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Introduction

Some introductory words

General goal: Developing a procedure to learn the dependence structure of
multivariate extremes

> How to model the dependence structure of multivariate extremes?
> In practice how to reduce the dimension (curse of dimensionality)?

> How many data points should be considered as extreme?
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Introduction

Multivariate extremes

..
[
X2 ® . > Threshold exceedances X |
oo Y ® ° |X| > t:
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RO R X/t]|X] >t e GPD
)
X1

GPD: Generalized Pareto distribution
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Multivariate extremes

> Threshold exceedances X |
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Spectral measure

Regular variation

> We assume regular variation:
P(X/te-||X|>t) BP(Ye:), t—oo.
> Study of the angular component:
PX/|X| €-|IX|>t) B POc), t— 0.
The vector © = Y/|Y] in

Sl = {x e RY, x| = 1}.

is the spectral vector and its distribution is the spectral measure.
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Spectral measure

The spectral measure

[ ]
[ J
x o > Convergence to the spectral
2 d ¢ measure:
[ ]
[ ] ° w
ce L P(X/IX] €-[[X]|>t) = PO € ),
.. .' [
"' i when t — oo.
[ ]

(0] X
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Spectral measure

The spectral measure
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Spectral measure

The spectral measure

> Convergence to the spectral
measure:

P(X/IX| €| |X|>t) ZPOc-),

when t — oo.
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Spectral measure

The spectral measure

> Convergence to the spectral
measure:

P(X/IX| €| |X|>t) ZPOc-),

when t — oo.

< How to estimate the support of the spectral measure S(-) :=P(O € -)?
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A natural partition for S7
For 5 C {1,...,d} we define

Cs={xeST foralljep, x>0, forallj¢ s, x=0}.

o = = E A
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Spectral measure

A natural partition for S7

For 5 C {1,...,d} we define

Cs={xeST foralljep, x>0, forallj¢ s, x=0}.

C123)
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Spectral measure

And regarding extremes?

Interpretation of the Cs regarding the spectral measure:

P(® € C3) >0 <= itis likely to observe extremes in the cluster /.

!see also Simpson et al. (2019)
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Spectral measure

And regarding extremes?

Interpretation of the Cs regarding the spectral measure:

P(® € C3) >0 <= itis likely to observe extremes in the cluster /.

(X17X27X3)
C{1,273} e C{2} extreme €2, X5 extreme
C{1,2} : < (Xl, X2)
/ extreme

(X2, X3) extreme

N/
Ciy ~— X1 extreme
C{3} \1 1 e X3 extreme \1 1 e
© Cri3y e (X1, X3)
extreme

!see also Simpson et al. (2019)
O. WINTENBERGER Clustering for multivariate extremes March 24 2023 7/ 26



Some issues with the standard framework

e — C{l}, C{z}
_ C{172}

o = = E A
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Spectral measure

Some issues with the standard framework

> Statistical issue:
P(X/IX] € Cpa,.ay) =1

> Topological issue: © may put
mass on the boundary of the Cg
(no weak convergence)

e — C{l}, C{z}

_ C{172}

O. WINTENBERGER Clustering for multivariate extremes March 24 2023 8/ 26



Spectral measure

How to use the data?

X2 |S o
large ; D

Xy is large

! Goix et al. (2016), Goix et al. (2017), Chiapino and Sabourin (2016), Chiapino et
al. (2019)
Ty



Spectral measure

How to use the data?

Xg is
large ¢ > Introduce a classification proce-
dure?
X2

Xy is large

! Goix et al. (2016), Goix et al. (2017), Chiapino and Sabourin (2016), Chiapino et
al. (2019)
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How to use the data?

Xg is
large ¢ > Introduce a classification proce-
dure?
X2

> This is done by the Euclidean pro-
jection onto the simplex!

Xy is large

! Goix et al. (2016), Goix et al. (2017), Chiapino and Sabourin (2016), Chiapino et
al. (2019)
Ty



The Euclidean projection onto the simplex
The Euclidean projection 7 : Ri — S‘f:l onto the simplex!:

m(v) = argmin |v—w|s.
w>0, w|=1

! Michelot (1986), Duchi et al. (2008),. ..
L 2
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Sparse regular variation

The Euclidean projection onto the simplex

The Euclidean projection 7 : Ri — S‘f:l onto the simplex!:

m(v) = argmin |v — wls.

w>0, w|=1
u- Regular variation:
P(X/te-||X]>t)—>P(Y €")
So far: B(X/|X| € - | |X| > t) — P(® € -)
1 () |
= Now: P((X/t) € - | [X| > t) = P(Z € ),
7r(v),' with Z = 7(Y)
0 1 < Sparse regular variation

! Michelot (1986), Duchi et al. (2008),. ..
e O



Sparse regular variation

Sparse regular variation

Theorem (M. & Wintenberger (2021+))

1. X is regularly varying = X is sparsely regularly varying
X is sparsely regularly varying . .
" Some assumptions on the limit Z = o IB gy Ve

Proposition (M. & Wintenberger (2021+))
For 5 C {1,...,d} we have the convergence

P(r(X/t) € Cs | [X| > t) - B(Z € C3), t— 0.

+ Other results that link both vectors Z and ®
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Sparse regular variation

Recap: Studying dependence in extremes

> Goal: Identify clusters 3 in which extremes appear
> Standard model: Regular variation P(X/t € - | [X| > t) 2 P(Y € )

> Direct attempt: Study the angular component ® = Y /|Y| via X/|X|
—» some issues

> Idea: Study the angular component Z = 7(Y) via m(X/t)

~ How to estimate the support of Z in a statistical framework?
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Statistical inference

Statistical framework

> Xi,..., X, i.i.d. regularly varying, Z = = (Y).
> A threshold up, or equivalently a level k, = nP(|X| > up).
> Goal: find the clusters 3 such that p*(3) :=P(Z € C) > 0.

For each 5 C {1,...,d} we compute

Ta(8) =Y 1{m(X;/un) € Ca, [Xj| > un}

j=1
= number of points in C3 among

the extremes.
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Statistical inference

Statistical framework

> Xi,..., X, i.i.d. regularly varying, Z = = (Y).
> A threshold up, or equivalently a level k, = nP(|X| > up).
> Goal: find the clusters 3 such that p*(3) :=P(Z € C) > 0.

For each 5 C {1,...,d} we compute

To(8) = S 1{m(Xj/un) € Coy IXj > ua} )
j=1 X2

= number of points in C3 among

the extremes.
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The vector T,

> Consider T, = (Tx(5))s and p* = (p*(8))s = (P(Z € C3))s (in
increasing order)

> If k, = k is fixed and u, = ]X|(k), then T, follows a multinomial
distribution:

e T, is a vector in N2d*1,
e a linear relation: T,(51) + ...+ Ta(Brd_q1) = k
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The vector T,

> Consider T, = (Tx(5))s and p* = (p*(8))s = (P(Z € C3))s (in
increasing order)

> If k, = k is fixed and u, = ]X\(k), then T, follows a multinomial
distribution:

e T, is a vector in N2d*1,
e a linear relation: T,(51) + ...+ Ta(Brd_q1) = k

> Three types of components for T,:

e T,(B) > 0: relevant clusters
e T,(B) =~ 0: biased clusters
e T,(B) = 0: non-relevant clusters
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Statistical inference

Convergence results

Define S*(Z) := {8 : E[T,(B8)] — o0, n — oo} with cardinality s* and
Thn,s+(2z) = (Ta(B))pes+(2)

Theorem
1. Convergence: T, s«z)/kn — (P*,0,...,0) in probability when
n— oo.

2. Asymptotic normality under hidden regular variation and bias
assumptions:

Diag(E[TmS*(z)])_l/z (Tnvs*(z)—E[Tn(ﬁ)D LS N(0,lds+), n— oo

V.
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Model selection

Model selection for k,, fixed

> For k, = k fixed, T, ~ P (unknown)
> A multinomial model My with probability vector

29_1 components

p:(pla"-vpsapw-'apaow-'ao)a PIZ---ZP5>Pa pzo
——

r—s
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Model selection

Model selection for k,, fixed

> For k, = k fixed, T, ~ P (unknown)
> A multinomial model My with probability vector

29_1 components

P:(Pla---aPsaP»---aP,O»---aO)a PIZ---ZP5>P7 pwo
——

r—s

> We address this question by minimizing the KL divergence
KI—(Pk” Mk) XX —E[Iog LMk(p; Tn)]
> An estimator:

- ) [ log LMk(p; T")] ’pi’
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Model selection

Model selection for k,, fixed

> For k, = k fixed, T, ~ P (unknown)
> A multinomial model My with probability vector

29_1 components

P:(Pla---aPsaP»---aP,O»---aO)a PIZ---ZP5>P7 pwo
——

r—s

> We address this question by minimizing the KL divergence
KI—(Pk” Mk) XX —E[Iog LMk(p; Tn)]
> An estimator:

_E[Iog Lm, (p; T,,)] ’p:ﬁ ~ —E[log Lm,(p; Tn)| + s

< Minimize: —log Lm, (p; Tn) +s
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A method for threshold selection

> For a fixed k, a method to choose s

< How to choose k7

o = = E A
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A method for threshold selection

> For a fixed k, a method to choose s

< How to choose k7

> T = (Ta, >0y Lyx;i<uny) ~ Pl

o = = E A
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Model selection

A method for threshold selection

> For a fixed k, a method to choose s
< How to choose k7

> = (Tn, 271 Lx;i<un}) ~ Ph

> We add a category and consider the model M/, with

29_1 components

p=(dpr,- - qpPs,dp,....4P,0,...,0,1-¢).
———

r—s!
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Model selection

A method for threshold selection

> For a fixed k, a method to choose s

< How to choose k7?7

> T = (T, >y Lyxg<uny) ~ Pl

(0] Xl

> We add a category and consider the model M’ with

29_1 components
N\

p'=(dpy,---,dp,dp,....4'P,0,...,0,1-¢).
—_———
gl

> Similar calculations: minimize the quantity

1

-~ log L, (B Ta) + (s + 1) — klog(1 — k/n))

O. WINTENBERGER Clustering for multivariate extremes March 24 2023 17 / 26



Algorithm: MUSCLE

Algorithm 1: MUItivariate Sparse CLustering for Extremes (MUSCLE)

Data: A sample Xq,..., X, € Ri and a range of values K for the level
for k € K do

Compute up = |X|(41) the (k + 1)-th largest norm;

Assign to each 7(X;/u,) the subsets Cg it belongs to;

Compute T,;

Compute 5(k) which minimizes the penalized log-likelihood;
end

Choose k which minimizes
(—log Lm, (P: Th) + 5(k))/k + k/n;

Output: §* = { the A's associated to Tnj>O0forj=1,...,5(k)}.
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Example: Asymptotic independence

1

> Asymptotic independence® <= O places mass only on the axes

<= Z places mass only on the axes

> n=30000, X € R*, Gaussian dependence, Pareto(1) marginals
—S8*(Z)={B8={j},j=1,...,40} and s* = 40

Yde Haan & Ferreira (2006), Ledford & Tawn (1996), Heffernan & -Tawn=(2004)
Iy



Example: Asymptotic independence

1

> Asymptotic independence® <= O places mass only on the axes

<= Z places mass only on the axes
> n=30000, X € R*, Gaussian dependence, Pareto(1) marginals
—S8*(Z)={B8={j},j=1,...,40} and s* = 40

L
70

50

k=-1050

8(k)

30

penalized log-likelihood
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\
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500 1000 1500 2000 2500 3000 3500 500 1000 1500 2000 2500 3000 3500

k k

Figure: Evolution of the estimator of ~ Figure: Evolution of the optimal value of
KL(P.|IM%). s.

Yde Haan & Ferreira (2006), Ledford & Tawn (1996), Heffernan & -Tawn=(2004)
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Application to extreme variability for financial data
1970 — 2019 (n = 12613)

> Data set: value-average daily returns of d = 49 industry portfolios in

o = = E A
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Real world data

Application to extreme variability for financial data

> Data set: value-average daily returns of d = 49 industry portfolios in
1970 — 2019 (n = 12613)

0.95
1

8(k)

penalized log-likelihood
0.90
I
10 20 30 40

0.85
I

0 500 1000 1500 2000 0 500 1000 1500 2000
k k
Figure: Evolution of the estimator Figure: Evolution of the optimal value
of KL(P,||M?,). of s.

<+ We obtain k = 441 and §(k) = 14 (with 5*(Z) on the next slide).
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Real world data

Application to extreme variability for financial data

Coal, Banks, Fin

Coal, Banks Steel, Coal Gold, Coal
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Application to wind speed data

> Data set: daily-average wind speed at d = 12 meteorological stations
in the Republic of Ireland for 1961-1978 (n = 6574)
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Application to wind speed data

> Data set: daily-average wind speed at d = 12 meteorological stations
in the Republic of Ireland for 1961-1978 (n = 6574)

< 1 8ky=11
©

penalized log-likelihood

T T T T T T T T T T T T T T
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200

Figure: Evolution of the estimator Figure: Evolution of the optimal value
of KL(P,||M,). of s for the variability.

<+ We obtain k = 460 and §(k) = 11 (with S* on the next slide)
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3-DIMENSIONAL CLUSTERS
{Shannon, Belmullet, Malin Head} Malin Head *
{Roche’s Pt., Belmullet, Malin Head}

{Roche’s Pt., Rossalre, Malin Head}

[
Claremorris
L]

Mullingar Dublin

°
Kilkenny
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Real world data

Application to wind speed data

Sha, Bel, Mal Rpt, Bel, Mal

Bel,

Bel

Rpt, Ros, Mal

Ma

Figure: Representation of the 11 clusters and their inclusions.
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Conclusion

Summary and future work

Summary
> An efficient algorithm to study multivariate extremes
> No hyperparameter! (the selection of k is included in the procedure)

> Dimension reduction

Future work
> Extend the work to regularly varying time series

> Study the vector Z and © on each cluster
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