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Research motivation

e New technologies enable the gathering of large datasets.

® Two main statistical challenges:

® Volume: High dim. data = hard to handle and interpret.
® Variety: Heterogeneous data == systematic biases.

Integrate heterogeneous high-dimensional data

® New insights into the data
® Robust estimates, reducing the biases
® Gains in statistical power

® Make accurate decisions sooner

Interested mainly in Bayesian modelling

1. factor regression for data integration;
2. multi-study graphical models;
3. external data integration in trials.
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Bayesian factor regression
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Abstract

Two key challenges in modern statistical applications are the large amount of information recorded per
individual, and that such data are often not collected all at once but in batches. These batch effects can
be complex, causing distortions in both mean and variance. We propose a novel sparse latent factor

regression model to integrate such heterogeneous data. The model provides a tool for data exploration
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Gene expression: Ovarian cancer
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Factor regression and data integration

» Same observed variables
» Different individuals

D

o @

Data
Integration &
Dimensionality
reduction

. R

s LM

Challenge: Batch effects (non-biological experimental variation)
e Cause distortions in both mean and variance
® Can lead to incorrect conclusions
® Limit our ability to see biological patterns of interest

Solution. A novel sparse latent factor regression model to integrate such
heterogeneous data:
Factor analysis + factor regression + sparsity + batch effect correction
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Factor Regression w/batch effect correction'

Stack all the studies in one data-set:

_ | x» x®@ () _
X XWX X ,n=n+nm+---+n
RnXp Rnlxp Rn2><p Rn,xp

® Goals:
1. Given X € R"*P obtain F e R™9, g << p
2. Correct for systematic biases in mean and variance
® Model x; = ®f; + Bb; 4+ Ov; + ¢;
® £; ~ N(0,I): latent factors
& c RP*9: |oading matrix
B € RP*Pr: additive batch effects
b; € {0,1}P: batch indicators
0 € RP*Pv: regression coefficients
v; € RPv: observed covariates
ej ~ N(0,7;~1), Ty: the j* idiosyncratic precision element in batch /.

1 Avalos-Pacheco A., Rossell D., Savage R. (2022) Heterogeneous large datasets integration using Bayesian latent factor regression, Bayesian Analysis,

17(1) pp. 33-66, doi.org/10.1214/20-ba1240.
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Novel non-local spike-and-slab priors

® Challenge: How to choose the latent cardinality?
® Solution: induce sparsity and learn the underlying number of factors via a scalable
non-local prior based formulation on the loadings.

Bayesian regularization and sparsity

Regularization as an optimization problem:
6 € argymin{— log p(Data | 6) + pen(d) }
—_— ~——

loglikelihood penality fun
Ex: linear regression: ming [||Y — 8X]|? + pen(B)]
Frequentist:
® [, penalty: Lasso (Tibshirani 1996)
® Non-convex penalties: SCAD (Fan and Li 2001)
Bayesian: penalty = -log (prior)
® lasso: exp(—A|B|) = Laplace(3; \) prior

® [, : hexp(—fF%) = N(B;0,\71) prior .



Novel non-local spike-and-slab priors

P(dj | vjks Ao, A1) = (1 — i) P&k | o) + v P(djx | A1), vix = {0,1}

* Normal-spike-and-slab
[George & McCulloch (1993)] * Normal-spike-and-MOM-slab

* Laplace-spike-and-slab % Laplace-spike-and-MOM-slab
[Rotkovd & George (2016)]
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Novel non-local spike-and-slab priors

Non—|Oca| priOI‘S [Johnson & Rossell (2010)]

An absolutely continuous measure with density P(¢j) is a non-local prior if "md>jk~>0 P(¢jx) = 0.

>
P(ojx | \1) = %N(Qﬁjk; 0,1)
1
Advantages of sparse loadings:

1. Facilitates interpretation of factors as linear combinations of a smaller set of variables.
2. The sparsity assumption has significant potential gains for estimation accuracy.
3. Allows one to work with large q and let the data learn how many factors are needed.
4. Non-local priors have strongest frequentist properties for model selection

Problem: Computational challenges of Non-local priors that can render them impractical
Solution:
1. Novel scalable EM algorithms
2. Closed-form updates
3. R package publicly available at https://github.com/AleAviP/BFR.BE
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Hyper prior on the latent indicators

Indian buffet process (IBP) prior Griffiths and Ghahramani (2005)

P’
= {m)
Beta distribution
7 i — k=1
- - k=2
k=5
Zz < - k=10
2 ! — k=100
Yjk|Ck ~ Bernoulli(¢x) g, |\
Ckla, 1 ~ Beta(a/k, 1) | o

Priors
® |diosyncratic precisions: 7j | 17,§ ~ Gamma(n/2,1§/2)

® Regression parameters: (6;, 5;) ~ N(0, 1)
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Simulation

Synthetic data without batch effects, n = 100, ¢* = 10, p = 1,000 or 1,500
parameters, truly sparse loadings ®*.
[}

oo’ 47!
p = 1,000 [ p = 1,500
Model g [®lo  1Ex- B licovn] - Gl it time ‘ 4 [®lo  iExi-gxe  jcol - Gl it time
q =100
Flat | 100.0 100000.0 209.5 185.7 3.0 5.1 | 100.0 100000.0 259.2 280.2 3.0 7.1
Normal-SS | 31.0 1228.6 109.0 144.6 4.3 9.9 | 56.4 1568.2 181.3 2319 4.0 138
MOM-SS 9.7 856.8 79.4 143.3 48 10.8 9.2 7454  105.0 245.6 40 173
FastBFA | 83.6 1389.9 198.1 141.9 12.0 17| 872 1763.9 208.2 211.3 6.5 1.0
LASSO-BIC 10.0 4787.3 54.1 271.4 NA 196 10.0 7976.6 66.1 409.3 NA 316
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Simulation

Synthetic data with batch effects for n = 200, ¢* = 10, p = 250 or 500 parameters,

truly sparse loadings ®*.
[}

oo’ 47!
p =250 I =500
Model 4 |Dlo - e - siF 1 8.x187 it time ‘ 4 |®lo e reT i Axe it time
q =100
Flat | 100.0 25000.0 96.8 100.6 44 131000 25000.0 147.8 152.5 40 36
Normal-SS 10.0 765.8 45.7 54.8 5.0 1.7 ‘ 10.6 1146.3 60.0 72.6 5.0 4.0
MOM-SS | 10.0 740.4 63.8 72.4 6.0 15 10.0 11587 85.7 108.3 54 3.6
ComBat-MLE | 100.0 25000.0 169.0 182.9 8.7 0.0 |100.0 25000.0 232.7 252.4 49 00
FastBFA | 10.0 337.0 51.9 168.3 127 03| 113 681.8 75.8 247.9 119 04
LASSO-BIC 10.3 1374.0 39.6 178.9 NA 3.5 10.3 26139 49.8 252.1 NA 8.8
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Simulation studies

H § 5 H §
3 3 g 3 3
i i | i i
H H £ H H
£ ,
e e e e e
Flat Dense M Normal-SS Dense M MOM-SS Dense M nL'\J/;)mBac-MLE Dense FastBFA Dense M LASSO Dense M

reconstruction

reconstruction
reconstruction
reconstruction

Flat Sparse M Normal-SS Sparse M | MOM-SS Sparse M fComBat-SS Sparse M FastBFA Sparse M LASSO Sparse M

13/49



Simulation studies
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Simulation studies

reconstruction
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Ovarian cancer datasets

Ovarian cancer: curatedOvarianData 1.16.0, p = 1,007 genes
1. llumina Human microRNA array E.MTAB.386, n; = 129 patients
2. GSE30161, ny, = 58 patients

Age at initial pathologic diagnosis has been used as covariate.
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Survival analysis

Survival analysis for ovarian (p = 1,007 genes) data sets.

Ovarian

g [®o o]
Flat | 100.0 100700.0 0.634
Normal-SS 7.8 7854.6 0.568
MOM-SS 4.0 4028.0 0.588
ComBat-MLE 90% | 101.0 101707.0 0.589
ComBat-MLE 70% 41.0 41287.0 0.588
ComBat-FastBFA | 100.0 100700.0 0.527
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Bayesian factor regression

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL: *
http://wrap.warwick.ac.uk/130061

FACTOR REGRESSION FOR
DIMENSIONALITY REDUCTION AND
DATA INTEGRATION TECHNIQUES
WITH APPLICATIONS TO CANCER DATA

Alejandra Avalos Pacheco

* Winner of the Savage Award 2019, category Applied Methodology, awarded by the International Society
of Bayesian Statistics (ISBA)
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Multi-study factor analysis®*

Ribosome
L Model: Xjs = q)f,‘s + Aslis + €js Connective ¢ POt . ER Pathway
- Tissug h)
i=1,...,n5,s=1,...,S
® < RP*9: common factor loadings ;
N € RP*%: gpecific factor loadings
f;,s € R9: common factors %
1,s: batch indicators Immune

eis ~ N(O, T51), Ts = diag{T1s, ..., Tos).

-~
Celicycle

To=00 AN + T}
qu Z/\

® 3 ¢: crucial for identifying reproducible biological pathways shared by different cancer studies
that traditional factor analysis approaches may miss due to batch effects®3.
2 De Vito et. al. (2019) Biometrics
3 De Vito et. al. (2021) The Annals of Applied Statistics
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Multiplicative gamma process shrinkage prior*

® common factor loadings

i | Wik ~ N(O, wi v ),

wik ~T(2,3), v =1I01, 61 ~T(ar,1) 6~ T(a2,1)

I=1,...,00
e study-specific factor loadings
Ajks | Wik Tk, ~ N(vaszlﬁ:l)
I=1,...,00

* Battacharya and Dunson (2011), Biometrika
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BMSFA: Shrinkage prior

® |Infinitely many factors:
® c RP*>® and Ng € RP*°

® Degree of shrinkage increases across the column index
® Use of the prior on a parameter-expanded loading matrix
® |nference via Gibbs sampler

Challenges:

1. MCMC implementations of existing BMSFA methods are
® computationally expensive
® not scalable in high dimensional settings
2. Current MSFA methods do not take into account covariate effects

® batch effects
® pre-treatment patient characteristics
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Multi-study factor regression (MSFR)"3

® Challenge: Keeping track of the observed variables

® Solution: Obtain a covariance structure that models the study/batch specific
covariances in addition to the common component, keeping track of the observed
variables, such as the demographic information

® Model:

xjs = ®fjs + Nslis + Bbjs + ejs
i=1,...,ns,s=1,...,S
® R-package available at: https://github.com/rdevito/MSFR
(Authors: De Vito R. and Avalos-Pacheco A.)

" De Vito R.,Avalos-Pacheco A., Multi-study Factor Regression for Heterogeneous Data: An
Application in Nutritional Epidemiology arXiv:2304.13077 [submited)]
8 Avalos-Pacheco A., Jewson J., Rossell D., De Vito R., Sparse Bayesian Factor Models for Single

and Multi-Study Data [working project]
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Simulation studies

Scenario 1: ¢=3,¢; =1,

=2,p, =2,p =20, ns = {500, 500,500}

MSFR 3.00 1.00 | 0.978 0.996 | 0.959 0.931 0.974 0.987
MSFA&LR | 3.00 1.00 | 0.993 0.973 | 0.922 0.875 0.923 0.942
MSFA 495 1.04| NA 00915 0.900 0.844 0.889 0.904
FR 357 NA | 0991 0.956 | NA NA 0.912 0.888
Scenario 2: q=4,q,=1,5=6,p, = 7,p = 42, n, = {1257, 1444, 2126,4940, 2314,897}
MSFR 4.00 1.00 | 0.952 1.000 | 0.983 0.982 0.990 0.995 0.991 0.981 | 0.999 0.999 0.999 0.999 0.999 0.999
MSFA&LR | 1.14 4.13 | 0.999 0.602 | 0.017 0.036 0.033 0.002 0.006 0.011 | 0.841 0.848 0.858 0.866 0.832 0.847
MSFA 822 251 | NA 0953|0927 0.908 0.939 0.982 0.973 0.927 | 0.965 0.965 0.964 0.966 0.966 0.965
FR 500 NA |0.998 0971 | NA NA NA NA NA NA | 0.860 0874 0.868 0.872 0.876 0.892
Scenario 3: q—4,¢, = 1,5 = 6, p, — Op = 42, n, — {1257, 1444, 2126, 4940, 2314, 807}
MSFR 3.99 1.00 | 0.940 0.999 | 0.970 0.975 0.982 0.986 0.981 0.971 | 0.999 0.999 0.999 0.999 0.999 0.999
MSFA&LR | 1.36 4.17 | 0.998 0.617 | 0.033 0.074 0.050 0.022 0.026 0.030 | 0.852 0.856 0.864 0.869 0.847 0.851
MSFA 8.06 228 | NA 0923|0925 00903 0936 0982 00976 0.920 | 0.929 0.930 0.929 0.929 0.931 0.928
FR 5.00 NA |0.998 0.971 | NA NA NA NA NA NA |0.859 0.874 0.867 0.871 0.876 0.892
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Dietary patterns in the HCHS /SOL data

Dietary patterns

® Synthesize multiple related dietary components in one or more combined variables.
® Drawback: Their limited reproducibility across subpopulations

® Solution: Use MSFR to study the shared and ethnic background site-specific
dietary patterns in the Hispanic Community Health Study/Study of Latinos
(HCHS/SOL), while controlling for covariates or confounders that do not affect the
dietary patterns like: education level and alcohol intake.
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The HCHS/SOL data

® We study data from the HCHS/SOL study:

® 12978 enrolled adults aged 18-74 years

® from six Hispanic/Latino ethnic backgrounds S = 6 (Cuban, Dominican Republic,
Mexican, Puerto Rican, Central and South American) at baseline (2008-2011),
ns = {1257, 1444, 2126, 4940, 2314, 897}

® data from p = 42 nutrients

® non-nutritional data in our model: BMI, Gender, education levels (3), alcohol intake
(3), and number of cigarrette packs (3), obtaining p, = 9 levels.

Water
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Aims

1. analyze the obtained factors loadings of the data
2. study the loading association with different food groups
3. validate our obtained dietary patterns, associating each factor with the alternative
eating index (AHEI-2010):
® a measure of overall diet quality
® related to cardiometabolic disease risk (Liese et al., 2015)
® the higher the AHEI-2010 index, the lower the chronic disease risk.
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® and )\, association with food groups
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AHEI-2010 index for HCHS /SOL data

Mean AHEI-2010

Standard error AHEI-2010

448 1612 488 447

47 477 471 437 6183 414 452

472 464 456 435 495 403 436

50

45

0.075

0.050

0.025

0.000
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Multiple Ising Graphs

e Challenge: Our models can only deal with continuous outcome data.

® Solution: A model to study the heterogeneity induced in a set of binary variables by
external factors.
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Multiple Ising Graphs®

® Multiple graphical models for Gaussian random variables have been widely studied
® Guo et al. (2011), Danaher et al. (2014), Peterson et al. (2015), Ha et al. (2021)
® they can capture the heterogeneity of the data involved in more realistic settings

® There have been only few proposals for multinomial sampling models
® Hojsgaard (2003), Corander (2003), Nyman et al. (2014, 2016).

® Multiple Ising models:

® More general, allow context-specific independences to vary not only with respect to
adjacent vertices.

® Model the heterogeneity induced in a set of binary variables by external factors.

® Factors may influence the joint dependence relationships represented by a set of graphs
across different groups.

9 Lazzerini A., Avalos-Pacheco A., Lupparelli M., Stingo F. C. Bayesian Inference of

Muiltiple Ising Models for Heterogeneous Public Opinion Survey Networks [submitted)].
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Conclusions

® Methods to integrate large datasets from multiple studies with continuous and
binary outputs.
® Link and borrow strength across related sub-populations, via efficient EM, ECM and
VI algorithms.
® The non-local prior based formulations induce sparsity and learn the number of
factors.
® The MRF prior on the binary indicator of edge inclusion
® encourage the selection of the same edges in related graphs
® can learn which sup-populations are similar, and which ones are not.
® \We show the usefulness of our approaches in:
1. cancer genomics
2. nutriotional epidemiology
3. public opinion studies in the US

® R-code publicly available
48 /49
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