Multivariate Sparse Clustering for Extremes

Olivier WINTENBERGER

LPSM, Sorbonne université

Joint work with Nicolas MEYER, LMG, Montpellier

March 24 2023

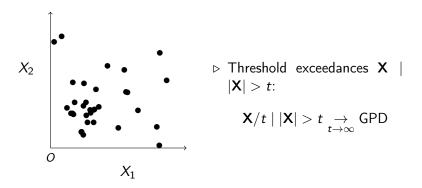
StatMath Research Seminar @WU, Vienna

Some introductory words

General goal: Developing a procedure to learn the dependence structure of multivariate extremes

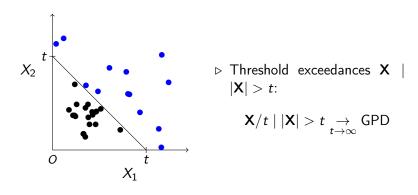
- ▶ How to model the dependence structure of multivariate extremes?
- ▷ In practice how to reduce the dimension (curse of dimensionality)?
- ▶ How many data points should be considered as extreme?

Multivariate extremes



GPD: Generalized Pareto distribution

Multivariate extremes



GPD: Generalized Pareto distribution

Regular variation

▶ We assume regular variation:

$$\mathbb{P}(\mathsf{X}/t \in \cdot \mid |\mathsf{X}| > t) \stackrel{\mathsf{w}}{\to} \mathbb{P}(\mathsf{Y} \in \cdot), \quad t \to \infty.$$

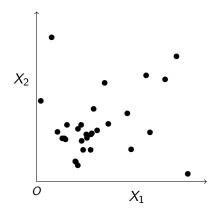
Study of the angular component:

$$\mathbb{P}(\mathsf{X}/|\mathsf{X}| \in \cdot \mid |\mathsf{X}| > t) \stackrel{\mathsf{w}}{ o} \mathbb{P}(\mathbf{\Theta} \in \cdot), \quad t o \infty.$$

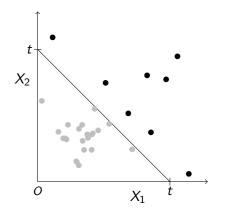
The vector $\mathbf{\Theta} = \mathbf{Y}/|\mathbf{Y}|$ in

$$\mathbb{S}^{d-1}_+ = \{ \mathbf{x} \in \mathbb{R}^d_+, \, |\mathbf{x}| = 1 \}.$$

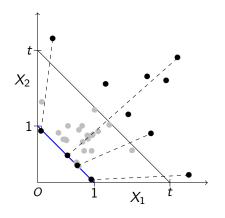
is the spectral vector and its distribution is the spectral measure.



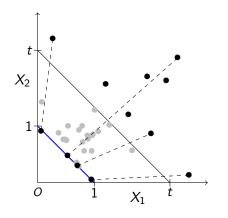
$$\mathbb{P}(\mathbf{X}/|\mathbf{X}| \in \cdot \mid |\mathbf{X}| > t) \stackrel{w}{\to} \mathbb{P}(\mathbf{\Theta} \in \cdot),$$
 when $t \to \infty$.



$$\mathbb{P}(\mathbf{X}/|\mathbf{X}| \in \cdot \mid |\mathbf{X}| > t) \stackrel{w}{\to} \mathbb{P}(\mathbf{\Theta} \in \cdot),$$
 when $t \to \infty$.



$$\mathbb{P}(\mathbf{X}/|\mathbf{X}| \in \cdot \mid |\mathbf{X}| > t) \stackrel{w}{ o} \mathbb{P}(\mathbf{\Theta} \in \cdot),$$
 when $t \to \infty$.



$$\mathbb{P}(\mathbf{X}/|\mathbf{X}| \in \cdot \mid |\mathbf{X}| > t) \stackrel{w}{ o} \mathbb{P}(\mathbf{\Theta} \in \cdot),$$
 when $t \to \infty$.

 \hookrightarrow How to estimate the support of the spectral measure $S(\cdot) := \mathbb{P}(\Theta \in \cdot)$?

A natural partition for \mathbb{S}^{d-1}_+

For $\beta \subset \{1, \ldots, d\}$ we define

$$C_{\beta} = \{ \mathbf{x} \in \mathbb{S}^{d-1}_+, \text{ for all } j \in \beta, x_j > 0, \text{ for all } j \notin \beta, x_j = 0 \}.$$

A natural partition for \mathbb{S}^{d-1}_+

For $\beta \subset \{1, \dots, d\}$ we define

$$C_{\beta} = \{ \mathbf{x} \in \mathbb{S}^{d-1}_+, \text{ for all } j \in \beta, x_j > 0, \text{ for all } j \notin \beta, x_j = 0 \}.$$



And regarding extremes?

Interpretation of the C_{β} regarding the spectral measure¹:

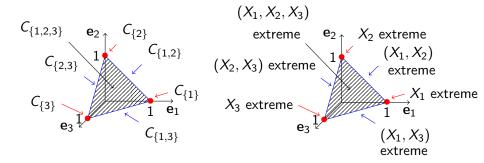
 $\mathbb{P}(\mathbf{\Theta} \in C_{\beta}) > 0 \iff$ it is likely to observe extremes in the cluster β .

¹see also Simpson et al. (2019)

And regarding extremes?

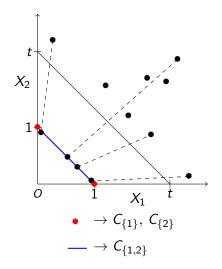
Interpretation of the C_{β} regarding the spectral measure¹:

 $\mathbb{P}(\mathbf{\Theta} \in C_{\beta}) > 0 \iff$ it is likely to observe extremes in the cluster β .

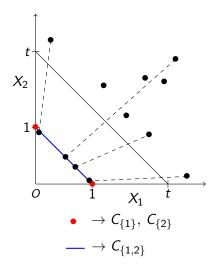


¹see also Simpson et al. (2019)

Some issues with the standard framework



Some issues with the standard framework

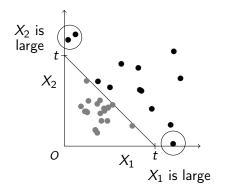


▷ Statistical issue:

$$\mathbb{P}(\mathsf{X}/|\mathsf{X}| \in \mathit{C}_{\{1,\ldots,d\}}) = 1$$

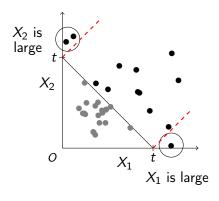
 \triangleright Topological issue: Θ may put mass on the boundary of the C_{β} (no weak convergence)

How to use the data?



¹Goix et al. (2016), Goix et al. (2017), Chiapino and Sabourin (2016), Chiapino et al. (2019)

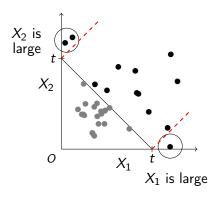
How to use the data?



▷ Introduce a classification procedure1

¹Goix et al. (2016), Goix et al. (2017), Chiapino and Sabourin (2016), Chiapino et al. (2019)

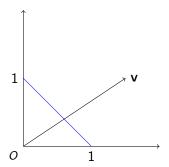
How to use the data?



- Introduce a classification procedure¹
- This is done by the Euclidean projection onto the simplex!

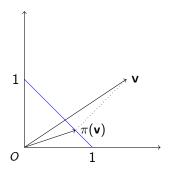
¹Goix et al. (2016), Goix et al. (2017), Chiapino and Sabourin (2016), Chiapino et al. (2019)

$$\pi(\mathbf{v}) = \underset{\mathbf{w} \geq \mathbf{0}, \, |\mathbf{w}| = 1}{\operatorname{arg \, min}} |\mathbf{v} - \mathbf{w}|_2.$$



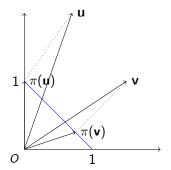
¹Michelot (1986), Duchi et al. (2008),...

$$\pi(\mathbf{v}) = \underset{\mathbf{w} \geq \mathbf{0}, \, |\mathbf{w}| = 1}{\operatorname{arg \, min}} |\mathbf{v} - \mathbf{w}|_2.$$



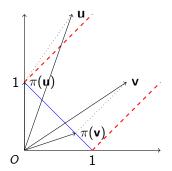
¹Michelot (1986), Duchi et al. (2008),...

$$\pi(\mathbf{v}) = \underset{\mathbf{w} \geq \mathbf{0}, \, |\mathbf{w}| = 1}{\operatorname{arg \, min}} |\mathbf{v} - \mathbf{w}|_2.$$



¹ Michelot (1986), Duchi et al. (2008),...

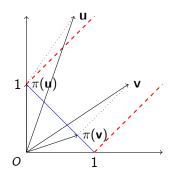
$$\pi(\mathbf{v}) = \underset{\mathbf{w} \geq \mathbf{0}, \, |\mathbf{w}| = 1}{\operatorname{arg \, min}} |\mathbf{v} - \mathbf{w}|_2.$$



¹Michelot (1986), Duchi et al. (2008),...

The Euclidean projection $\pi: \mathbb{R}^d_+ \to \mathbb{S}^{d-1}_+$ onto the simplex¹:

$$\pi(\mathbf{v}) = \underset{\mathbf{w} \geq \mathbf{0}, \, |\mathbf{w}| = 1}{\operatorname{arg \, min}} |\mathbf{v} - \mathbf{w}|_2.$$



Regular variation:

$$\mathbb{P}(\mathsf{X}/t \in \cdot \mid |\mathsf{X}| > t) \to \mathbb{P}(\mathsf{Y} \in \cdot)$$

So far:
$$\mathbb{P}(\mathbf{X}/|\mathbf{X}| \in \cdot \mid |\mathbf{X}| > t) \to \mathbb{P}(\mathbf{\Theta} \in \cdot)$$

Now:
$$\mathbb{P}(\pi(\mathbf{X}/t) \in \cdot \mid |\mathbf{X}| > t) \to \mathbb{P}(\mathbf{Z} \in \cdot)$$
, with $\mathbf{Z} = \pi(\mathbf{Y})$

¹ Michelot (1986), Duchi et al. (2008),...

Sparse regular variation

Theorem (M. & Wintenberger (2021+))

- 1. X is regularly varying $\implies X$ is sparsely regularly varying
- 2. X is sparsely regularly varying Some assumptions on the limit Z \Longrightarrow X is regularly varying

Proposition (M. & Wintenberger (2021+))

For $\beta \subset \{1, \dots, d\}$ we have the convergence

$$\mathbb{P}(\pi(X/t) \in C_{\beta} \mid |X| > t) \to \mathbb{P}(Z \in C_{\beta}), \quad t \to \infty.$$

+ Other results that link both vectors **Z** and **Θ**

Recap: Studying dependence in extremes

- \triangleright Goal: Identify clusters β in which extremes appear
- ho Standard model: Regular variation $\mathbb{P}(\mathbf{X}/t \in \cdot \mid |\mathbf{X}| > t) \stackrel{\mathsf{w}}{\to} \mathbb{P}(\mathbf{Y} \in \cdot)$
- ho *Direct attempt:* Study the angular component $\Theta = Y/|Y|$ via X/|X| \hookrightarrow some issues
- ightharpoonup Idea: Study the angular component $\mathbf{Z}=\pi(\mathbf{Y})$ via $\pi(\mathbf{X}/t)$
- → How to estimate the support of Z in a statistical framework?

Statistical framework

- $\triangleright X_1, \dots, X_n$ i.i.d. regularly varying, $Z = \pi(Y)$.
- \triangleright A threshold u_n or equivalently a level $k_n = n\mathbb{P}(|\mathbf{X}| > u_n)$.
- \triangleright Goal: find the clusters β such that $p^*(\beta) := \mathbb{P}(\mathbf{Z} \in C_\beta) > 0$.

For each $\beta \subset \{1, \ldots, d\}$ we compute

$$T_n(\beta) = \sum_{j=1}^n \mathbb{1}\{\pi(\mathbf{X}_j/u_n) \in C_\beta, |\mathbf{X}_j| > u_n\}$$

= number of points in C_{β} among the extremes.

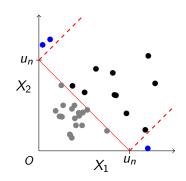
Statistical framework

- $\triangleright X_1, \dots, X_n$ i.i.d. regularly varying, $Z = \pi(Y)$.
- \triangleright A threshold u_n or equivalently a level $k_n = n\mathbb{P}(|\mathbf{X}| > u_n)$.
- ho Goal: find the clusters β such that $p^*(\beta) := \mathbb{P}(\mathbf{Z} \in C_\beta) > 0$.

For each $\beta \subset \{1, \ldots, d\}$ we compute

$$T_n(\beta) = \sum_{j=1}^n \mathbb{1}\{\pi(\mathbf{X}_j/u_n) \in C_\beta, \, |\mathbf{X}_j| > u_n\}$$

= number of points in C_{β} among the extremes.



The vector \mathbf{T}_n

- ▷ Consider $T_n = (T_n(\beta))_\beta$ and $\mathbf{p}^* = (p^*(\beta))_\beta = (\mathbb{P}(\mathbf{Z} \in C_\beta))_\beta$ (in increasing order)
- ▷ If $k_n = k$ is fixed and $u_n = |\mathbf{X}|_{(k)}$, then \mathbf{T}_n follows a multinomial distribution:
 - T_n is a vector in \mathbb{N}^{2^d-1} ,
 - a linear relation: $T_n(\beta_1) + \ldots + T_n(\beta_{2^d-1}) = k$

The vector \mathbf{T}_n

- ▷ Consider $T_n = (T_n(\beta))_\beta$ and $\mathbf{p}^* = (p^*(\beta))_\beta = (\mathbb{P}(\mathbf{Z} \in C_\beta))_\beta$ (in increasing order)
- ▷ If $k_n = k$ is fixed and $u_n = |\mathbf{X}|_{(k)}$, then \mathbf{T}_n follows a multinomial distribution:
 - T_n is a vector in \mathbb{N}^{2^d-1} ,
 - a linear relation: $T_n(\beta_1) + \ldots + T_n(\beta_{2^d-1}) = k$
- \triangleright Three types of components for T_n :
 - $T_n(\beta) \gg 0$: relevant clusters
 - $T_n(\beta) \approx 0$: biased clusters
 - $T_n(\beta) = 0$: non-relevant clusters

Convergence results

Define
$$S^*(\mathbf{Z}) := \{\beta : \mathbb{E}[T_n(\beta)] \to \infty, n \to \infty\}$$
 with cardinality s^* and $\mathbf{T}_{n,S^*(\mathbf{Z})} := (T_n(\beta))_{\beta \in S^*(\mathbf{Z})}$

Theorem

- 1. Convergence: $T_{n,S^*(\mathbf{Z})}/k_n \to (\mathbf{p}^*,0,\ldots,0)$ in probability when $n\to\infty$.
- 2. Asymptotic normality under hidden regular variation and bias assumptions:

$$\mathsf{Diag}(\mathbb{E}[\mathsf{T}_{n,\,\mathcal{S}^*(\mathsf{Z})}])^{-1/2}\bigg(\mathsf{T}_{n,\,\mathcal{S}^*(\mathsf{Z})} - \mathbb{E}[T_n(\beta)]\bigg) \overset{d}{\to} \mathcal{N}(0,\mathit{Id}_{s^*})\,, \quad n \to \infty$$

Model selection for k_n fixed

- \triangleright For $k_n = k$ fixed, $\mathbf{T}_n \sim \mathbf{P}_k$ (unknown)
- \triangleright A multinomial model \mathbf{M}_k with probability vector

$$\mathbf{p} = (\overbrace{p_1, \dots, p_s, \underbrace{p, \dots, p}_{r-s}, 0, \dots, 0}^{2^d-1 \text{ components}}), \quad p_1 \ge \dots \ge p_s > p, \quad p \approx 0$$

Model selection for k_n fixed

- \triangleright For $k_n = k$ fixed, $\mathbf{T}_n \sim \mathbf{P}_k$ (unknown)
- \triangleright A multinomial model \mathbf{M}_k with probability vector

$$\mathbf{p} = (\overbrace{p_1, \dots, p_s, \underbrace{p, \dots, p}_{r-s}, 0, \dots, 0}^{2^d-1 \text{ components}}), \quad p_1 \geq \dots \geq p_s > p \,, \quad p \approx 0$$

We address this question by minimizing the KL divergence

$$\mathit{KL}(\mathsf{P}_k || \mathsf{M}_k) \propto -\mathbb{E}[\log \mathit{L}_{\mathsf{M}_k}(\mathsf{p}; \mathsf{T}_n)]$$

▷ An estimator:

$$-\mathbb{E}\Big[\log L_{\mathbf{M}_k}(\mathbf{p}; \mathbf{T}_n)\Big]\Big|_{\mathbf{p}=\hat{\mathbf{p}}}$$

Model selection for k_n fixed

- \triangleright For $k_n = k$ fixed, $T_n \sim P_k$ (unknown)
- \triangleright A multinomial model \mathbf{M}_k with probability vector

$$\mathbf{p} = (\overbrace{p_1, \dots, p_s, \underbrace{p, \dots, p}_{r-s}, 0, \dots, 0}^{2^d-1 \text{ components}}), \quad p_1 \geq \dots \geq p_s > p, \quad p \approx 0$$

> We address this question by minimizing the KL divergence

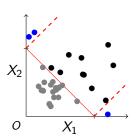
$$\mathit{KL}(\mathsf{P}_k || \mathsf{M}_k) \propto -\mathbb{E}[\log \mathit{L}_{\mathsf{M}_k}(\mathsf{p}; \mathsf{T}_n)]$$

An estimator:

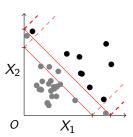
$$-\mathbb{E}\Big[\log L_{\mathsf{M}_k}(\mathsf{p};\mathsf{T}_n)\Big]\Big|_{\mathsf{p}=\hat{\mathsf{p}}} \approx -\mathbb{E}\big[\log L_{\mathsf{M}_k}(\hat{\mathsf{p}};\mathsf{T}_n)\big] + s$$

 \hookrightarrow Minimize: $-\log L_{\mathbf{M}_{k}}(\hat{\mathbf{p}}; \mathbf{T}_{n}) + s$

A method for threshold selection



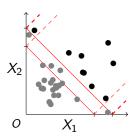
A method for threshold selection



A method for threshold selection

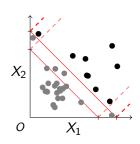
 \triangleright For a fixed k, a method to choose s \hookrightarrow How to choose k?

$$hd \ \ \mathsf{T}'_n := (\mathsf{T}_n, \sum_{j=1}^n \mathbb{1}_{\{|\mathbf{X}_j| \leq u_n\}}) \sim \mathsf{P}'_n$$



A method for threshold selection

$$hd \mathsf{T}'_n := (\mathsf{T}_n, \sum_{j=1}^n \mathbb{1}_{\{|\mathbf{X}_j| \leq u_n\}}) \sim \mathsf{P}'_n$$

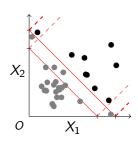


 \triangleright We add a category and consider the model \mathbf{M}'_n with

$$\mathbf{p}' = (\overbrace{q'p_1',\ldots,q'p_{s'}',\underbrace{q'p',\ldots,q'p'}_{r'-s'}}^{2^d-1 \text{ components}},0,\ldots,0,1-q')$$
 .

A method for threshold selection

$$hd \ \ \mathsf{T}'_n := \left(\mathsf{T}_n, \sum_{j=1}^n \mathbb{1}_{\{|\mathsf{X}_j| \leq u_n\}}\right) \sim \mathsf{P}'_n$$



 \triangleright We add a category and consider the model \mathbf{M}'_n with

$$\mathbf{p}' = (\overbrace{q'p_1', \dots, q'p_{s'}', \underbrace{q'p', \dots, q'p'}_{r'-s'}}^{2^d-1 \text{ components}}, 0, \dots, 0, 1-q').$$

▷ Similar calculations: minimize the quantity

$$\frac{1}{k}\Big(-\log L_{\mathsf{M}_k}(\hat{\mathsf{p}};\mathsf{T}_n)+(s+1)-k\log(1-k/n)\Big).$$

Algorithm: MUSCLE

Algorithm 1: MUltivariate Sparse CLustering for Extremes (MUSCLE)

Data: A sample $X_1, \dots, X_n \in \mathbb{R}^d_+$ and a range of values K for the level for $k \in K$ do

Compute $u_n = |\mathbf{X}|_{(k+1)}$ the (k+1)-th largest norm;

Assign to each $\pi(X_i/u_n)$ the subsets C_{β} it belongs to;

Compute T_n ;

Compute $\hat{s}(k)$ which minimizes the penalized log-likelihood;

end

Choose \hat{k} which minimizes

$$(-\log L_{\mathbf{M}_k}(\hat{\mathbf{p}}; \mathbf{T}_n) + \hat{\mathbf{s}}(k))/k + k/n;$$

Output: $\widehat{S}^* = \{ \text{ the } \beta \text{'s associated to } T_{n,j} > 0 \text{ for } j = 1, \dots, \hat{s}(\hat{k}) \}.$

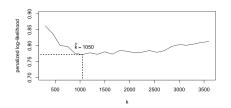
Example: Asymptotic independence

- $\begin{tabular}{lll} $ \land$ Asymptotic independence$^1 &\iff Θ places mass only on the axes \\ &\iff Z places mass only on the axes \\ \end{tabular}$
- \triangleright $n=30\,000$, $\mathbf{X}\in\mathbb{R}^{40}$, Gaussian dependence, Pareto(1) marginals $\hookrightarrow \mathcal{S}^*(\mathbf{Z})=\{\beta=\{j\},\,j=1,\ldots,40\}$ and $s^*=40$

Example: Asymptotic independence

 $\begin{tabular}{lll} \land Asymptotic independence1 &\Longleftrightarrow Θ places mass only on the axes \\ &\Longleftrightarrow Z places mass only on the axes \\ \end{tabular}$

$$\triangleright$$
 $n=30\,000$, $\mathbf{X}\in\mathbb{R}^{40}$, Gaussian dependence, Pareto(1) marginals $\hookrightarrow \mathcal{S}^*(\mathbf{Z})=\{\beta=\{j\},\,j=1,\ldots,40\}$ and $s^*=40$



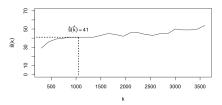


Figure: Evolution of the estimator of $KL(\mathbf{P}'_n||\mathbf{M}'_n)$.

Figure: Evolution of the optimal value of s.

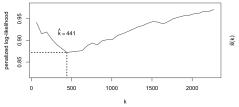
¹de Haan & Ferreira (2006), Ledford & Tawn (1996), Heffernan & Tawn (2004)

Application to extreme variability for financial data

Data set: value-average daily returns of d=49 industry portfolios in 1970-2019 (n=12613)

Application to extreme variability for financial data

Data set: value-average daily returns of d=49 industry portfolios in 1970-2019 (n=12613)



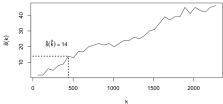
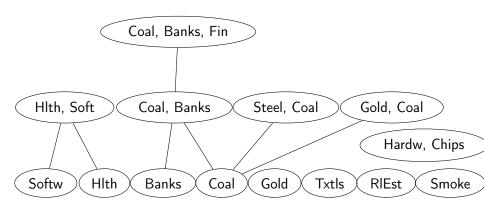


Figure: Evolution of the estimator of $KL(\mathbf{P}'_n||\mathbf{M}'_n)$.

Figure: Evolution of the optimal value of *s*.

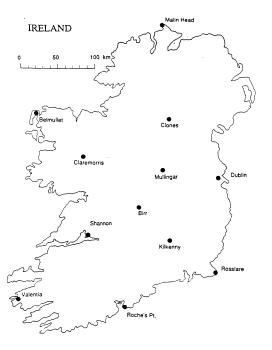
 \hookrightarrow We obtain $\hat{k}=441$ and $\hat{s}(\hat{k})=14$ (with $\widehat{\mathcal{S}}^*(\mathbf{Z})$ on the next slide).

Application to extreme variability for financial data



Application to wind speed data

 \triangleright Data set: daily-average wind speed at d=12 meteorological stations in the Republic of Ireland for 1961-1978 (n=6574)



Application to wind speed data

Data set: daily-average wind speed at d=12 meteorological stations in the Republic of Ireland for 1961-1978 (n=6574)

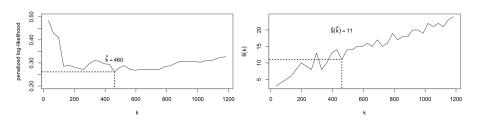
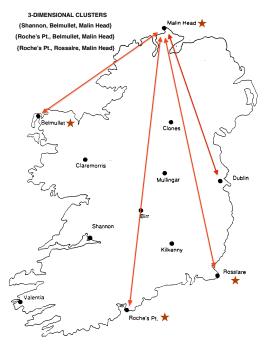


Figure: Evolution of the estimator of $KL(\mathbf{P}_n || \mathbf{M}_n)$.

Figure: Evolution of the optimal value of *s* for the variability.

 \hookrightarrow We obtain $\hat{k}=460$ and $\hat{s}(\hat{k})=11$ (with $\widehat{\mathcal{S}}^*$ on the next slide)



Application to wind speed data

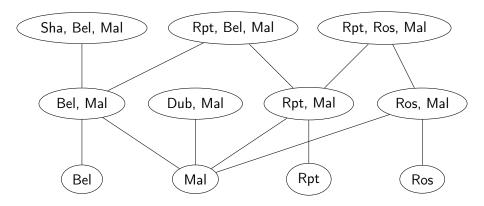


Figure: Representation of the 11 clusters and their inclusions.

Summary and future work

Summary

- > An efficient algorithm to study multivariate extremes
- \triangleright No hyperparameter! (the selection of k is included in the procedure)
- ▷ Dimension reduction

Future work

- ightharpoonup Study the vector ${f Z}$ and ${f \Theta}$ on each cluster

Thank you for your attention!

Meyer & Wintenberger (2021). Sparse regular variation,

Advances in Applied Probability.

Meyer & Wintenberger (2023+). Tail inference for high-dimensional data,

arXiv:2007.11848.

https://wintenberger.fr olivier.wintenberger@sorbonne-universite.fr

