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What is compositional data?
Aitchison [1982] defines compositional data as proportions of some whole, that is, a
random variable is compositional if it takes values in the unit simplex

∆d−1 :=
{

z = (z1, . . . , zd ) ∈ [0, 1]d |
∑d

j=1
z j = 1

}
.

Compositional data occurs in countless applications:
• geochemistry (e.g., mineral compositions)
• ecology (e.g., relative abundances of species)
• biochemistry (e.g., fatty acid proportions)
• sociology (e.g., time budgets)
• geography (e.g., proportions of land use)
• political science (e.g., voting proportions, research on diversity)
• marketing (e.g., brand shares)
• genomics and microbiome research (e.g., proportions of taxonomic units)
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Example: 2022 Danish election data

Consider election counts from the 2022 Danish election for each municipality:

municipality A B . . . Å w/o party not voted
Aabenraa 9695 661 . . . 359 36 7979
Aalborg 46098 5621 . . . 3803 155 29843
...

...
... . . .

...
...

...
Vordingborg 9608 566 . . . 872 84 6476

To determine voting patterns, we would like inquire about the relationships between
votes for different parties.

Our data analysis might start by estimating correlations between votes for the parties.
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2022 Danish election data – count correlations
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All vote counts are highly correlated
with the population!

We ignored that the real question is
about the proportion of votes.
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Example: 2022 Danish election data – proportion correlations
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Compositional data and spurious correlations

As early as Pearson [1897], we have known that correlations are not meaningful for
compositional data. Pearson argued that even if X , Y and Z are uncorrelated, then
cor(X/Z ,Y /Z ) 6= 0.

Let Z = (Z 1, . . . ,Zd ) ∈ ∆d−1. Then, since
∑d

j=1 Z j = 1,

−var(Z 1) =
d∑

j=2
cov(Z 1,Z j).

Similarly, if Y ∈ R,
d∑

j=1
cov(Y ,Z j) = 0.

The correlations between components are not meaningful for compositional data!
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Example: Effects of presence or absence of microbes

We measure patients and obtain the relative abundance of all gut microbes Z ∈ ∆d−1

and a binary disease indicator Y .

We want the effect of setting Z 1 = 0 on Y .

Regressing Y on 1{Z1=0} =⇒ misleading if Z 1 6⊥⊥ Z−1.

Naively controlling for Z−1 =⇒ the effect is 0 as Y ⊥⊥ Z 1 |Z−1 always!

Our proposal explains precisely how to control for the remaining variation in Z .
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Summary of existing work

Most existing work on compositional data analysis is based on the work by Aitchison
[1982] who proposes a vector space structure on the open simplex by mapping ∆d−1

to Rd−1 by e.g. the additive log-ratio transform

alr(z)j := log(zj/zd ) ∀j ∈ {1, . . . , d − 1}.

Many modern datasets are high-dimensional, e.g., microbiome or genomics data, and
thus require more sophisticated modelling. In particular there is an abundance of zeros
which are troublesome for the log-ratio approach.

Can we take a nonparametric perspective in the context of compositional data?
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Perturbations (binary)

Let Y ∈ R denote a response variable and Z ∈ ∆d−1 a compositional predictor. We
want to summarize changes in the expectation of Y under a pre-specified change in Z .

We specify such changes via perturbations. The simplest perturbations are mappings
ψ : ∆d−1 × {0, 1} → ∆d−1 with ψ(z , 0) = z . ψ(z , 0) represents an unperturbed z
while ψ(z , 1) represents a perturbed observation.

Letting f : z 7→ E[Y |Z = z ], we define the average (binary) perturbation effect by

λψ := E[f (ψ(Z , 1))]− E[Y ]
P(Z 6= ψ(Z , 1)) = E[f (ψ(Z , 1))]− E[f (ψ(Z , 0))]

P(Z 6= ψ(Z , 1)) .

The denominator is included to enhance interpretability as one is often interested in
how unperturbed points are affected by the perturbation.
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The compositional knockout effect (CKE)

Consider a binary perturbation which sets the jth coordinate of z to 0 and rescales the
remaining coordinates to lie in the simplex.

Formally, define C(z) := z/
∑d

j=1 z j , and let ψj(z , 1)j := 0 and ψj(z , 1)−j := C(z−j).
The compositional knockout effect for the jth feature (CKEj) is now λψj .

The CKE summarizes the expected effect on Y of setting Z j to zero.

The concept generalizes to settings where some components are set to 0, some are
rescaled and some stay fixed.

How do we estimate CKEj from data?
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Estimation of average binary perturbation effects

It is helpful to rewrite the estimand slightly. Define L := 1{Z=ψ(Z ,1)} and
W := ψ(Z , 1) and note that

E[Y | L = 1,W ] = E[YL |W ]
E[L |W ] = f (W ), so λψ = E[E[Y | L = 1,W ]− Y ]

P(L = 0) .

Estimation of this quantity is well-known in semiparametrics and is related to the
estimation of average treatment effects which can utilize machine learning methods.

If f (ψ(Z , 1))− f (Z ) is constant when L = 0, then λψ is the coefficient of L in a
partially linear model for Y ; E[Y | L,W ] = θL + h(W ).

This assumption simplifies estimation of λψ by using debiased/double machine learning
requiring just estimates of E[Y |W ] and E[L |W ] [Chernozhukov et al., 2018].
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Semiparametric estimation of perturbation effects
The estimation of functionals is the topic of semiparametric estimation. The primary
lessons from this field are:

1 use a one-step corrected estimator (equivalent to Neyman orthogonal),
2 use cross-fitting [Kennedy, 2023].
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How do we go beyond binary perturbations?
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Directional perturbations

We can define perturbations ψ that describe ‘local’ changes to Z , that is, differences
between ψ(z , 0) (doing nothing) and ψ(z , ε) (perturbing slightly) for ε > 0.

Perturbations where ωψ(z) := ∂γψ(z , γ)
∣∣
γ=0 exist for all z ∈ ∆d−1 are directional

perturbations. The average (directional) perturbation effect is

τψ := E
[
∂γf (ψ(Z , γ))

∣∣
γ=0

]
.

Define the direction and speed of ψ by vψ(z) := ωψ(z)
‖ωψ(z)‖1 and sψ(z) := ‖ωψ(z)‖1,

respectively. If ψ and ψ′ have the same directions and speeds, then τψ = τψ′ .

Thus, it suffices to consider ψ(z , γ) := z + γsψ(z)vψ(z).
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The compositional feature influence (CFI)

We can define a directional version of the compositional knockout effect by choosing
the direction vψj (z) := ej−z

‖ej−z‖1 .

We say that the average directional perturbation effect τψj of any perturbation ψj with
this direction is a compositional feature influence for the jth feature (CFIj).

If sψ = 1, we say that the perturbation is unit-speed. This is not always an
interpretable speed but turns out to be a useful building block. We will consider other
speeds later.

Can we rewrite τψ as we did λψ to be able to utilize well-known semiparametric theory?
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Derivative-isolating reparametrizations

A reparametrization φ : ∆d−1 → R×W is derivative-isolating if

ωψ(φ−1(`,w)) = ∂`φ
−1(`,w).

Using tools from differential geometry, it can be shown that if (L,W ) := φ(Z ), then,
we have

τψ = E
[
∂`E[Y | L = `,W ]

∣∣
`=L

]
.

Estimating this functional is again well-studied in the semiparametric literature; we can
impose a partially linear model and utilize double machine learning once more.

How do we find a derivative-isolating reparametrization?
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Unit-speed CFIj derivative-isolating reparametrization

For the unit-speed CFIj , the corresponding perturbation is

ψ(z , γ) = z + γ
ej − z
‖ej − z‖1

and a (somewhat) intuitive choice for a reparametrization φ = (φL, φW ) is given by

φL(z) := −‖ej − z‖1 and φW (z) := ej − z
‖ej − z‖1

, so that φ−1(`,w) := `w + ej .

Thus, ψ(φ−1(`,w), γ) = `w + ej + γw ,

∂`φ
−1(`,w) = w = ∂γψ(φ−1(`,w), γ)

∣∣
γ=0

and therefore φ is derivative-isolating. We denote this reparametrization by φunit.
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Multiplicative speed
If Z is generated by observing a vector of counts X ∈ Rd

+ \ {0} by Z := C(X ), then it
could be more natural to look at speeds on the simplex induced by modifying X j .

We could try an additive perturbation that adds c to X j , however, since

‖∂cC(X + cej)
∣∣
c=0 ‖1 = 2 1

‖X‖1

(
1− X j

‖X‖1

)

such a speed is not scale-invariant and therefore ill-defined on the simplex.

If we instead consider a multiplicative perturbation that multiplies X j by 1 + c, we
obtain

‖∂cC(X � (1 + cej))
∣∣
c=0 ‖1 = 2 X j

‖X‖1

(
1− X j

‖X‖1

)
resulting in the multiplicative speed s(z) := 2z j(1− z j) on the simplex.
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Simplex perturbations visualized
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Multiplicative speed CFIj derivative-isolating reparametrization

It turns out that we can use φunit to obtain a reparametrization of CFIj for any speed.
For a speed s and w (an element of Im(φW

unit)), we define sw (δ) := s(φ−1unit(−δ,w)).

If tw (δ) solves −sw (δ)−1 = ∂δtw (δ), then φ is derivative-isolating;

φ(z) :=
(
tφW

unit(z)(‖ej − z‖1), φW
unit(z)

)
.

We have φ−1unit(z)j = 1
2`+ 1 so sw (δ) = (2− δ)δ/2 and solving;

− 2
(2− δ)δ = ∂δtw (δ) =⇒ tw (δ) = log

(2− δ
δ

)
+ C .

Thus (as ‖ej − z‖1 = 2(1− z j)), φL(z) := log
(

z j

1−z j

)
for multiplicative speed CFIj .
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The compositional diversity influence (CDI)

Another class of perturbations push towards the center of the simplex. We think of
these as diversifying perturbations and a unit-speed perturbation is

ψ(z , γ) = z + zcen − z
‖zcen − z‖1

.

For any perturbation with the same direction as ψ, we say that τψ is a compositional
diversity influence (CDI).

We immediately obtain that φunit = (φL
unit, φ

W
unit) given by

φL
unit(z) := −‖zcen − z‖1 and φW

unit(z) := zcen − z
‖zcen − z‖1

is a derivative-isolating reparametrization for the unit-speed CDI.
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CDI with Gini coefficient speed

The conventional way to summarize diversity is by means of a summary statistic, e.g.
the Gini coefficient

G(z) := 1
2d

d∑
j=1

d∑
k=1
|z j − zk |.

It turns out that by using a variant of the argument for CFIj , we can show that
φGini = (φL

Gini, φ
W
Gini) given by

φL
Gini(z) := −G(z) and φW

Gini(z) := φW
unit(z)

is a derivative-isolating reparametrization for a perturbation; the Gini speed CDI.
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Simplex perturbations visualized – revisited

0.0

0.2

0.4

0.6

0.8

1.0

z 1

0.0

0.2

0.4

0.6

0.8

1.0

z
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

z3

Unit speed

0.0

0.2

0.4

0.6

0.8

1.0

z 1

0.0

0.2

0.4

0.6

0.8

1.0

z
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

z3

Alternative speeds

0.0

0.2

0.4

0.6

0.8

1.0

z 1

0.0

0.2

0.4

0.6

0.8

1.0

z
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

z3

Log-ratio perturbations

z1

z2

diversity

{2, 3} → {1}
{1} → {2}
zcen

e1

A{1}→{2}(z)

24 / 34



Summary of effects

Effect of changes in Target φL(z) φW (z)

individual components
CFIj

unit −2(1− z j) ej−z
‖ej−z‖1

CFIj
mult log( z j

1−z j ) ej−z
‖ej−z‖1

CKEj 1{z j =0}
ej−z
‖ej−z‖1

diversity
CDIunit −‖zcen − z‖1 zcen−z

‖zcen−z‖1
CDIGini −G(z) zcen−z

‖zcen−z‖1

amalgamations
CAIA→B

unit −2‖zA‖1 see paper
CAIA→B

mult log
(‖zB‖1
‖zA‖1

)
see paper

CAEA→B 1{zA=0} see paper

Use our framework to derive new perturbation effects if your target is not on the list!
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Compositional confounding in relationship between income and race
To illustrate the use of CDI, we consider a semisynthetic dataset formed by
aggregating individual-level data on income, race and additional predictors into
‘communities’. We use the ‘Adult’ dataset based on the 1994 US census.

The original 48,842 individuals are grouped into 978 observations (by averaging ≈ 50
individuals) and we obtain

Variable Data Community aggregation

Y compensation average
Z race (3 levels) compute proportions
X sex, age, education average/majority vote

We group the observations into three different categories to induce compositional
confounding; diversity becomes positively associated with compensation, but this is
confounded by other aspects of Z ∈ ∆2.
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Overview of semisynthetic data
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diversity but low
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Category 0 (blue) contains the
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The relationship between Gini
coefficient and compensation is
confounded by W := zcen−Z

‖zcen−Z‖1 .
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Estimated effects of increased diversity

A naive approach to estimating the effect of diversity is computing the Gini coefficient
and to compute the effect of the Gini coefficient on Y .

This approach can be modified by controlling for X and/or Z .

Method Grouping on education Grouping on compensation
Estimate 95% CI Estimate 95% CI

naive_diversity −0.082 (−0.144,−0.019) −0.120 (−0.194,−0.046)
naive_diversity |X −0.085 (−0.142,−0.027) −0.106 (−0.179,−0.034)

naive_diversity |Z −0.219 (−1.226, 0.788) −0.668 (−1.916, 0.580)
naive_diversity |X ,Z −0.111 (−0.902, 0.680) 0.409 (−0.403, 1.220)
CDIGini 0.233 (0.060, 0.406) 0.614 (0.429, 0.799)
CDIGini |X 0.071 (−0.049, 0.191) 0.611 (0.455, 0.768)

Only CDIGini correctly captures the sign of the effect!
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Variable influence measures when predicting BMI from gut microbiome

To illustrate the use of the CKE and CFI, we analyze the ‘American Gut’ dataset
containing microbiome measurements and metadata from over 10,000 participants.

Our focus is on the relationship between body mass index (BMI) and gut microbiome
composition and our goal is to learn which species are important for predicting BMI.

After pre-processing, the dataset consists of 4,581 observations of BMI measurements
Y ∈ R and the relative abundances of 561 microbial species; Z ∈ ∆560 (on average
60% zeros for each row).
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Stability of compositional variable influence measures
Several nonparametric variable influence measures exist that are regression-agnostic.
Sanity check: results using different ML methods should be similar!
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It is not possible to ignore the simplex constraint and apply an ordinary partially linear
model for Y on Z j and Z−j ; all coefficients exceed 1017!
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Comparison of CFI and CKE with log-contrast estimates

The log-ratio-based analysis starts by adding a small positive pseudocount to all
observations of Z to remove zeros. The standard pseudocount is the minimum
non-zero observation of Z over 2.

A log-contrast regression method is then fit to the data:

E[Y |Z ] =
d∑

j=1
βj log(Z j) where

d∑
j=1

βj = 0.

If Z is high-dimensional, an `1-penalty can be added and chosen to minimize MSE.
These methods predict surprisingly well given their simple structure!

When the true Y on Z model is a log-contrast model, then CFIj
mult = βj .

How should we interpret log-contrast coefficients when a pseudocount is used?
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Comparison of CFI and CKE with log-contrast estimates
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Conclusion

• Ignoring compositional structure in data (or, more generally, any ‘manifold’-type
constraints) can lead to incorrect conclusions!

• Perturbations provide one way of defining interpretable target parameters for
compositional variable effect estimates that correct for compositional confounding.
• Perturbation effects can be estimated in a regression-agnostic way permitting a

trade-off between desired precision and strength of the employed regression
estimators.

• It is an open problem to apply the perturbation framework in other situations with
constraints, e.g. directional data.

Thank you for listening.
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