Maxima under Dependence

Johanna G. Nešlehová, McGill University (joint work with K. Herrmann and M. Hofert)

Wirtschaftsuniversität Wien

May 3, 2023

Motivation

- Maxima of random variables or vectors are of prime interest in risk management.
- When the variables are i.i.d., asymptotic behavior of maxima is well understood (classical EVT). There is also an extensive literature on the case when the variables form a time series.
- In this talk, the aim is to investigate what happens when the variables are identically distributed but dependent.
- You can think of a large, homogeneous portfolio of claims, in which the claims are dependent, e.g., through some common factor(s).

The central question cast in mathematical terms

Suppose $X_1, X_2,...$ is a sequence of identically distributed univariate random variables (e.g., claims) that are generally not independent.

Define

$$M_n = \max(X_1,\ldots,X_n).$$

Questions to be addressed today:

Under which conditions do there exist sequences of reals (a_n) , $a_n > 0$, and (b_n) so that

$$\frac{M_n-b_n}{a_n} \rightsquigarrow H$$

for some non-degenerate df H, and what does H look like?

The i.i.d. case

When $X_1, X_2, ...$ are i.i.d., these questions have been long answered by the Fisher–Tippett–Gnedenko Theorem:

If there exist sequences of constants (a_n) , $a_n > 0$, and (b_n) so that

$$\frac{M_n-b_n}{a_n} \rightsquigarrow H$$

for some non-degenerate df H, then H must be a generalized extreme-value distribution, given by

$$H_{\xi,\mu,\sigma}(x) = \exp\left\{-\left(1 + \xi \frac{x - \mu}{\sigma}\right)^{-1/\xi}\right\}$$

for all x such that $1 + \xi(x - \mu)/\sigma > 0$.

The time series case: Leadbetter et al. (1983)

Consider a stationary sequence X_1, X_2, \ldots with a limited long-range dependence, i.e., so that the so-called $\mathcal{D}(u_n)$ condition holds for a series of suitable thresholds.

If there exist sequences of constants (a_n) , $a_n > 0$, and (b_n) so that

$$\frac{M_n-b_n}{a_n} \rightsquigarrow H$$

for some non-degenerate df H, H must be generalized extreme-value.

Let X_1^*, X_2^*, \ldots be an i.i.d. sequence with the same marginal distribution and set $M_n^* = \max(X_1^*, \ldots, X_n^*)$. Then under regularity conditions

$$\frac{M_n^* - b_n}{a_n} \rightsquigarrow H^*$$
 and $\frac{M_n - b_n}{a_n} \rightsquigarrow H$

where $H = (H^*)^{\theta}$ for some extremal index $\theta \in (0,1]$.

Example

Suppose that X_1, X_2, \ldots is an i.i.d. sequence of standard normal variables.

Set the norming constants to be

$$b_n = \Phi^{-1}(1 - \frac{1}{n}), \quad a_n = \frac{\bar{\Phi}(b_n)}{\varphi(b_n)}$$

where Φ and φ denote the standard normal cdf and density.

Then for all $x \in \mathbb{R}$,

$$\Pr\left(\frac{M_n-b_n}{a_n}\leq x\right)\to \Lambda(x)=\exp\{-\exp(-x)\}.$$

Here, Λ denotes the Gumbel extreme-value distribution.

Example cont'd

Let X_1, X_2, \ldots be an stationary sequence of standard normal variables.

Suppose that Berman's condition holds: With $\gamma(n) = cov(X_1, X_n)$,

$$\lim_{n\to\infty}\gamma(n)\ln(n)=0.$$

Then as in the i.i.d. case, for all $x \in \mathbb{R}$,

$$\Pr\left(\frac{M_n-b_n}{a_n}\leq x\right)\to \Lambda(x)=\exp\{-\exp(-x)\}.$$

Example cont'd: Berman (1962a)

Now consider the sequence X_1, X_2, \ldots where for each $n \in \mathbb{N}$,

$$X_n = \sqrt{\varrho} Z_0 + \sqrt{1 - \varrho} Z_n;$$

here, $\varrho \in (0,1)$ and Z_0, Z_1, \ldots are i.i.d. standard normal variables.

Obviously, X_1, X_2, \ldots is a stationary sequence of standard normal variables. However, $\gamma(n) = \varrho$ for all $n \geq 2$, and hence

$$\lim_{n\to\infty}\gamma(n)\ln(n)=\infty.$$

Interestingly, as $n \to \infty$,

$$M_n - \sqrt{1-\varrho}b_n \rightsquigarrow \mathcal{N}(0,\varrho).$$

Illustration

Histograms of the normalized maxima of $n=10^5$ variables in the i.i.d. case (left), and dependent case with $\varrho=0.2$ (middle) and $\varrho=0.5$ (right). Overlaid are the asymptotic densities of the Gumbel (left), and Normal with variance ϱ (middle and right).

Extension to normal variance mixtures

Consider the stationary sequence X_1, X_2, \ldots with

$$X_n = \sqrt{\varrho}\sigma Z_0 + \sqrt{1-\varrho}\sigma Z_n$$

and define, for $n \in \mathbb{N}$,

$$Y_n = \mu + \sqrt{W}X_n,$$

where $\mu \in \mathbb{R}$ and W is a positive random variable independent of (X_i) .

 Y_1, Y_2, \ldots is then a stationary sequence whose finite-dimensional distributions are elliptical; $W \sim \operatorname{Ig}(\nu/2, \nu/2)$ leads to the t distribution.

A direct calculation shows that if $M_n = \max(Y_1, \dots, Y_n)$, as $n \to \infty$,

$$\frac{M_n - \mu}{b_n} \rightsquigarrow \sigma \sqrt{1 - \rho} \sqrt{W}$$
.

Can we do anything at all?

Consider a sequence X_1, X_2, \ldots of identically distributed random variables with common distribution F which is assumed to be continuous.

For each $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in \mathbb{R}$, let also

$$F_n(x_1,\ldots,x_n)=\Pr(X_1\leq x_1,\ldots,X_n\leq x_n).$$

From Sklar's Theorem, there exists a unique copula C_n so that

$$F_n(x_1,...,x_n) = C_n\{F(x_1),...,F(x_n)\}.$$

Using the copula diagonal (Jaworski, 2009) $\delta_n(u) = C_n(u, \dots, u)$, one has

$$\Pr\left(\frac{M_n-b_n}{a_n}\leq x\right)=\delta_n\{F(a_nx+b_n)\}.$$

Basic insight

Consider some suitable rate r(n) (typically $r(n) \to \infty$) and write

$$\Pr\left(\frac{M_n - b_n}{a_n} \le x\right) = \delta_n \{F(a_n x + b_n)\}$$
$$= \delta_n [\{F^{r(n)}(a_n x + b_n)\}^{1/r(n)}]$$

Whether the maximum M_n converges weakly will depend on:

- F, or, in other words, the behavior of the maximum M_n^* of the i.i.d. sequence X_1^*, X_2^*, \ldots with the same common distribution F.
- The behavior of the copula diagonal, notably the limit

$$\lim_{n\to\infty} \delta_n(u^{1/r(n)}), \quad u\in(0,1).$$

First result

Let $X_1, X_2,...$ be a sequence of identically distributed rvs with continuous marginal F, and suppose that the following conditions hold:

(a) There exist sequences (a_n) , $a_n > 0$ and (b_n) such that for all $x \in \mathbb{R}$,

$$F^n(a_nx+b_n)\to H_{\xi,\mu,\sigma}(x).$$

(b) There exists a rate function $r: \mathbb{N} \to (0, \infty)$ with $r(n) \to \infty$ as $n \to \infty$ and a continuous function D such that for all $u \in [0, 1]$,

$$\delta_n\{u^{1/r(n)}\}\rightarrow D(u).$$

Then D is in fact a distribution function and for all $x \in \mathbb{R}$,

$$\Pr\left(\frac{M_n - b_{\lceil r(n) \rceil}}{a_{\lceil r(n) \rceil}} \le x\right) \to D\{H_{\xi,\mu,\sigma}(x)\}.$$

Moving maxima example

Consider the moving maximum process: Take a sequence $(Z_i)_{i=-k+1}^{\infty}$ of i.i.d. unit Fréchet variables $(Z_i \sim \Phi_1)$ and set

$$X_i = \frac{1}{k+1} \max_{0 \le j \le k} Z_{i-j}$$

This process has limited long-range dependence and its extremal index is $\theta = 1/(k+1)$ (Beirlant et al., 2004). One can also show that

$$C_n(u_1,\ldots,u_n) = \prod_{j=0}^{k-1} \min_{1 \leq \ell \leq k-j} u_{\ell}^{1/(k+1)} \min_{n-j \leq \ell \leq n} u_{\ell}^{1/(k+1)} \times \prod_{j=1}^{n-k} \min_{j \leq \ell \leq j+k-1} u_{\ell}^{1/(k+1)}$$

so that $\delta_n(u) = u^{\eta_n}$, $\eta_n = (k^2 + n)/(k+1)$. Obviously,

$$\lim_{n\to\infty}\frac{\eta_n}{n}=\frac{1}{(k+1)}=\theta.$$

Moving maxima (cont'd)

This means that we can set r(n) = n for each $n \in \mathbb{N}$ and have

$$\delta_n(u^{1/n}) \to u^{\theta}$$

as $n \to \infty$ for each $u \in [0,1]$. Consequently,

$$(M_n - a_n)/b_n \rightsquigarrow (\Phi_1)^{\theta},$$

where (a_n) and (b_n) are the normalizing sequences from the iid case.

For a continous F in the maximum domain of attraction of a H and

$$Y_i = F^{-1}\{\exp(-1/X_i)\}, i \ge 1,$$

we further have that the maximum $N_n = \max(Y_1, \dots, Y_n)$ statisfies

$$(N_n - a_n)/b_n \rightsquigarrow H^{\theta}$$

where (a_n) and (b_n) are the normalizing sequences from the iid case.

First nasty example

Let X_1, X_2, \ldots be a sequence of identically distributed random variables such that

$$X_1 = X_2 = \dots$$
 almost surely

and $X_i \sim F$ for some continuous F.

Then for each $n \in \mathbb{N}$,

$$C_n(u_1,\ldots,u_n)=\min(u_1,\ldots,u_n)$$

is the Fréchet-Hoeffding upper bound and

$$\delta_n(u) = u$$
.

This means that for all $n \in \mathbb{N}$, r(n) = 1 and in fact

$$M_n \sim F$$
.

Second nasty example

From Example 5 in Mai (2018), there exists a sequence of identically distributed random variables such that for all $n \ge 2$,

$$C_n(u_1,\ldots,u_n) = \prod_{i=1}^n (1-\theta)^{n-i} u_{(i)}$$

where $u_{(1)} \leq ... \leq u_{(n)}$ and $\theta \in (0,1)$.

 C_n is the so-called Cuadras-Augé copula and we have

$$\delta_n(u) = u^{(1-(1-\theta)^n)/\theta} = u^{r(n)}$$

with $r(n) = (1 - (1 - \theta)^n)/\theta$, where $r(n) \to 1/\theta$ as $n \to \infty$.

Clearly, for all $x \in \mathbb{R}$ and $n \in \mathbb{N}$,

$$\Pr(M_n \le x) = \delta_n(F(x)) = \{F(x)\}^{r(n)} \to \{F(x)\}^{1/\theta}.$$

There is a limit to what we can do

Let X_1, X_2, \ldots be identically distributed according to a continuous F.

If there exists a function $r \colon \mathbb{N} \to (0, \infty)$ such that

$$r(n) \to \varrho \in (0, \infty)$$

as $n \to \infty$ and for each $u \in [0, 1]$,

$$\delta_n(u^{1/r(n)}) \to D(u)$$

for some continuous D, then for all $x \in \mathbb{R}$, as $n \to \infty$,

$$\Pr(M_n \leq x) \to D(F^{\varrho}(x)).$$

Fisher-Tippett-Gnedenko Theorem: Version I

Let $X_1, X_2, ...$ be a sequence of identically distributed rvs with continuous marginal F, and suppose that the following conditions hold:

- (a) F is in the maximum domain of attraction of $H_{\xi,\mu,\sigma}$;
- (b) There exists a rate function $r : \mathbb{N} \to (0, \infty)$ with $r(n) \to \infty$ as $n \to \infty$ and a continuous function D such that for all $u \in [0, 1]$,

$$\delta_n\{u^{1/r(n)}\}\rightarrow D(u).$$

If there exist sequences (b_n) and (a_n) such that $a_n > 0$ for all $n \in \mathbb{N}$,

$$\lim_{n\to\infty} \Pr\left(\frac{M_n-b_n}{a_n} \le x\right) = G(x),$$

for all continuity points of a non-degenerate G, then there exist a>0 and $b\in\mathbb{R}$ so that $G=D\circ H_{\mathcal{E},\tilde{\mu},\tilde{\sigma}}$ where $\tilde{\mu}=(\mu-b)/a$ and $\tilde{\sigma}=\sigma/a$.

Fisher-Tippett-Gnedenko Theorem: Version II

Let X_1, X_2, \ldots be identically distributed according to a continuous F.

Suppose that there exists $r: \mathbb{N} \to (0, \infty)$ and a bijection $\lambda: (0, \infty) \to (0, \infty)$ such that the following conditions hold:

- (a) $r(n) \to \infty$ as $n \to \infty$ and for all t > 0, $r(\lceil tn \rceil)/r(n) = \lambda(t)$;
- (b) δ_n is strictly increasing and $\delta_n\{u^{1/r(n)}\}\to D$ pointwise for a continuous and strictly increasing $D:[0,1]\to[0,1]$.

If there exist sequences (b_n) and (a_n) such that $a_n > 0$ for all $n \in \mathbb{N}$,

$$\lim_{n\to\infty} \Pr\left(\frac{M_n-b_n}{a_n}\leq x\right)=G(x),$$

for all continuity points of a non-degenerate G, then $G=D\circ H$ and H is GEV. If $n/r(n)\to \theta$ for $\theta>0$, F is in the domain of attraction of H^θ .

Power diagonals

Suppose that for all n, some η_n and all $u \in [0, 1]$,

$$\delta_n(u)=u^{\eta_n}.$$

Then if $\eta_n \to \infty$ as $n \to \infty$, we can set $r(n) = \eta_n$.

If F is in the maximum domain of attraction of $H_{\xi,\mu,\sigma}$ with norming constants (a_n) , $a_n > 0$ and (b_n) ,

$$\Pr\left(\frac{M_n - b_{\lceil r(n) \rceil}}{a_{\lceil r(n) \rceil}} \le x\right) \to H_{\xi,\mu,\sigma}(x).$$

Note also that if $n/\eta_n \to \theta$ for $\theta > 0$ as $n \to \infty$, we get

$$\Pr\left(\frac{M_n - b_n}{a_n} \le x\right) \to H_{\xi,\mu,\sigma}^{1/\theta}(x) = H_{\xi,\mu_{\theta},\sigma_{\theta}}$$

upon setting r(n) = n so that $D(u) = u^{1/\theta}$, $u \in [0, 1]$.

A super easy example

Consider an i.i.d. sequence X_1, X_2, \ldots

Clearly, for each $n \in \mathbb{N}$,

$$C_n(u_1,\ldots,u_n)=\Pi(u_1,\ldots,u_n)=u_1\times\ldots\times u_n.$$

is the independence copula.

Obviously, $\delta_n(u) = u^n$ and we can set r(n) = n.

Meta max-stable sequences

Consider a simple max-stable sequence Z_1, Z_2, \ldots This means that Z_i is unit Fréchet and for each $n \in \mathbb{N}$,

$$C_n(u_1,\ldots,u_n)=\exp\{-\ell_n(-\ln u_1,\ldots,-\ln u_n)\}.$$

is an extreme-value copula with stdf ℓ_n . For more flexibility, set

$$X_i = F^{-1} \{ \exp(-1/Z_i) \}.$$

In this case, $\delta_n(u) = u^{\eta_n}$, $\eta_n = \ell_n(1, \dots, 1)$. For a *D*-norm construction

$$\ell_n(x_1,\ldots,x_n) = \mathrm{E}\{\max_{1 \leq i \leq n}(x_i W_i)\}$$

where $W_1, W_2,...$ is a sequence of positive rvs. with unit mean, η_n is the extremal coefficient (Smith, 1990; Falk, 2019).

Meta max-stable sequences (cont'd)

Our theory applies as soon as

$$\lim_{n\to\infty}\ell_n(1,\ldots,1)=\infty.$$

A classical example where this works is the logistic stdf with

$$\ell_n(x_1,\ldots,x_n) = (|x_1|^{\theta} + \ldots + |x_n|^{\theta})^{1/\theta}$$

for $\theta \geq 1$. Here,

$$\eta_n = \ell_n(1,\ldots,1) = n^{1/\theta}.$$

However, the Cuadras-Augé copula is also extreme-value, and yet

$$\ell_n(1,\ldots,1) = (1 - (1-\theta)^n)/\theta \to 1/\theta.$$

Characterizing transformations leading to GEV limits

Suppose that $D\colon [0,1] \to [0,1]$ is a continuous and strictly increasing distribution function. Then

$$D \circ H$$

is GEV for all GEV H if and only if there exist $\alpha > 0$ and c > 0 so that

$$D(u) = \exp\{-\alpha(-\ln u)^c\}$$

for all $u \in [0, 1]$.

Convergence of the copula diagonal is necessary

Let $X_1, X_2, ...$ be a sequence of identically distributed rvs with continuous marginal F, and suppose that the following conditions hold:

(a) There exist sequences (a_n) , $a_n > 0$ and (b_n) such that for all $x \in \mathbb{R}$,

$$F^n(a_nx+b_n)\to H_{\xi,\mu,\sigma}(x).$$

(b) There exists a rate function $r: \mathbb{N} \to (0, \infty)$ with $r(n) \to \infty$ as $n \to \infty$ and 1/r(n) = O(1/n), and a distribution function D on [0,1] so that

$$\Pr\left(\frac{M_n - b_{\lceil r(n) \rceil}}{a_{\lceil r(n) \rceil}} \le x\right) \to D\{H_{\xi,\mu,\sigma}(x)\}.$$

for all continuity points x of $D \circ H$,

Then for all continuity points $u \in [0,1]$ of D,

$$\delta_n\{u^{1/r(n)}\}\rightarrow D(u).$$

Example

Consider a Gaussian AR(1) process

$$X_n = \phi X_{n-1} + Z_n,$$

with $X_0=0$, $\phi\in[0,1)$ and iid $Z_n\sim\mathcal{N}(0,\sigma^2)$. Here, C_n is Gaussian with

$$\delta_n(u) = \Phi_{\Sigma_n} \left(\sigma \Phi^{-1}(u) / \sqrt{1 - \phi^2}, \dots, \sigma \Phi^{-1}(u) / \sqrt{1 - \phi^2} \right)$$

where $(\Sigma_n)_{ij} = \phi^{|i-j|} \sigma^2/(1-\phi^2)$. Because $\ln(n) \operatorname{cov}(X_1, X_n) \to 0$,

$$\Pr\left(\frac{M_n-b_n}{a_n}\leq x\right)\to \Lambda(x).$$

where (a_n) , $a_n > 0$ and (b_n) are the normalizing sequences of the corresponding iid series. This means that for all $u \in [0,1]$,

$$\delta_n\{u^{1/n}\} \rightarrow u.$$

Time series with limited long-range dependence

Suppose that $X_1, X_2, ...$ is a stationary sequence and $X_1^*, X_2^*, ...$ iid with the same (marginal) distribution F.

Set $M_n = \max(X_1, \dots, X_n)$ and $M_n^* = \max(X_1^*, \dots, X_n^*)$. If

$$\frac{M_n^* - b_n}{a_n} \rightsquigarrow H$$

and

$$\frac{M_n-b_n}{a_n} \rightsquigarrow H^{\theta}$$

for some $\theta \in (0,1]$, then necessarily

$$\delta_n(u^{1/n}) \to u^{\theta}$$

as $n \to \infty$.

Archimax diagonals

Take a simple max-stable sequence $Z_1, Z_2, ...$, an independent positive rv. V with Laplace transform ψ , and set

$$Y_i = VZ_i$$
.

We can obtain a sequence X_1, X_2, \ldots with common distribution F, viz.

$$X_i = F^{-1}(\psi(1/Y_i))$$

 C_n is then an Archimax copula, i.e., for all n and $u_1, \ldots, u_n \in [0, 1]$,

$$C_n(u_1,\ldots,u_n)=\psi[\ell_n\{\psi^{-1}(u_1),\ldots,\psi^{-1}(u_n)\}];$$

where ψ is a completely monotone Archimedean generator and ℓ_n an stdf. In particular, if Z_1, Z_2, \ldots are i.i.d., C_n is an Archimedean copula.

Archimax diagonals (cont'd)

The diagonal of an Archimax copula C_n has the form

$$\delta_n(u) = \psi\{\eta_n\psi^{-1}(u)\}, \quad \eta_n = \ell_n(1,\ldots,1).$$

If $\eta_n o \infty$ as $n o \infty$ and $1 - \psi(1/\cdot) \in \mathrm{RV}_{ho}$, then

$$r(n) = \left| \frac{1}{1 - \psi(1/\eta_n)} \right|, \quad D(u) = \psi[\{-\ln(u)\}^{1/\rho}]$$

so that

$$\Pr\left(\frac{M_n - b_{\lceil r(n) \rceil}}{a_{\lceil r(n) \rceil}} \le x\right) \to \psi[\{-\ln H_{\xi,\mu,\sigma}(x)\}^{1/\rho}]$$

provided that F is in the maximum domain of attraction of $H_{\xi,\mu,\sigma}$ with normalizing constants (a_n) , $a_n > 0$ and (b_n) .

A bit more on Archimax diagonals

It is worth noting that

$$\psi[\{-\ln H_{\xi,\mu,\sigma}(x)\}^{1/\rho}] = \psi[-\ln H_{\rho\xi,\mu,\rho\sigma}(x)].$$

- When $\ell_n(x_1, \ldots, x_n) = x_1 + \ldots + x_n$, X_1, X_2, \ldots is an exchangeable sequence and C_n is Archimedean. One then recovers the results of Berman (1962b), Ballerini (1994), and Wüthrich (2004).
- When $-\psi'(0) \in (0,\infty)$ and $\eta_n/n \to \theta$, we get that

$$\Pr\left(\frac{M_n - b_n}{a_n} \le x\right) \to \psi\left\{-\ln H_{\xi,\mu,\sigma}^{-\theta/\psi'(0)}(x)\right\}$$

where (a_n) , $a_n > 0$ and (b_n) are the constants from the iid case.

Illustration of D for various ψ

Illustration when ψ is Clayton and $\xi>0$

Illustration when ψ is Clayton and $\xi=0$

Illustration when ψ is Clayton and $\xi < 0$

Convergence rates

Consider a sequence X_1, X_2, \ldots of identically distributed random variables with continuous common distribution F such that

$$\sup_{x\in\mathbb{R}}|F^n(a_nx+b_n)-H(x)|\leq \beta(n),$$

for some EVD H. Suppose also that there eixsts $r: \mathbb{N} \to (0, \infty)$ so that $r(n) \to \infty$ as $n \to \infty$ and

$$\sup_{u\in[0,1]}|\delta_n(u^{1/r(n)})-D(u)|\leq s(n)$$

If D is Hölder continuous with constant K and parameter $0 < \kappa \le 1$, then

$$\sup_{x \in \mathbb{R}} \left| \Pr \left(\frac{M_n - b_{\lceil r(n) \rceil}}{a_{\lceil r(n) \rceil}} \le x \right) - D \circ H(x) \right| \le K \left(\beta \left(\lceil r(n) \rceil \right) + 3e^{-1} / r(n) \right)^{\kappa} + s(n)$$

Moving maxima one last time

Consider X_1, X_2, \ldots , such that $X_i \sim \mathcal{N}(0,1)$ and the dependence of the moving maxima process. We saw that for r(n) = n and $u \in [0,1]$,

$$\delta_n(u^{1/r(n)}) = \delta_n(u^{1/n}) = u^{(k+n)/(n(k+1))} \to u^{1/(k+1)}.$$

The limit is Hölder continuous with K=1 and $\kappa=1/(k+1)$. Also,

$$\sup_{u \in [0,1]} |\delta_n(u^{1/r(n)}) - D(u)| = \frac{k}{n+k} \left(1 + \frac{k}{n}\right)^{-n/k}.$$

Hall (1979) provides sequences of constants so that

$$\sup_{x \in \mathbb{R}} |\Phi^n(a_n x + b_n) - \Lambda(x)| \le 3/\ln(n).$$

The previous result shows that

$$\sup_{x\in\mathbb{R}}\left|\Pr(M_n\leq a_nx+b_n)-\Lambda(x)^{1/(k+1)}\right|\leq \frac{k}{n+k}\left(1+\frac{k}{n}\right)^{-n/k}+\left(\frac{3}{\ln(n)}\right)^{1/(k+1)}$$

Outlook

- Better understand the constraints on C_n (and its diagonal) when C_n is extendible.
- The development of inferential tools based on these results.
- Generalizations to the multivariate case.

Thank you for your attention!

References I

- Ballerini, R. (1994). Archimedean copulas, exchangeability, and max-stability. Journal of applied probability, 31(2):383–390.
- Berman, S. M. (1962a). Equally correlated random variables. *Sankhya, Ser. A*, 24:155–156.
- Berman, S. M. (1962b). Limiting distribution of the maximum term in sequences of dependent random variables. *The Annals of Mathematical Statistics*, 33(3):894–908.
- Falk, M. (2019). *Multivariate Extreme Value Theory and D-Norms*. Springer, 1st edition.
- Hall, P. (1979). On the rate of convergence of normal extremes. *Journal of Applied Probability*, 16(2):433–439.
- Jaworski, P. (2009). On copulas and their diagonals. *Information Sciences*, 179:2863–2871.
- Leadbetter, M., Lindgren, G., and Rootzén, H. (1983). *Extremes and Related Properties of Random Sequences and Processes*. Springer-Verlag New York Inc., 1st edition

References II

- Mai, J.-F. (2018). Extreme-value copulas associated with the expected scaled maximum of independent random variables. *Journal of Multivariate Analysis*, 166:50 61.
- Smith, R. (1990). Max-stable processes and spatial extremes. Preprint Univ. North Carolina.
- Wüthrich, M. V. (2004). Extreme value theory and archimedean copulas. *Scandinavian Actuarial Journal*, 2004(3):211–228.