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Topic of the talk TUM

® How to form statistical tests that detect general non-linear dependence?

And why is this question interesting?

® How to form tests that ‘work’ for any type of continuous data?

Considered solution: Use ranks of the observed values

® How to do this for vector-valued data?

How to rank in dimension > 27 Optimal transport perspective. . .
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1. Why insist on consistency?



Motivation from causal discovery TLUTI

Fact: Conditional expectation E[Y|X] ‘best’ predicts Y as function of X and
Corr[ Y —E[Y|X], X] = Corr[X —E[X|Y], Y] = O.
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Motivation from causal discovery TLUTI

e Causal model (additive noise model):

Y=Ff(X)+e with X 1Le
e In this model, Y — E[Y|X] = Y — f(X) = € is independent of X (not only uncorrelated).

® |n contrast, for a general non-linear f, it holds that

X —E[X|Y] A Y  (despite zero Pearson correlation).
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Causal discovery: Two plots of one bivariate dataset TLUTI
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Causal discovery: Subtracting effect of postulated cause TLUTI

Considering X as cause of Y Considering Y as cause of X
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Causal discovery

cor(x,ey)
## [1] -0.06502044
cor.test(x,ey)$p.value

## [1] 0.360332

cor(y,ex)
## [1] -0.08028996
cor.test(y,ex)$p.value

## [1] 0.2584004
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Causal discovery

cor(x,ey)
## [1] -0.06502044
cor.test(x,ey)$p.value

## [1] 0.360332

tauStarTest (x,ey)

## Test Type: asymptotic continuous
## Input Length: 200

i

## Results:

## t*x value Asym. p-val
## 0.00081 0.26329

## Bootstrap p-value: 0.086

cor(y,ex)
## [1] -0.08028996
cor.test(y,ex)$p.value

## [1] 0.2584004

tauStarTest (y,ex)

## Test Type: asymptotic continuous
## Input Length: 200

H

## Results:

## t* value Asym. p-val
##  0.02626 le-04

## Bootstrap p-value: 0.001
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2. Rank correlations



Rank correlations

e |f Pearson is out, then ‘next best thing':

Spearman’'s p  or

Kendall's 7.

TUTI

e Estimators p, and 7, are functions of the ranks of (X(l), . ,X(”)) and of (Y(l), el Y(”)).

® The rank of X() is

##
HH
##
##
HH
#H#
##
##

.9804
.4679
. 7163
.5131
.4287
.7011
. 7526

X ranks

O W ks NN -

RE = #{j: XV < xU},

=1,

..., n.
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Kendall TUT

_ #{concordant pairs} — #{discordant pairs}

)

e Correlation coefficient: 7,

® Point configurations:

concordant pair discordant pair

____________________________________

e Correlation measure: 7 = Pr(concordant pair) — Pr (discordant pair)

8 /28



Spearman Tum

e Correlation coefficient:  p,, = Pearson correlation of rank vectors

cor(x, y, method = "spearman") cor(rank(x), rank(y))
## [1] 0.7575758 ## [1] 0.7575758
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Spearman Tum

e Correlation coefficient:  p,, = Pearson correlation of rank vectors

cor(x, y, method = "spearman")

cor (rank(x), rank(y))
## [1] 0.7575758

## [1] 0.7575758

e Correlation measure:  p = Pr(concordant triple) — Pr (discordant triple)

® Point configurations:

concordant

concordant

concordant

discordant

discordant

discordant
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Rank correlations are great for independence testing TLUTI
e Let (XM, Yy .. (X" Y1) be i.i.d. sample from continuous distribution PX:Y),

e Fact:

If X and Y independent, then two rank vectors are independent and uniformly distributed:

XLY = VneN:(RS,...ROHL(R',....R)and
(RY,....RX), (R),....R") ~ Uniform(S,)

e Conclusion:

Rank correlation coefficients are distribution-free under null hypothesis of independence.

Calibrate independence tests via exact distributions (for small n) or

uniformly valid asymptotic approximations (e.g., p, and 7, are asymptotically normal).
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Spearman/Kendall not consistent TLTI

Although p and 7 have many uses, they do not give consistent tests of independence.

cor(x, y, method = "spearman")
37 ## [1] 6.648968e-05
> 2 library(pcaPP)

1 cor.fk(x, y)
0 — ## [1] 4.490223e-05

| | T | |

-2 -1 0 1 2

X Kendall:

naive O(n?); efficient O(nlog(n))
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Hoeffding's problem TLUTI

e \We know

(RY,....RX) L (R",...,RY) and
(RS, ..., R, (R, ..., RY) ~ Uniform(S,)

XLY | = VneN:

® |s there a converse?

® What is the smallest n = npqefrding such that

(RY,....RXY L (R”,...,R") and
¢ é — | XLY ?
(RY,...,RY), (RY,...,R") ~ Uniform(S,) [
o Certainly, NHoefrding > 2 ... eg., Y = X? with X ~ N(0,1).
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3. Consistent rank correlations



Hoeffding's D (1948) TLTI

[ D = [(F(xy) — Fx(x)Fy(y))? dF(x,y)

® Here, F is the joint distribution function and Fx, Fy are the marginal d.f.
® D is consistent for absolutely continuous bivariate distributions: D=0 <— X 1 Y.

® Unbiased estimator (U-statistic) based on ranks of 5-tuples of data points:

- 1 X (i) X (is)
D, = — h N IR NIE
(&) \<i<icisen ((Y(“)) (Y(’5)))

For example, /FX(X)sz(y)z dF(x,y) = E[1(X1 < X5)1(Xa < X5)1(Ys < Y5)1(Ys < Y5)].

® Existence of this estimator implies NHoeffding < 5.
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Blum-Kiefer-Rosenblatt’s R (1961) TUT

R = J(F(y) = FxF)R dFbR ) |

e Consistent for any bivariate distribution:

R=0 «<— X 1Y.

e Admits unbiased estimator R, based on ranks of 6-tuples.

o~ o~

e Under independence, asymptotic equivalence: D, — R, = op(1).
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Bergsma-Dassios’ 7% (2014) TUT

1
™ =E[7;], 7, = 7~ ( #{concordant 4-tuples} — #{discordant tuples} )
(4)
concordant tuple concordant tuple discordant tuple
[ [
o ° ® °
o o ]
o ° o

7* known to be consistent for dependence in continuous and discrete distributions.

Thus, Nyoefrding < 4. Little known work of Yanagimoto (1970) gives | NHoeffding = 4
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Computation TUT

e Naive counting of tuples:
O(n®) for D,
O(n®) for R,
O(n*) for 7.

e But Hoeffding cleverly shows that his D, can be evaluated in O(nlog n) time.

e For 7%, newest algorithm also achieves O(nlogn) (Even-Zohar and Leng, 2021).

(R package: independence)

e A relation of Yanagimoto (1970) implies O(nlog n) computation also for BKR's R,
(D., Han, Shi, 2020).
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Asymptotics

Theorem

If X and Y are independent continuous random variables, then
—~ =~ n
Dn, Rny 7A;7k i ]-
nDy, nRy, 27 - lzljzl 22 (fj )

where &jj, i,j > 1, are i.i.d. N(0, 1) random variables.

® Under independence, degenerate U-statistics of order 2

(Hoeffding, 1948; Nandy, Weihs, D., 2016; D., Han, Shi, 2020).

® R package to compute asymptotic p-values for independence test: tauStar (Luca Weihs).
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Chatterjee’'s new coefficient of correlation (2021) TLTI

Research continues. ..

Chatterjee (2021) proposed a rank correlation coefficient £, that amazingly is
e computable in O(nlog n),

® consistently estimates a dependence measure £ with
=0« X1Y (consistent for dependence), and

=1 <= df: Y =f(X) (consistent for functional dependence),

® asymptotically normal.
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Chatterjee’'s new coefficient of correlation (2021) TLTI

Research continues. ..

Chatterjee (2021) proposed a rank correlation coefficient £, that amazingly is
e computable in O(nlog n),

® consistently estimates a dependence measure £ with
=0 XL1Y (consistent for dependence), and

=1 <= df : Y =f(X) (consistent for functional dependence),

® asymptotically normal.

Unfortunately, independence test based on &, has suboptimal power (Shi, D. & Han, 2022)

(cannot detect signals of order ﬁ but see Lin & Han, 2021, for possible improvements)
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4. Multivariate independence



Testing multivariate independence

e Consider abs. continuous random vectors

X eRP Y eRY
® Test independence
Hy: X1LY vs. HH: X LY

based on an i.i.d. sample
x@) x( (X.Y)
(Y(1)> Y oee ey (Y(n)) ~ P ' .

® Goal: consistent and distribution-free test
with local power. ..
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Distance covariance TI.ITI

e Consistent measures of dependence have been developed also for general dimension.

e Distance covariance (Szekely et al., 2007) has become a popular option:

dCo(X, Y) = z %

with dXO and d,jo recentered versions of pairwise distances d,-JX = | XD — XU || and dY = || Y?) — YU,

® For X and Y with finite first moments, this estimates
dCov3(X, Y) = /R L oxy(s.t) — ox(s)ov(t))* w(s, t) dsdt
which is zero iff X 1L Y.
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Distance covariance of ranks

® |n the spirit of Spearman’s p, we can apply distance covariance to vectors of ranks:

— Compute ranks of each variable=coordinate of X and Y, respectively. So for X:

xB o x) RY ... RX
X2(1) X(n) -row-wise marginal ranks RIXz R;Q
:1 :n :Xp :Xp
XM xn) R ... R

— Apply distance covariance to the resulting vectors of marginal ranks.

e Interestingly, in 1D (p = g = 1), this gives an estimate of BKR’s R (Shi, D., Han, 2022).

® However, in higher dimension, marginal ranks not distribution-free. ..

e Solution: New concept of multivariate ranks via optimal transport (Hallin et al., 2017,...)
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Ranks and distribution function: Univariate case TI.ITI

Empirical distribution function computes the ranks:
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Transport perspective TUM

=0

® Empirical distribution function Fy "’ solves an assignment problem: data — equidistant grid:

TN

e Population d.f. Fx(t) = Pr(X < t) is characterized as nondecreasing fct. that pushes PX to Unif(0, 1).

Recall: If X has cdf Fx then Fx(X) ~ Uniform(0, 1).

e Hallin's center-outward perspective (signed ranks):
2Fx — 1, 2f)(<n) — 1 map to “unit ball” (-1, 1).

e Generalize to higher dimension via spherical uniform distribution U, on unit ball {x € R” : ||x||» < 1}.
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General dimension: Center-outward ranks and signs TLUTI

e Center-outward distribution function Fx . is an optimal transport map that pushes PX to Up.
If E[|| X||3] < oo, then Fx 1 = argmin7 E [|| T(X) — X||3] subject to PT*) =y,

® Empirical center-outward d.f. IA:S?,)jE solves a

linear sum assignment problem: oe -1t

F, = argin 3 IX0 = T,(X) P il
n j=1 [

where T, assigns data points to
a (suitably uniform) grid in unit ball. L\
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Distribution-free consistent test TI.ITI

® Reject for large values of the test statistic:

[ W, = dCov; ('A:g?,)i(x(i) 7_1vr:(\g,)i(y(i))7_1> ]

® Test is consistent:
a) W, — ., dCov? (Fx +(X), Fy +(Y)), and

b) Fx 1+ has an inverse that pushes back to X.

® Test is distribution-free as under Hp:

FiL(x)

7:1 A {IA:(\Z,)i(Y(i))} 7:1 , {?Sé’,)i(x("))} 7:1 , [IA:(,'}’)jE(Y("))y7 ~ Uniform on the grid.

i=1
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Asymptotic distribution and local power TUM

Theorem
If X and Y are independent, then

nW, —q 3 A (62 1),
v=1

where the £, are i.i.d. N(0,1) r.v., and the \, depend on the dimensions p and q.

e Proof gives a Hajek representation theorem that shows that W, — W, = op(1) for

W, = dCov%( {in(X("))]r_] : {FY,i(Y(i))],.v >

i=1

® Local power analysis (LeCam'’s third lemma in a degenerate U-statistics setting) shows that test is
powerful wrt. quadratic mean differentiable alternatives at a 1/4/n distance

(e.g., Gaussian with cross-covariance of order 1/4/n).
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(Gaussian example)
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One instance of a simulation
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Conclusion TI.ITI

Some applications really require consistent tests of independence.

Consistent rank correlations can be computed efficiently.

Center-outward ranks and signs provide a distribution-free generalization to higher dimensions.

Some reading;:

B

B

Chatterjee (2022).
A survey of some recent developments in measures of association.

Shi, Drton, Han (2022).
On the power of Chatterjee’s rank correlation. Biometrika
Distribution-free consistent independence tests via center-outward ranks and signs. JASA

Shi, Hallin, Drton, Han (2022).
On universally consistent and fully distribution-free rank tests of vector independence. Ann. Statist.
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