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Motivation

@ Maxima of random variables or vectors are of prime interest in risk
management.

@ When the variables are i.i.d., asymptotic behavior of maxima is well
understood (classical EVT). There is also an extensive literature on the case
when the variables form a time series.

@ In this talk, the aim is to investigate what happens when the variables are
identically distributed but dependent.

@ You can think of a large, homogeneous portfolio of claims, in which the
claims are dependent, e.g., through some common factor(s).
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Introduction

The central question cast in mathematical terms

Suppose Xi, Xz, ... is a sequence of identically distributed univariate random
variables (e.g., claims) that are generally not independent.

Define
M, = max(Xy, ..., X,).

Questions to be addressed today:

Under which conditions do there exist sequences of reals (a,), a, > 0, and
(b,) so that

Mn - bn s
an

for some non-degenerate df H, and what does H look like?

H
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The i.i.d. case

When Xi, X, ... are i.i.d., these questions have been long answered by the
Fisher—Tippett—Gnedenko Theorem:

If there exist sequences of constants (a,), a, > 0, and (b,) so that

l\/l,,—bnW

an

H

for some non-degenerate df H, then H must be a generalized extreme-value
distribution, given by

—1/¢
He o(x) = exp{— (1 n gxo_> }

for all x such that 1+ &(x — p)/o > 0.
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The time series case: Leadbetter et al. (1983)

Consider a stationary sequence Xi, Xo, ... with a limited long-range dependence,
i.e., so that the so-called D(u,) condition holds for a series of suitable thresholds.

If there exist sequences of constants (a,), a, > 0, and (b,) so that

M, — b,
—_—

an

H

for some non-degenerate df H, H must be generalized extreme-value.

Let X, X5, ... be an i.i.d. sequence with the same marginal distribution and set
M} = max(X{,..., X). Then under regularity conditions
* — —
My =bn e ang Mozbo
an an

where H = (H*)? for some extremal index 6 € (0, 1].

Johanna G. Neslehovd (WU Wien) Limiting Behaviour of Maxima under Dependence May 3 2023 5/40



An Example

Example

Suppose that X1, X, ... is an i.i.d. sequence of standard normal variables.

Set the norming constants to be

where ® and ¢ denote the standard normal cdf and density.

Then for all x € R,

Pr(Mn;b" < x> — A(x) = exp{—exp(—x)}.

Here, A denotes the Gumbel extreme-value distribution.
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Example cont'd

Let Xi, Xo, ... be an stationary sequence of standard normal variables.
Suppose that Berman's condition holds: With v(n) = cov(X1, X,),

lim ~(n)In(n) = 0.

n—oo
Then as in the i.i.d. case, for all x € R,
dn

p<M—b < X) — A(x) = exp{— exp(—x)}.
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Example cont'd: Berman (1962a)

Now consider the sequence X1, Xa, ... where for each n € N,

Xn:\/EZO+ V 1ngn;

here, o € (0,1) and Zy, Z1, ... are i.i.d. standard normal variables.

Obviously, X1, Xa, ... is a stationary sequence of standard normal variables.
However, v(n) = o for all n > 2, and hence

lim ~(n)In(n) = cc.

n— o0

Interestingly, as n — oo,

M, — /1 — ob, ~ N(0, o).
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Histograms of the normalized maxima of n = 10° variables in the i.i.d. case (left), and
dependent case with ¢ = 0.2 (middle) and ¢ = 0.5 (right). Overlaid are the asymptotic
densities of the Gumbel (left), and Normal with variance ¢ (middle and right).
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An Example

Extension to normal variance mixtures

Consider the stationary sequence Xy, Xo, ... with

Xn =002y ++/1— 002,

and define, for n € N,
Yo =p+ VWX,

where € R and W is a positive random variable independent of (X;).

Y1, Yo, ... is then a stationary sequence whose finite-dimensional distributions are
elliptical; W ~ Ig(v/2,v/2) leads to the t distribution.

A direct calculation shows that if M, = max(Yy,...,Y,), as n — oo,

M"biﬂ ~ a4/1 fp\/W.

n
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Copula Diagonals

Can we do anything at all?

Consider a sequence X, Xp, ... of identically distributed random variables with
common distribution F which is assumed to be continuous.

For each ne€ N and xg,...,x, € R, let also

Fo(xts ..oy xn) = Pr(Xs < xq,..., Xy < Xxp).

From Sklar's Theorem, there exists a unique copula C, so that

Fo(x1s ..oy xn) = Co{F(x1),..., F(xn)}.
Using the copula diagonal (Jaworski, 2009) d,(u) = C,(u, ..., u), one has

Pr<M"abn < X> = 0,{F(anx + bn)}.
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Basic insight

Consider some suitable rate r(n) (typically r(n) — co) and write

M, —b
Pr("an < x> = 0p{F(anx + bs)}
= 6"[{Fr(n)(anx + bn)}l/r(n)]
Whether the maximum M, converges weakly will depend on:

e f, or, in other words, the behavior of the maximum M of the i.i.d. sequence
X{, X5, ... with the same common distribution F.

e The behavior of the copula diagonal, notably the limit

lim 6,(u*"™), ue(0,1).

n— o0
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First result

Let X1, X5, ... be a sequence of identically distributed rvs with continuous
marginal F, and suppose that the following conditions hold:

(a) There exist sequences (ap), a, > 0 and (b,) such that for all x € R,

F"(anx + bn) = He 0 (x).

(b) There exists a rate function r : N — (0, 00) with r(n) — 0o as n — oo and a
continuous function D such that for all u € [0,1],

6n{u1/’(”)}% D(u).

Then D is in fact a distribution function and for all x € R,

Mn - b r(n
Pr(’”‘ S X) — D{H&u‘,o’(x)}‘
arr(n)]
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Copula Diagonals

Moving maxima example

Consider the moving maximum process: Take a sequence (Z;)2_,,; of i.i.d. unit
Fréchet variables (Z; ~ ®;) and set

1
T kt1 Orgjaéxk Zi-i

This process has limited long-range dependence and its extremal index is
6 =1/(k + 1) (Beirlant et al., 2004). One can also show that

Y . /(k+1 1 k+1
Co(ug,. .. u H m /(+) min +)><H min /(1)
¢ nfj§€<n L ISt<jth— Y

so that 6,(u) = u", n, = (k* + n)/(k + 1). Obviously,

Mn 1
| —_— =
mooo n (k+ 1)
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Copula Diagonals

Moving maxima (cont'd)

This means that we can set r(n) = n for each n € N and have
(5,,(u1/”) —u’
as n — oo for each u € [0, 1]. Consequently,
(Mn — an)/bn ~ (®1)°,

where (a,) and (b,) are the normalizing sequences from the iid case.

For a continous F in the maximum domain of attraction of a H and
Yi=FH{exp(-1/X)}, i>1,
we further have that the maximum N, = max(Y1,...,Y,) statisfies
(No = an) /by~ H’,
where (a,) and (b,) are the normalizing sequences from the iid case.
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First nasty example

Let X1, Xo, ... be a sequence of identically distributed random variables such that
X1 =Xo=... almost surely

and X; ~ F for some continuous F.

Then for each n € N,
Colur, ... up) =min(ug, ..., up)
is the Fréchet—Hoeffding upper bound and
dn(u) = u.
This means that for all n € N, r(n) =1 and in fact

M, ~ F.
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Copula Diagonals

Second nasty example

From Example 5 in Mai (2018), there exists a sequence of identically distributed
random variables such that for all n > 2,

n

Cn(ula L) Un) = H(]' - e)niiu(i)

i=1
where 1y < ... < gy and 0 € (0,1).
C, is the so-called Cuadras—Augé copula and we have

Sp(u) = u1=@=0"/0 — yr(n)
with r(n) = (1 — (1 —6)")/0, where r(n) — 1/60 as n — occ.
Clearly, for all x € R and n € N,

Pr(Ma < x) = 64(F(x)) = {F(x)}™ — {F(x)}°.
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Copula Diagonals

There is a limit to what we can do

Let X1, Xo, ... be identically distributed according to a continuous F.

If there exists a function r: N — (0, 00) such that
r(n) — o0 € (0, 00)
as n — oo and for each u € [0, 1],
5n(ut/"™MY = D(u)
for some continuous D, then for all x € R, as n — oo,

Pr(M, < x) — D(F?(x)).
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Copula Diagonals

Fisher—Tippett—Gnedenko Theorem: Version |

Let X1, X5, ... be a sequence of identically distributed rvs with continuous
marginal F, and suppose that the following conditions hold:

(a) F is in the maximum domain of attraction of He ,, »;

(b) There exists a rate function r : N — (0, 00) with r(n) — 0o as n — oo and a
continuous function D such that for all u € [0,1],

6n{u1/’(”)}% D(u).
If there exist sequences (b,) and (a,) such that a, > 0 for all n € N,
M —
lim Pr ("bn < x) = G(x),
n—00 an

for all continuity points of a non-degenerate G, then there exist a > 0 and b € R
so that G = Do He ;5 where i = (i — b)/a and 6 = o/ a.
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Fisher—Tippett—Gnedenko Theorem: Version Il

Let X1, X, ... be identically distributed according to a continuous F.

Suppose that there exists r: N — (0, 00) and a bijection A: (0,00) — (0, 00) such
that the following conditions hold:

(a) r(n) — oo as n— oo and for all t > 0, r([tn])/r(n) = A(t);

(b) 3, is strictly increasing and §,{u*/"("} — D pointwise for a continuous and
strictly increasing D : [0,1] — [0, 1].

If there exist sequences (b,) and (a,) such that a, > 0 for all n € N,

lim Pr <Mn_bn < x) = G(x),
n—oo an

for all continuity points of a non-degenerate G, then G =D o H and H is GEV. If
n/r(n) — @ for >0, F is in the domain of attraction of HY.
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Power diagonals

Suppose that for all n, some 7, and all v € [0, 1],
On(u) = u™.
Then if , — oo as n — 0o, we can set r(n) = 7,,.

If Fis in the maximum domain of attraction of H , , with norming constants
(an), an > 0 and (by),

Mn_brn
Pr( [r(n)]

< x) — He 10(X).
a[r(n)]

Note also that if n/n, — 6 for 8 > 0 as n — oo, we get

M, — b, 1/0
Pr{( M <) = M0 = Mo

upon setting r(n) = n so that D(u) = u'/?, u € [0,1].
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Power diagonals

A super easy example

Consider an i.i.d. sequence Xi, Xz, .. ..
Clearly, for each n € N,

Colur, ..o up)=M(ug, ... up) =up X o0 X Uy,

is the independence copula.

Obviously, 6,(u) = u™ and we can set r(n) = n.
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Meta max-stable sequences

Consider a simple max-stable sequence Zi, Z,,.... This means that Z; is unit
Fréchet and for each n € N,

Colur, ... up) =exp{—Lp(—Inuy,...,—Inu,)}.
is an extreme-value copula with stdf £,. For more flexibility, set
Xi = F~H {exp(~1/Z)} -
In this case, d,(u) = u™, n, = p(1,...,1). For a D-norm construction

o(X1y. vy Xn) = E{1n<1,_a<xn(x,-V|/,-)}

where Wy, Wa, ... is a sequence of positive rvs. with unit mean, 7, is the extremal
coefficient (Smith, 1990; Falk, 2019).
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Power diagonals

Meta max-stable sequences (cont'd)

Our theory applies as soon as

lim £,(1,...,1) = cc.

n—o0

A classical example where this works is the logistic stdf with
en(xla s aXn) = (|X1|0 .o+ ‘Xn‘e)l/a

for @ > 1. Here,
Mo =ln(1,...,1) = n*/%.

However, the Cuadras—Augé copula is also extreme-value, and yet

lo(1,...,1) = (1—(1—6)")/6 — 1/6.
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Power diagonals

Characterizing transformations leading to GEV limits

Suppose that D: [0,1] — [0, 1] is a continuous and strictly increasing distribution
function. Then

DoH
is GEV for all GEV H if and only if there exist &« > 0 and ¢ > 0 so that
D(u) = exp{—a(—Inu)°}

for all u € [0,1].
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Convergence of the copula diagonal is necessary

Let X1, X5, ... be a sequence of identically distributed rvs with continuous
marginal F, and suppose that the following conditions hold:

(a) There exist sequences (ap), a, > 0 and (b,) such that for all x € R,
F"(a,,x + bn) — H&‘,HVU(X).

(b) There exists a rate function r : N — (0, 00) with r(n) — co as n — oo and
1/r(n) = O(1/n), and a distribution function D on [0, 1] so that

Mn - b r(n
Pr(“” < x) — D{He.;..o(x)}-
3r(n)]

for all continuity points x of D o H,
Then for all continuity points u € [0,1] of D,

5n{u1/r(")}% D(u).
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Example

Consider a Gaussian AR(1) process
Xn = ¢pXn—1+ Zp,
with Xo =0, ¢ € [0,1) and iid Z, ~ N(0,0?). Here, C, is Gaussian with
5a(u) = s, (0071 (1) VI = G200 Hu)/ V1= 32)

where (X,); = ¢!/ J102/(1 — ¢?). Because In(n)cov(Xy, X,) — 0,

Pr<M"_b" < X> — A(x).
an

where (a,), a, > 0 and (b,) are the normalizing sequences of the corresponding
iid series. This means that for all u € [0, 1],

(5n{u1/”}—> u.
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Converse

Time series with limited long-range dependence

Suppose that Xi, X, ... is a stationary sequence and X;, X3, ... iid with the same

(marginal) distribution F.
Set M, = max(Xy, ..., X,) and M} = max(X{,..., X}). If
M — b,

n

~ H

an

and
M, — b,

an

~ H?
for some 6 € (0, 1], then necessarily
Sn(ut/") — uf

as n — o0.
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Archimax Diagonals

Archimax diagonals

Take a simple max-stable sequence Z;, Z5, ..., an independent positive rv. V' with
Laplace transform 1), and set

Y; = VZ,.
We can obtain a sequence X1, Xo, ... with common distribution F, viz.

Xi = F7H(4(1/Y7))
C, is then an Archimax copula, i.e., for all n and wy,...,u, € [0,1],

Colur, -y un) = [a{t ™ (u), ..., (un)}i

where 1) is a completely monotone Archimedean generator and ¢, an stdf. In
particular, if Zy,2Z,,... are i.i.d., C, is an Archimedean copula.
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Archimax Diagonals

Archimax diagonals (cont'd)

The diagonal of an Archimax copula C, has the form
Sn(u) = iy (W)}, Mo = La(L,. 0 1)

If 9, = 0o as n— oo and 1 —¢(1/-) € RV_,, then

r(n) = ; u) = —In(u)}/*
()= | T |- 0@ = vl m@p )
so that

Mn - b r(n
P<r(”§x)+wH—m%%AﬂFﬂ
alr(n)]

provided that F is in the maximum domain of attraction of Hg ,, , with
normalizing constants (a,), a, > 0 and (b,).
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A bit more on Archimax diagonals

@ |t is worth noting that

Y[{—1In Hﬁyﬂ,a(x)}l/p] = Y[=InHye p po (X)]-

® When £,(x1,...,Xn) =x1+ ...+ Xn, X1, Xa,... is an exchangeable sequence
and C, is Archimedean. One then recovers the results of Berman (1962b),
Ballerini (1994), and Wiithrich (2004).

@ When —¢’(0) € (0,00) and n,/n — 6, we get that

M, —b —0/v
Pr("an < x) —{=In Hgﬁzﬁ/;’b (0)(x)}

where (a,), a, > 0 and (b,) are the constants from the iid case.
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lllustration of D for various 1)
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lllustration when % is Clayton and & > 0
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lllustration when % is Clayton and £ =0
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lllustration when % is Clayton and £ < 0
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Convergence rates

Convergence rates

Consider a sequence Xi, Xa, ... of identically distributed random variables with
continuous common distribution F such that

sup |F"(anx + by) — H(x)| < 5(n),

xER

for some EVD H. Suppose also that there eixsts r: N — (0, 00) so that
r(n) = o0 as n — oo and

sup [8,(u*/"(M) — D(u)| < s(n)
uel0,1]

If D is Holder continuous with constant K and parameter 0 < x < 1, then

Mn —b r(n
Pr <( ()] Sx) — Do H(x)
a[r(n)]

sup
xER

<K (B([r(m1) +3e1/r(m)" + s(n)
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Convergence rates

Moving maxima one last time

Consider X1, X, ..., such that X; ~ N(0,1) and the dependence of the moving
maxima process. We saw that for r(n) = n and u € [0, 1],

So(UM 7MY = 5, (uM/7) = kM () 1/ (e ),

The limit is Holder continuous with K =1 and x = 1/(k + 1). Also,
k k —n/k
sup [0,(u* M) = D(u —<1+> .
s I(ut/7) = D) = g (14

Hall (1979) provides sequences of constants so that

sup [®"(anx + bn) — A(x)| < 3/ In(n).

xeR

The previous result shows that

s K K\ 3\ Mkt
< < — _
)s(gﬂg Pr(M, < apx + b,) — A(x) ‘ " (1 + n) + (In(n))
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Outlook

@ Better understand the constraints on C, (and its diagonal) when C, is
extendible.

@ The development of inferential tools based on these results.

@ Generalizations to the multivariate case.

Thank you for your attention!

NSERC
CRSNG
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Convergence rates
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