TAS 2024

A New PHO-rmula for Improved Performance of Semi-Structured Networks
Rigamer, ICML 2023
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Semi-Structured Regression

ldea:

e Jointly train statistical model
e and deep neural network(s) W= (B’ ®, 5)

e in one large unifying neural network end-to-end

n==a' B+ NNy (2img) + NN¢(2teqt)
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Uimg Utext

- NNw (CE, Zimga ztea:t)

Semi-Structured Distributional Regression
RUgamer et al., TAS 2024

A New PHO-rmula for Improved Performance of Semi-Structured Networks
Rigamer, ICML 2023
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How?
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Semi-Structured Regression

M [



Semi-Structured Regression

Deep Neural Network
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Semi-Structured Regression

Deep Neural Network
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Semi-Structured Regression

Deep Neural Network

Patient
data

Structured Predictor
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Semi-Structured Regression
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Semi-Structured Regression

Optimization via Maximum Likelihood
by minimizing

—> i log f(vi|0; = h(m:))

Patient
data
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Semi-Structured Regression

Optimization via Maximum Likelihood
by minimizing

- ZZ log f(yi|0; = h(m:))

Patient  * Implemented in

data deepregression (CRAN/Github)

deepregression: a Flexible Neural Network Framework for Semi-Structured Deep Distributional Regression - MU
DR, Kolb, ..., Kook, et al., JSS 2023



Example: Predicting Airbnb Prices in Munich

® Tabular information:
O bathrooms, bedrooms, room type,
latitude, longitude,
information on the host,
reviews,

o O O O
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Example: Predicting Airbnb Prices in Munich

® Tabular information:

® Text description

O

O

O

O

O

Image

bathrooms, bedrooms, room type,
latitude, longitude,

information on the host,

reviews,

ly appartment located in schwabing, Station for Metro,

[ram are ony 1 minute walking.

[he room ic 16 cquare meters, Free WIFL
e use together Bathroom and Kichen.

[ prepare your Bath Towel.

ou get Breakfact, cate oder Tee, Bread..
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Example: Predicting Airbnb Prices in Munich

mod_airbnb <- deepregression(
y = price,
family = "log_normal"”,
list_of_ formulas = list(
location = ~1 + te(latitude, longitude) + room_type + bedrooms +
cnn(image) + lstm(desc),
scale = ~1
)5

data = d_train
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Example: Predicting Airbnb Prices in Munich

mod_airbnb <- deepregression(
y = price,
family = "log_normal"”,

list_of_ formulas = list(
location = ~1 + te(latitude, longitude) + room_type + bedrooms +

cnn(image) + lstm(desc),

scale = ~1

)’

data = d_train

Frequency

0.014

0.00
300

100 200
Partial effect of the DNN
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Example: Predicting Airbnb Prices in Munich

mod_airbnb <- deepregression(
y = price,
family = "log_normal",
list_of formulas = list(
location = ~1 + te(latitude, longitude) + room_type + bedrooms +
cnn(image) + lswu(desc),

scale = ~1 Geographic Location Effect
If l ;' ’v

data = d_train

Multiplicative Effect on the
Price Distrbution's Mean
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Semi-structured models allow you

e to work with non-tabular data
e while estimating a structured model predictor
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Flexibility




Semi-Structured Regression
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Semi-Structured Distributional Regression
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Semi-Structured Distributional Regression
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Semi-Structured Distributional Regression
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Semi-Structured Distributional Regression

Optimization via Maximum Likelihood

argming — >, log f(yi[01; = h1(m), ... Ok = hK(’UK,i))
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Example: Predicting Airbnb Prices in Munich

mod_airbnb <- deepregression(
y = price,
family = "log_normal",
list_of_formulas = list(
location = ~1 + te(latitude, longitude) + room_type + bedrooms +

cnn(image) + lstm(desc),
scale = ~1

) )

data = d_train




Example: Predicting Airbnb Prices in Munich

mod_airbnb <- deepregression(
y = price,
family = "log_normal",
list_of_formulas = list(
location = ~1 + te(latitude, longitude) + room_type + bedrooms +

cnn(image) + lstm(desc),
scale = ~1 + te(latitude, longitude)
),

data = d_train




Example: Predicting Airbnb Prices in Munich

Geographic Location Effect
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Not flexible enough?

= Mixture regression models (mixdistreg)
= Transformation models (deeptrafo)

Mixture of Experts Distributional Regression

DR, Pfisterer, Bischl and Griin, AStA 2023

Deep Conditional Transformation Models

Baumann, Hothorn Rigamer, ECML 2021

Estimating Conditional Distributions with Neural Networks Using R Package deeptrafo
Kook, Baumann, Sick, Dirr and DR, JSS 2024

How Inverse Conditional Flows Can Serve as a Substitute for Distributional Regression
Kook, et al. and DR, UAI 2024




Other Model Classes

Time Series (Schiele et al., ‘22)
Survival (Kopper et al., DR, AAAI ‘20; PAKDD ‘22)
Functional Data (Rigamer et al., NeurlPS ‘24)

Density Data (Jung et al., ‘25+)
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tl;dl: Flexibility
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Embedding structured models into neural networks

e provides a flexible toolbox
e allows previously unimagined modeling combinations
e using Stochastic Gradient Descent (SGD) » model-agnostic
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Scalability




Other Model Classes

Time Series (Schiele et al., ‘22)
Survival (Kopper et al., DR, AAAI ‘20; PAKDD ‘22)
Functional Data (Rigamer et al., NeurlPS ‘24)

Density Data (Jung et al., ‘25+)
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Other Model Classes

Time Series (Schiele et al., ‘22)
Survival (Kopper et al., DR, AAAI ‘20; PAKDD ‘22)
Functional Data (RUgamer et al., NeurlPS ‘24)

Density Data (Jung et al., ‘25+)
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Functional Regression Models

Yi(t) = Y5 fies i(s)B(s,t)ds +ei(t) teT

A Functional Extension of Semi-Structured Networks - LMU
DR et al., NeurIPS 2024



Functional Regression Models

Yi(t) = Y5 fies i(s)B(s,t)ds +ei(t) teT
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A Functional Extension of Semi-Structured Networks - LMU
DR et al., NeurIPS 2024




Functional Regression Models

Z] L Jies i (8)B(s,t)ds +€i(t) teT
~ Zj:l Zr:l A"’mji(sr)ﬂ(sr, t) + & (t)

A Functional Extension of Semi-Structured Networks rl-l C I-I-I l_ LMU

DR et al., NeurlPS 2024



Functional Regression Models

Z] | Joes zii(8)B(s, t)ds +ei(t) teT
~ ijl 27:1 Arxj; (s8r)B(sr,t) + €i(2)
~ Y5 o Arzii(s,)[B (s,) @ BY (1)) Ty + &4 (2)

A Functional Extension of Semi-Structured Networks - LMU
DR et al., NeurIPS 2024



Functional Regression Models

Yi(t) = Y5 fies i(s)B(s,t)ds +ei(t) teT
~ 23'7:1 271«11 Armji (Sr)ﬁ(sr, t) + & (t)
~ Y Yoy Arzji(sr)[B®(s,) ® BY(1)] Ty + &4 (2)

Yi(ty) = S0 S Avaji(s,)[B* (s,) @ B (tg)] Ty + & (t,)

A Functional Extension of Semi-Structured Networks - LMU
DR et al., NeurIPS 2024



Functional Regression Models

Z] | Joes zii(8)B(s, t)ds +ei(t) teT
~ ijl 27:1 Arxj; (s8r)B(sr,t) + €i(2)
~ Y5 o Arzii(s,)[B (s,) @ BY (1)) Ty + &4 (2)

Yi(ty) = ijl Zf:l Arwji(sr)[Bs (57) ® B’ (tq)]T’Y + €i(tq)

for 1=1,...,

n
r=1,...,R
Q

.oy

A Functional Extension of Semi-Structured Networks
DR et al., NeurIPS 2024
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Functional Regression Models

Additive Model
R Nr. of Observations Nr. of Predictors Nr. of Time Points
m
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-1.0 -0.5 oo o3 10

E3 Additive Model £ Boosting

(a) True weight surface w(s,t) used in the
simulation study for large SNR along with
estimation results of different methods.

(b) Memory consumption of different methods (colors) for
different amounts of functional observations n (left), functional
predictors .J (center), and time points R (right).

A Functional Extension of Semi-Structured Networks
DR et al., NeurlPS 2024




Functional Regression Models

Additive Model
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simulation study for large SNR along with  different amounts of functional observations n (left), functional
estimation results of different methods. predictors .J (center), and time points R (right).

A Functional Extension of Semi-Structured Networks
DR et al., NeurlPS 2024




Functional Regression Models

Aditve ol
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simulation study for large SNR along with
estimation results of different methods.

(b) Memory consumption of different methods (colors) for
different amounts of functional observations 7 (left), functional
predictors .J (center). and time points R (right).

A Functional Extension of Semi-Structured Networks

e
DR et al., NeurIPS 2024




Functional Regression Models

"Addive Model

Nr.of Observations | [_Nr. of Predictors | [_Nr. of Time Points
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2
Value
e £3 Additive Model £3 Boosting E5 Neural Network
(a) True weight surface w(s, ?) used in the  (b) Memory consumption of different methods (colors) for
simulation study for large SNR along with  different amounts of functional observations n (left). functional
estimation results of different methods. predictors .J (center). and time points R (right).

Yi(ty) = ]"]:1 Zf:l Arzji(s,)[B*(sr) @ B (tg)] "7 + €i(ty)

A Functional Extension of Semi-Structured Networks -
DR et al., NeurIPS 2024




Functional Regression Models
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simulation study for large SNR along with  different amounts of functional observations n (left). functional
estimation results of different methods. predictors .J (center). and time points R (right).

Basis Recycling

Stoch. Optimization Array Computations

A Functional Extension of Semi-Structured Networks
DR et al., NeurIPS 2024




Large-Scale Applications

Psychology

GPS app-usage

calls & texts
photos & videos
music
accelerometer searches

microphone
light sensor

€

Prof. St‘achl (St. Gallen)
Behavioral Psychology
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Large-Scale Applications

Psychology

GPS app-usage

calls & texts
photos & videos
music
accelerometer searches

microphone
light sensor

M [




Large-Scale Applications

Rdgamer et al., ECML-PKDD 2022
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Factorized Structured Regression for Large-Scale Varying Coefficient Models -
DR et al., ECML-PKDD 2022
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Embedding structured models into neural networks

e provides an easy way to scale for large datasets
e offers many ways to also scale to high dimensions
and more complex model predictors
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Challenge:
Structured Sparsity




Sparsity in Neural Networks

Smoothing the Edges: Smooth Optimization for Sparse Regularization using Hadamard Overparametrization and Path(ologie)s
Kolb, Miller, Bischl, DR, 2023




Sparsity in Neural Networks - Problem Setup

Lasso:

Ly — X85 + X8Il

Smoothing the Edges: Smooth Optimization for Sparse Regularization using Hadamard Overparametrization and Path(ologie)s mrzmie LMU
Kolb, Miiller, Bischl, DR, 2023




Sparsity in Neural Networks - Problem Setup

Lasso:
1 2
<y — XBll; + AllBll;
— — _ \/_/
cont. + convex cont. +convex
but non-smooth
Smoothing the Edges: Smooth Optimization for Sparse Regularization using Hadamard Overparametrization and Path(ologie)s - LMU

Kolb, Mdller, Bischl, DR, 2023



Sparsity in Neural Networks - Problem Setup

Lasso:
1 2
<y — XBll; + AllBll;
— —— v ~——
cont. + convex cont. +convex
but non-smooth
SGD will not work
Smoothing the Edges: Smooth Optimization for Sparse Regularization using Hadamard Overparametrization and Path(ologie)s - LMU

Kolb, Mdller, Bischl, DR, 2023



Comparison with Proximal-type Routines

Lasso objective

1.00

0.75

Sparsity Ratio
o
[$)]
o

0.25
0.00 =
-3 -2 -1 0 1
Lambda (Log10)
— GD+L1 = Lasso (gimnet)

Smoothing the Edges: Smooth Optimization for Sparse Regularization using Hadamard Overparametrization and Path(ologie)s
Kolb, Miller, Bischl, DR, 2023




Hadamard Product Parameterization

for Lasso

e Parametrize B=u Qv
e Replace non-smooth |81,
by smooth [[ull3 + [|v][3

Ly — XAl + Al —

Smoothing the Edges: Smooth Optimization for Sparse Regularization using Hadamard Overparametrization and Path(ologie)s - LMU

Kolb, Mdller, Bischl, DR, 2023
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Hadamard Product Parameterization
for Lasso

e Parametrize B=u Qv
e Replace non-smooth |81,
by smooth [[ull3 + [|v][3

Ely — XBll3 + MBI —— |z lly = X(u @ )|l + Al + [[v]]5)

= Optimal solution is the same,
& introduces no additional local minima

Smoothing the Edges: Smooth Optimization for Sparse Regularization using Hadamard Overparametrization and Path(ologie)s - MU
Kolb, Mdiller, Bischl, DR, 2023



Hadamard Product Parameterization
for Lasso

e Parametrize B=u Qv
e Replace non-smooth |81,
by smooth [[ull3 + [|v][3

Ely — XBll3 + MBI —— |z lly = X(u @ )|l + Al + [[v]]5)

= Optimal solution is the same,
& introduces no additional local minima

General guarantees: Theorem 2.0 in Kolb et al., 2023

Smoothing the Edges: Smooth Optimization for Sparse Regularization using Hadamard Overparametrization and Path(ologie)s mrzmie LM
Kolb, Miiller, Bischl, DR, 2023 U



Comparison with Proximal-type Routines

Lasso objective

1.00
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Smoothing the Edges: Smooth Optimization for Sparse Regularization using Hadamard Overparametrization and Path(ologie)s
Kolb, Miller, Bischl, DR, 2023




Comparison with Proximal-type Routines

Lasso objective

1.00

0.75

Sparsity Ratio
o
[$)]
o

0.25

0.00 =
-3 -2 -1 0 1
Lambda (Log10)

— GD+L1 — GD+HPP+L2 = Lasso (gimnet)

Smoothing the Edges: Smooth Optimization for Sparse Regularization using Hadamard Overparametrization and Path(ologie)s
Kolb, Miller, Bischl, DR, 2023




Comparison with Proximal-type Routines

Lasso objective Group lasso objective
1.00 1.00
0.75 0.75
o 2
T T
04 24
2'0.50 £0.50
t£ %]
g g y
n » /
0.25 0.25
0.00 = 0.00 i
-3 -2 -1 0 1 -11 -0.9 -0.7 -0.5 -0.3
Lambda (Log10) Lambda (Log10)
— GD+L1 =— GD+HPP+L2 = Lasso (gimnet) — GD+L21 — GD+GHPP+L2 = Group Lasso (SGL)

Smoothing the Edges: Smooth Optimization for Sparse Regularization using Hadamard Overparametrization and Path(ologie)s
Kolb, Mdller, Bischl, DR, 2023
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When using (S)GD-type optimization

e sparsity penalties doesn’t work

o use a smooth Surrogate penal'ty @Deep Weight Factorization

Vanilla A Factorized
W=w ®...0wp o

-<,f§
S

SGD X = i SGD v
S Theorem 1 X :
LwW) +Awlyp || L(@©...0wp)+ 5 i lwil?
Deep Weight Factorization: Sparse Learning Through the Lens of Artificial Symmetries - MU

Kolb, Weber, Bischl, DR, ICLR 2025



Current & Future:
Statistical Inference




Statistical Inference

Being Bayesian helps ...
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Statistical Inference

Being Bayesian helps ...

e Subspace Inference
> Approximate Deep NN part using a subspace

Bayesian Semi-structured Subspace Inference

Dold, Dr, et al., AlStats 2024

Paths and Ambient Spaces in Neural Loss Landscapes
Dold, ... DR, Dirr, AlStats 2025




Statistical Inference

Being Bayesian helps ...

m
=

e Subspace Inference
> Approximate Deep NN part using a subspace

=

i W

Bayesian Semi-structured Subspace Inference

Dold, Dr, et al., AlStats 2024

Paths and Ambient Spaces in Neural Loss Landscapes
Dold, ... DR, Dirr, AlStats 2025




Statistical Inference

Being Bayesian helps ...

1
1
e Subspace Inference =
> Approximate Deep NN part using a subspace 5
1
0
1 W
A Wl 2 0
e N
—
n=2x B+ NNg(Zimg) + NN¢(2text)
Uimg Utext

Bayesian Semi-structured Subspace Inference
Dold, Dr, et al., AlStats 2024
Paths and Ambient Spaces in Neural Loss Landscapes

Dold, ... DR, Dirr, AlStats 2025 mcn—ll— LMU




Statistical Inference

Being Bayesian helps ...

1
e Subspace Inference =
> Approximate Deep NN part using a subspace 5
> For small enough subspace, 1

common sampling approaches possible N
N
1

n==a'B+NNy(2img) + NN¢(2teqt)

N N~

Uimg Utext

Bayesian Semi-structured Subspace Inference
Dold, Dr, et al., AlStats 2024
Paths and Ambient Spaces in Neural Loss Landscapes

Dold, ... DR, Dirr, AlStats 2025 mcn—l'— LMU




Statistical Inference

Being Bayesian helps ...

e Subspace Inference
> Approximate Deep NN part using a subspace
> For small enough subspace,

common sampling approaches possible
> Unbiasedly estimates structured parameters

— | /
n—= ,B + NN¢ (szg) + NN{(Ztemt)

7

Ve Ve

Uimg Utext

Bayesian Semi-structured Subspace Inference
Dold, Dr, et al., AlStats 2024
Paths and Ambient Spaces in Neural Loss Landscapes

Dold, ... DR, Dirr, AlStats 2025 I-I'ICI-I'Il_ LMU




Statistical Inference

Being Bayesian helps ...

e Subspace Inference
> Approximate Deep NN part using a subspace
> For small enough subspace,
common sampling approaches possible
> Unbiasedly estimates structured parameters
e Full-Space Inference
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Statistical Inference

Being Bayesian helps ...

e Subspace Inference
> Approximate Deep NN part using a subspace
> For small enough subspace,
common sampling approaches possible
> Unbiasedly estimates structured parameters
e Full-Space Inference
> Deemed to be too expensive
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Statistical Inference

Being Bayesian helps ...

e Subspace Inference

> Approximate Deep NN part using a subspace
> For small enough subspace,

common sampling approaches possible

> Unbiasedly estimates structured parameters
e Full-Space Inference

> Deemed to be too expensive

Towards Efficient MCMC Sampling in Bayesian Neural Networks by Exploiting Symmetry
Wiese, et al., DR, ECML 2023

Connecting the Dots: Is Mode-Connectedness the Key to Feasible Sample-Based Inference in Bayesian Neural Networks?
Sommer, et al., DR, ICML 2024

Microcanonical Langevin Ensembles: Advancing the Sampling of Bayesian Neural Networks
Sommer et al., DR, ICLR 2025




Statistical Inference

Being Bayesian helps ...

e Subspace Inference

> Approximate Deep NN part using a subspace
> For small enough subspace,

common sampling approaches possible

> Unbiasedly estimates structured parameters
e Full-Space Inference

> Deemed to be too expensive
>  ©B(Sampling) = ©(Optimization)

Towards Efficient MCMC Sampling in Bayesian Neural Networks by Exploiting Symmetry
Wiese, et al., DR, ECML 2023

Connecting the Dots: Is Mode-Connectedness the Key to Feasible Sample-Based Inference in Bayesian Neural Networks?
Sommer, et al., DR, ICML 2024

Microcanonical Langevin Ensembles: Advancing the Sampling of Bayesian Neural Networks moimie LMU
Sommer et al., DR, ICLR 2025




Statistical Inference

What about frequentist inference?
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Statistical Inference

What about frequentist inference?

> Challenging
> Pre-trained?
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Inference using Pre-Trained Networks

Patient data
2-step procedure

BRI
L W W W " : —_—

l}%ﬁf&

MACHINE LEARNING

e

Pre-trained Text Model

e LU Jiiies




Statistical Inference with Non-tabular data

using representations from pre-trained networks with U = ¢(Z2)

S

VA

Adjustment for Confounding using Pre-Trained Representations
Schulte, DR, Nagler, 2025

mome




Non-ldentifiability of Pre-trained Representations

e Even if relevant information is contained in U
e Representations typically not identifiable

Adjustment for Confounding using Pre-Trained Representations - LMU
Schulte, DR, Nagler, 2025



Non-Identifiability of Pre-trained Representations

e Even if relevant information is contained in U

e Representations typically not identifiable

e |n the model head information does not
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Non-ldentifiability of Pre-trained Representations

e Even if relevant information is contained in U

e Representations typically not identifiable

e In the model head information does not
change under bijective transformations

U— QU
head(U) = ¢(AU + b) = ¢((AQ 1)QU + b)
H’v_/
A
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Non-Identifiability of Pre-trained Representations

e Even if relevant information is contained in U

e Representations typically not identifiable

e Inthe model head information does not
change under bijective transformations

U— QU

head(U) = ¢(AU + b) = ¢((AQ )QU + b)

A

w Assumptions should hold for Inverse Linear Transformations (ILTs)
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Convergence Rates and Invariances

Smoothness | + Additivity | + Sparsity & Linearity | Intrinsic Dimension
Stone (1982) | Stone (1985) | Raskutti et al. (2009) | Bickel & Li (2007)
O(n~=+a) | O(n~%+1) ‘ O(+/plog(d)/n),p < d | O(n™ ¥ 0m ), dp< d

Table 1. Assumptions and related minimax convergence rates of the estimation error
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Stone (1982) | Stone (1985) | Raskutti et al. (2009) | Bickel & Li (2007)
O(n~=+a) | O(n~%+1) ‘ O(+/plog(d)/n),p < d | O(n™ ¥ 0m ), dp< d

Table 1. Assumptions and related minimax convergence rates of the estimation error

4 )
Lemma 4.2 (Non-Invariance of Additivity and Sparsity
under ILTs). Let f : R¢ — R be a function of x € R%. We
distinguish between two cases:

(i) Additive: f(z) = E?Zl fj(x;), with univariate func-
tions f; : R — R, and at least one f; being non-linear.

(ii) Sparse Linear: f(x) = Ej.l:lﬁjzj, where B; € R
and at least one (but not all) B; = 0.

Then, for almost every @) drawn from the Haar measure on
the set of ILTs, it holds:

(i) If f is additive, then h = f o Q™! is not additive.

(ii) If f is sparse linear, then h = f o Q! is not sparse. x
\. J
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Table 1. Assumptions and related minimax convergence rates of the estimation error

4 )
Lemma 4.2 (Non-Invariance of Additivity and Sparsity
under ILTs). Let f : R¢ — R be a function of x € R%. We
distinguish between two cases:
R T e e
(i) Additive: f(z) = E?Zl fj(x;), with univariate func- ch'; — /.ﬂ"'
tions f; : R — R, and at least one f; being non-linear. S s .,.ﬁ
— 1 7/
(0] /.
(ii) Sparse Linear: f(z) = E?:l Bjz;, where B; € R S 7001 /./'
and at least one (but not all) B; = 0. o S
G 600 Y
é | [
Then, for almost every @) drawn from the Haar measure on S 200 ] /o/
the set of ILTs, it holds: 4001 ¢
I 1‘0 2‘0 3‘0 4‘0 5‘0
(i) If f is additive, then h = f o Q~" is not additive. No. of random feature rotations
(ii) If f is sparse linear, then h = f o Q! is not sparse.

\. J
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Convergence Rates and Invariances

Smoothness | + Additivity | + Sparsity & Linearity | Intrinsic Dimension
Stone (1982) | Stone (1985) | Raskutti et al. (2009) | Bickel & Li (2007)
O(n~=+a) | O(n~%+1) ‘ O(+/plog(d)/n),p < d | O(n™ ¥ 0m ), dp< d

Table 1. Assumptions and related minimax convergence rates of the estimation error

Smoothness

Lemma 4.1 (Smoothness Invariance under ILTs). Let D C
R? be an open set, f : D — R be an s-smooth-function on
D, and Q by any ILT. Then h = f o Q71: Q(D) — Ris
also s-smooth on the transformed domain Q(D).

Idea: Since Q! is C*, and f is C*®,
their composition h = fo Q! is C*.
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Convergence Rates and Invariances

Smoothness | + Additivity | + Sparsity & Linearity | Intrinsic Dimension
Stone (1982) | Stone (1985) | Raskutti et al. (2009) | Bickel & Li (2007)
O(n~=+a) | O(n~%+1) ‘ O(+/plog(d)/n),p < d | O(n™ ¥ 0m ), dp< d

Table 1. Assumptions and related minimax convergence rates of the estimation error

Intrinsic Dimensionality (ID)

Smoothness Lemma 4.3 (Intrinsic Dimension Invariance under ILTSs).
Lemma 4.1 (Smoothness Invariance under ILTs). Let D C Let M C R be a smooth manifold of dimension d < d.
R? be an open set, f : D — R be an s-smooth-function on For any ILT Q, the transformed set
D, and Q by any ILT. Then h = foQil: QD) —» Ris QM) = {Qz | x e M}.
also s-smooth on the transformed domain Q(D). ~
is also a smooth manifold of dimension d .
Idea: Since Q! is C*, and f is C*®,
their composition h = fo Q! is C*.
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Table 1. Assumptions and related minimax convergence rates of the estimation error

Intrinsic Dimensionality

Smoothness Lemma 4.3 (Intrinsic Dimension Invariance under ILTSs).

d . 5 .
Lemma 4.1 (Smoothness Invariance under ILTs). Let D C é‘et M ?;5 be; smooth ma. 'Zf old of dimension dpm < d.
R? be an open set, f : D — R be an s-smooth-function on or any Q, the transformed set

D, and Q by any ILT. Then h = f o Q71: Q(D) — Ris QM) = {Qz | z € M}.
also s-smooth on the transformed domain Q(D).

(4
is also a smooth manifold of dimension d .
Idea: Since Q! is C*, and f is C*®,
their composition h = fo Q! is C*. s —o- ME
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Convergence Rates for Nuisance Function Estimation

® .
/N
5% — o

> Image data and its latent representations often of low ID
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Convergence Rates for Nuisance Function Estimation

Qe

(:({( (U
/N
5% — o

> Image data and its latent representations often of low ID
> NN can adapt to low ID and achieve fast conv. rates
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Convergence Rates for Nuisance Function Estimation
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Convergence Rates for Nuisance Function Estimation

Ol
(4 4
/ N\ :g%:
Estimating Average Treatment Effect T — Y using o
Double Machine Learning (DML) g — NS
(@)
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Convergence Rates for Nuisance Function Estimation

Ol
(4 4
/N :g-’}:
Estimating Average Treatment Effect T — Y using 5
Double Machine Learning (DML) o — \o\f/
(@)

Estimated ATE

, . True ATE Effect %} }_%_
Ool0Oo0o %

" 00500
Naive S-Learner S-Learner DML DML
(NN) (RF) (NN) (RF)
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Convergence Rates for Nuisance Function Estimation

Ol
(4 4
/ N\ f%ﬁ
Estimating Average Treatment Effect T — Y using o
Double Machine Learning (DML) g — NS
(@)

> Random Forest fails, Doubly robust estimation superior
(RF: axis-aligned splits not compatible with ILTs)
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Convergence Rates for Nuisance Function Estimation
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Convergence Rates for Nuisance Function Estimation

Ol
U
Estimating Average Treatment Effect T — Y using / \O g - C
Double Machine Learning (DML) o — \o\f/
©
> Pre-trained can work better than from-scratch training (CNN)
QO {HH ------------------
w 1.0 li J J T
I L T+
0.5 ]
Naive Oracle DML (Pre-trained) DML (CNN)
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Convergence Rates for Nuisance Function Estimation
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Convergence Rates for Nuisance Function Estimation

Op
. | / \ -
Estimating Average Treatment Effect T — Y using = o
Double Machine Learning (DML) g — NS
(@)

Assuming

1. Validity of representation

2. Low ID dim. of representation

3. Hierarchical composition of target function
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Convergence Rates for Nuisance Function Estimation

Op
/ N\ :595:
Estimating Average Treatment Effect T — Y using = o
Double Machine Learning (DML) g — NS
(@)

Assuming

1. Validity of representation ) [ =

2. Low ID dim. of representation i = e

3. Hierarchical composition of target function N
We derive S

> Convergence rates for NN-based (nuisance) estimation
> Asym. normality for doubly-robust

ATE JM
0.0 D 0n

.—15.0 -125 -100 -75 -50 -25 0.0 25 5.0
(ATE — ATEo)/6
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tl;dl: Statistical Inference

moann »

Statistical Inference for semi-structured models

e Bayes POV: possible in subspace and maybe also full space
e Frequentist POV: with some assumptions and pre-trained models
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Summary

e Semi-Structured Regression:
Combine statistical models & neural networks

e Flexibility & Scalability
Many model classes & easier to make scalable

e Sparsity in Neural Networks
Can be achieved by an optimization transfer

e Inference in Semi-Structured Regression
Pre-trained models or Bayesian approaches

Joint work with “:,
many others
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Challenge:
(Implicit) Regularization




(Implicit) Regularization

Working with stochastic gradient descent (SGD)-type optimization can be challenging
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Working with stochastic gradient descent (SGD)-type optimization can be challenging

0.050

0.025

&' 0.000

-0.025

-0.050

Additive Model Boosting: New Insights and Path(ologie)s -
Schulte and DR, AlStats 2025 LMU

a 117




(Implicit) Regularization

Working with stochastic gradient descent (SGD)-type optimization can be challenging

> Implicit regularization of (NN) optimizers behaves differently than classical
Ridge-type regularization
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(Implicit) Regularization

Working with stochastic gradient descent (SGD)-type optimization can be challenging

> Implicit regularization of (NN) optimizers behaves differently than classical
Ridge-type regularization

0.050
Theorem 1. Gwen full column rank matriz X, Lo-

Boosting with quadratic penalty and joint updates
uniquely solves at each iteration k € N the explicitly 0.025
regularized problem

| i L ;
P lly = X8|I+ 53TFA‘3-‘ (8) &' 0.000
with Ty := (X"X) S5 [(I - vSh)~* =11 Sx as
penalty matriz and Sy := (XX +AP)"1XTX. -0.025
-0.050
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TL;DL: Regularization

When using (S)GD-type optimization

e there is implicit regularization
e it’s not clear, what we are actually optimizing — even in a
linear model
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