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Research motivation

• New technologies enable the gathering of large datasets.
• Two main statistical challenges:

• Volume: High dim. data =) hard to handle and interpret.
• Variety: Heterogeneous data =) systematic biases.

Integrate heterogeneous high-dimensional data
• New insights into the data

• Robust estimates, reducing the biases

• Gains in statistical power

• Make accurate decisions sooner

• Interested mainly in Bayesian modelling
1. factor regression for data integration;
2. multi-study graphical models;
3. external data integration in trials.
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Bayesian factor regression
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Gene expression: Ovarian cancer
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Gene expression: Ovarian cancer
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Factor regression and data integration

Challenge: Batch e↵ects (non-biological experimental variation)
• Cause distortions in both mean and variance
• Can lead to incorrect conclusions
• Limit our ability to see biological patterns of interest

Solution. A novel sparse latent factor regression model to integrate such
heterogeneous data:

Factor analysis + factor regression + sparsity + batch e↵ect correction
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Factor Regression w/batch e↵ect correction1

Stack all the studies in one data-set:
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1

A , n = n1 + n2 + · · ·+ nl

• Goals:
1. Given X 2 Rn⇥p obtain F 2 Rn⇥q, q << p

2. Correct for systematic biases in mean and variance
• Model xi = �fi + �bi + ✓vi + ei

• fi ⇠ N(0, I): latent factors
• � 2 Rp⇥q: loading matrix
• � 2 Rp⇥pb : additive batch e↵ects
• bi 2 {0, 1}pb : batch indicators
• ✓ 2 Rp⇥pv : regression coe�cients
• vi 2 Rpv : observed covariates
• eij ⇠ N(0, Tjl�1), Tjl : the j

th idiosyncratic precision element in batch l .
1 Avalos-Pacheco A., Rossell D., Savage R. (2022) Heterogeneous large datasets integration using Bayesian latent factor regression, Bayesian Analysis,
17(1) pp. 33–66, doi.org/10.1214/20-ba1240. 6 / 49
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Novel non-local spike-and-slab priors
• Challenge: How to choose the latent cardinality?
• Solution: induce sparsity and learn the underlying number of factors via a scalable
non-local prior based formulation on the loadings.

Bayesian regularization and sparsity

Regularization as an optimization problem:
b✓ 2 arg✓min{� log p(Data | ✓)| {z }

loglikelihood

+ pen(✓)| {z }
penality fun

}

Ex: linear regression: min�
⇥
||Y � �X ||2 + pen(�)

⇤

Frequentist:
• L1 penalty: Lasso (Tibshirani 1996)

• Non-convex penalties: SCAD (Fan and Li 2001)

Bayesian: penalty = -log (prior)
• Lasso: exp(��|�|) = Laplace(�;�) prior

• L2 : � exp(��2) = N(�; 0,��1) prior
7 / 49



Novel non-local spike-and-slab priors

P(�jk | �jk ,�0,�1) = (1� �jk)P(�jk | �0) + �jk P(�jk | �1), �jk = {0, 1}

? Normal-spike-and-slab
[George & McCulloch (1993)]

? Laplace-spike-and-slab
[Ročková & George (2016)]

F Normal-spike-and-MOM-slab

F Laplace-spike-and-MOM-slab
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Novel non-local spike-and-slab priors

Non-local priors [Johnson & Rossell (2010)]

An absolutely continuous measure with density P(�jk ) is a non-local prior if lim�jk!0 P(�jk ) = 0.

P(�jk | �1) =
�2jk
�1

N(�jk ; 0,�1)

Advantages of sparse loadings:
1. Facilitates interpretation of factors as linear combinations of a smaller set of variables.

2. The sparsity assumption has significant potential gains for estimation accuracy.

3. Allows one to work with large q and let the data learn how many factors are needed.

4. Non-local priors have strongest frequentist properties for model selection

Problem: Computational challenges of Non-local priors that can render them impractical
Solution:

1. Novel scalable EM algorithms

2. Closed-form updates

3. R package publicly available at https://github.com/AleAviP/BFR.BE
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Hyper prior on the latent indicators
Indian bu↵et process (IBP) prior Gri�ths and Ghahramani (2005)

� = {�jk}P,1
j ,k=1

�jk |⇣k ⇠ Bernoulli(⇣k)

⇣k |↵, 1 ⇠ Beta(↵/k , 1)

Priors
• Idiosyncratic precisions: ⌧jl | ⌘, ⇠ ⇠ Gamma(⌘/2, ⌘⇠/2)
• Regression parameters: (✓j ,�j) ⇠ N(0, I)
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Simulation

Synthetic data without batch e↵ects, n = 100, q⇤ = 10, p = 1, 000 or 1, 500
parameters, truly sparse loadings �⇤.

� ��> + T �1

p = 1, 000 p = 1, 500

Model q̂ |�̂|0 ||E[X ]� Ê[X ]||F ||Cov[xi ]�dCov[xi ]||F it time q̂ |�̂|0 ||E[X ]� Ê[X ]||F ||Cov[xi ]�dCov[xi ]||F it time
q = 100

Flat 100.0 100000.0 209.5 185.7 3.0 5.1 100.0 100000.0 259.2 280.2 3.0 7.1
Normal-SS 31.0 1228.6 109.0 144.6 4.3 9.9 56.4 1568.2 181.3 231.9 4.0 13.8
MOM-SS 9.7 856.8 79.4 143.3 4.8 10.8 9.2 745.4 105.0 245.6 4.0 17.3
FastBFA 83.6 1389.9 198.1 141.9 12.0 1.7 87.2 1763.9 208.2 211.3 6.5 1.0

LASSO-BIC 10.0 4787.3 54.1 271.4 NA 19.6 10.0 7976.6 66.1 409.3 NA 31.6
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Simulation

Synthetic data with batch e↵ects for n = 200, q⇤ = 10, p = 250 or 500 parameters,
truly sparse loadings �⇤.

� ��> + T �1

p = 250 p = 500

Model q̂ |�̂|0 ||E[X ]� Ê[X ]||F ||F�> � E[F | �̂,X ]�̂
>||F it time q̂ |�̂|0 ||E[X ]� Ê[X ]||F ||F�> � E[F | �̂,X ]�̂

>||F it time

q = 100
Flat 100.0 25000.0 96.8 100.6 4.4 1.3 100.0 25000.0 147.8 152.5 4.0 3.6

Normal-SS 10.0 765.8 45.7 54.8 5.0 1.7 10.6 1146.3 60.0 72.6 5.0 4.0
MOM-SS 10.0 740.4 63.8 72.4 6.0 1.5 10.0 1158.7 85.7 108.3 5.4 3.6

ComBat-MLE 100.0 25000.0 169.0 182.9 8.7 0.0 100.0 25000.0 232.7 252.4 4.9 0.0
FastBFA 10.0 337.0 51.9 168.3 12.7 0.3 11.3 681.8 75.8 247.9 11.9 0.4

LASSO-BIC 10.3 1374.0 39.6 178.9 NA 3.5 10.3 2613.9 49.8 252.1 NA 8.8
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Simulation studies
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Ovarian cancer datasets

Ovarian cancer: curatedOvarianData 1.16.0, p = 1, 007 genes

1. llumina Human microRNA array E.MTAB.386, n1 = 129 patients

2. GSE30161, n2 = 58 patients

Age at initial pathologic diagnosis has been used as covariate.

Ov, No correction Ov, ComBat-MLE Ov, MOM-SS
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Survival analysis

Survival analysis for ovarian (p = 1, 007 genes) data sets.

Ovarian

q̂ |�̂|0 CI

Flat 100.0 100700.0 0.634
Normal-SS 7.8 7854.6 0.568
MOM-SS 4.0 4028.0 0.588

ComBat-MLE 90% 101.0 101707.0 0.589
ComBat-MLE 70% 41.0 41287.0 0.588
ComBat-FastBFA 100.0 100700.0 0.527
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Bayesian factor regression

* Winner of the Savage Award 2019, category Applied Methodology, awarded by the International Society
of Bayesian Statistics (ISBA)
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Multi-study factor analysis2,3

• Model: xis = �fis + ⇤slis + eis
i = 1, . . . , ns , s = 1, . . . , S

• � 2 Rp⇥q: common factor loadings
• ⇤s 2 Rp⇥qs : specific factor loadings
• fis 2 Rq: common factors
• lis : batch indicators
• eis ⇠ N(0,T �1

s ), T s = diag{T 1s , . . . ,T ps}.

⌃s = ��>
| {z }
⌃�

+⇤s⇤
>
s| {z }

⌃⇤s

+ T �1
s

• ⌃�: crucial for identifying reproducible biological pathways shared by di↵erent cancer studies
that traditional factor analysis approaches may miss due to batch e↵ects2,3.

2 De Vito et. al. (2019) Biometrics
3 De Vito et. al. (2021) The Annals of Applied Statistics
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Multiplicative gamma process shrinkage prior4

• common factor loadings

�jk | !jk�k ⇠ N(0,!�1
jk �

�1
k ),

!jk ⇠ �(⌘2 ,
⌘
2 ), �k =

Q
l �l , �1 ⇠ �(a1, 1) �l ⇠ �(a2, 1)

l = 1, . . . ,1

• study-specific factor loadings

�jks | !s
jks�

s
ks ⇠ N(0,!s�1

jks
�s�1
ks

)

l = 1, . . . ,1
4 Battacharya and Dunson (2011), Biometrika
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BMSFA: Shrinkage prior

• Infinitely many factors:
� 2 Rp⇥1 and ⇤s 2 Rp⇥1

• Degree of shrinkage increases across the column index

• Use of the prior on a parameter-expanded loading matrix

• Inference via Gibbs sampler

Challenges:

1. MCMC implementations of existing BMSFA methods are
• computationally expensive
• not scalable in high dimensional settings

2. Current MSFA methods do not take into account covariate e↵ects
• batch e↵ects
• pre-treatment patient characteristics
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Multi-study factor regression (MSFR)7,8

• Challenge: Keeping track of the observed variables
• Solution: Obtain a covariance structure that models the study/batch specific
covariances in addition to the common component, keeping track of the observed
variables, such as the demographic information

• Model:
xis = �fis + ⇤slis + �bis + eis

i = 1, . . . , ns , s = 1, . . . , S
• R-package available at: https://github.com/rdevito/MSFR
(Authors: De Vito R. and Avalos-Pacheco A.)

7 De Vito R.,Avalos-Pacheco A., Multi-study Factor Regression for Heterogeneous Data: An

Application in Nutritional Epidemiology arXiv:2304.13077 [submited]
8 Avalos-Pacheco A., Jewson J., Rossell D., De Vito R., Sparse Bayesian Factor Models for Single

and Multi-Study Data [working project]
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Simulation studies

bq bqs b� b� b�1
b�2

b�3
b�4

b�5
b�6

b⌃1
b⌃2

b⌃3
b⌃4

b⌃5
b⌃6

Scenario 1: q = 3, qs = 1, S = 2, pb = 2, p = 20, ns = {500, 500, 500}
MSFR 3.00 1.00 0.978 0.996 0.959 0.931 0.974 0.987

MSFA&LR 3.00 1.00 0.993 0.973 0.922 0.875 0.923 0.942
MSFA 4.95 1.04 NA 0.915 0.900 0.844 0.889 0.904
FR 3.57 NA 0.991 0.956 NA NA 0.912 0.888

Scenario 2: q = 4, qs = 1, S = 6, pb = 7, p = 42, ns = {1257, 1444, 2126, 4940, 2314, 897}
MSFR 4.00 1.00 0.952 1.000 0.983 0.982 0.990 0.995 0.991 0.981 0.999 0.999 0.999 0.999 0.999 0.999

MSFA&LR 1.14 4.13 0.999 0.602 0.017 0.036 0.033 0.002 0.006 0.011 0.841 0.848 0.858 0.866 0.832 0.847
MSFA 8.22 2.51 NA 0.953 0.927 0.908 0.939 0.982 0.973 0.927 0.965 0.965 0.964 0.966 0.966 0.965
FR 5.00 NA 0.998 0.971 NA NA NA NA NA NA 0.860 0.874 0.868 0.872 0.876 0.892

Scenario 3: q = 4, qs = 1, S = 6, pb = 9p = 42, ns = {1257, 1444, 2126, 4940, 2314, 897}
MSFR 3.99 1.00 0.940 0.999 0.970 0.975 0.982 0.986 0.981 0.971 0.999 0.999 0.999 0.999 0.999 0.999

MSFA&LR 1.36 4.17 0.998 0.617 0.033 0.074 0.050 0.022 0.026 0.030 0.852 0.856 0.864 0.869 0.847 0.851
MSFA 8.06 2.28 NA 0.923 0.925 0.903 0.936 0.982 0.976 0.920 0.929 0.930 0.929 0.929 0.931 0.928
FR 5.00 NA 0.998 0.971 NA NA NA NA NA NA 0.859 0.874 0.867 0.871 0.876 0.892
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Dietary patterns in the HCHS/SOL data

Dietary patterns
• Synthesize multiple related dietary components in one or more combined variables.

• Drawback: Their limited reproducibility across subpopulations

• Solution: Use MSFR to study the shared and ethnic background site-specific
dietary patterns in the Hispanic Community Health Study/Study of Latinos
(HCHS/SOL), while controlling for covariates or confounders that do not a↵ect the
dietary patterns like: education level and alcohol intake.
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The HCHS/SOL data
• We study data from the HCHS/SOL study:

• 12978 enrolled adults aged 18–74 years
• from six Hispanic/Latino ethnic backgrounds S = 6 (Cuban, Dominican Republic,

Mexican, Puerto Rican, Central and South American) at baseline (2008-2011),
ns = {1257, 1444, 2126, 4940, 2314, 897}.

• data from p = 42 nutrients
• non-nutritional data in our model: BMI, Gender, education levels (3), alcohol intake

(3), and number of cigarrette packs (3), obtaining pb = 9 levels.
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Aims

1. analyze the obtained factors loadings of the data

2. study the loading association with di↵erent food groups
3. validate our obtained dietary patterns, associating each factor with the alternative

eating index (AHEI-2010):
• a measure of overall diet quality
• related to cardiometabolic disease risk (Liese et al., 2015)
• the higher the AHEI-2010 index, the lower the chronic disease risk.
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Heat-maps of � and �s
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� and �s association with food groups
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AHEI-2010 index for HCHS/SOL data
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Multiple Ising Graphs

• Challenge: Our models can only deal with continuous outcome data.

• Solution: A model to study the heterogeneity induced in a set of binary variables by
external factors.
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Multiple Ising Graphs9

• Multiple graphical models for Gaussian random variables have been widely studied
• Guo et al. (2011), Danaher et al. (2014), Peterson et al. (2015), Ha et al. (2021)
• they can capture the heterogeneity of the data involved in more realistic settings

• There have been only few proposals for multinomial sampling models
• Hojsgaard (2003), Corander (2003), Nyman et al. (2014, 2016).

• Multiple Ising models:
• More general, allow context-specific independences to vary not only with respect to

adjacent vertices.
• Model the heterogeneity induced in a set of binary variables by external factors.
• Factors may influence the joint dependence relationships represented by a set of graphs

across di↵erent groups.
9 Lazzerini A., Avalos-Pacheco A., Lupparelli M., Stingo F. C. Bayesian Inference of
Multiple Ising Models for Heterogeneous Public Opinion Survey Networks [submitted].

37 / 49



Conclusions
• Methods to integrate large datasets from multiple studies with continuous and
binary outputs.

• Link and borrow strength across related sub-populations, via e�cient EM, ECM and
VI algorithms.

• The non-local prior based formulations induce sparsity and learn the number of
factors.

• The MRF prior on the binary indicator of edge inclusion
• encourage the selection of the same edges in related graphs
• can learn which sup-populations are similar, and which ones are not.

• We show the usefulness of our approaches in:
1. cancer genomics
2. nutriotional epidemiology
3. public opinion studies in the US

• R-code publicly available
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