### Direction-Free Approximation Algorithms for Bounded Convex Vector Optimization Problems

#### Firdevs Ulus

#### Çağın Ararat, Simay Tekgül, Muhammad Umer Bilkent University

Ankara

#### Vienna University of Economics and Business

This work was funded by TÜBİTAK (Scientific & Technological Research Council of Turkey), Project No. 118M479.

June 10, 2022

### Outline

# Convex Vector Optimization Problem (CVOP) Solution Concepts

#### 2 Literature and Motivation

### 8 Norm Minimizing Scalarization & Primal Algorithms

- Primal Algorithm
- The Modified Algorithm with Finiteness Guarantee
- Computational Results

### Geometric Duality

- Geometric Dual Problem & Solution Concept
- Duality Results
- The Geometric Dual Algorithm
- Computational Results

### Convex Vector Optimization Problems

| 'minimize' | $f(x)$ (with respect to $\leq_C$ ) | (P) |
|------------|------------------------------------|-----|
| subject to | $x \in \mathcal{X},$               |     |

where

- $C \subseteq \mathbb{R}^q$  is a solid, pointed, polyhedral convex ordering cone,
- $f : \mathbb{R}^n \to \mathbb{R}^q$  is *C*-convex:

$$f(\alpha x + (1 - \alpha y)) \leq_C \alpha f(x) + (1 - \alpha)f(y)$$

- Feasible region  $\mathcal{X}$  is convex.
- $f(\mathcal{X}) = \{f(x) \in \mathbb{R}^q \mid x \in \mathcal{X}\}.$

### Order Relation $\leq_C$

Partial ordering induced by non-trivial convex pointed cone  $C \subseteq \mathbb{R}^q$ :

#### $v \leq_C w \iff w - v \in C$



#### $\mathcal{P} := \mathsf{cl}(f(\mathcal{X}) + C)$ is convex and closed. (upper image)



### Solution Concepts: Set Optimization point of view

A finite subset  $\overline{\mathcal{X}}$  of  $\mathcal{X}$  is called a **finite (weak)**  $\epsilon$ -solution (w.r.t. c) to (P) if it consists of only (weak minimizers) weak efficient solutions; and

 $\operatorname{conv} f(\bar{\mathcal{X}}) + C - \epsilon \{ \boldsymbol{c} \} \supseteq \mathcal{P}.$ 



 $\operatorname{conv} f(\bar{\mathcal{X}}) + C - \epsilon\{c\} \supseteq \mathcal{P} \supseteq \operatorname{conv} f(\bar{\mathcal{X}}) + C.$ 

 $(c \in int C \text{ is fixed.})$ 

### Solution Concepts: Set Optimization point of view

A finite subset  $\bar{\mathcal{X}}$  of  $\mathcal{X}$  is called a **finite (weak)**  $\epsilon$ -solution to (P) if it consists of only (weak minimizers) weak efficient solutions; and

 $\operatorname{conv} f(\bar{\mathcal{X}}) + C + B(0, \epsilon) \supseteq \mathcal{P}.$ 

(No direction biasedness.)



 $\operatorname{conv} f(\bar{\mathcal{X}}) + C + B(0, \epsilon) \supseteq \mathcal{P} \supseteq \operatorname{conv} f(\bar{\mathcal{X}}) + C.$ 

### Literature and Motivation

### Outer Approximation Algorithms for CVOPs

| Algorithm                | Finiteness /<br>Convergence | Choice of<br>Direction | Vertex<br>Selection (VS) | Scalarization<br>Model    | Dual<br>Algorithm |
|--------------------------|-----------------------------|------------------------|--------------------------|---------------------------|-------------------|
| [Klamroth, et al., 2003] | Convergence                 | Inner point            | Distance                 | Gauge-based               | Inner approx.     |
|                          | for biobjective             | (fixed)                | to upper image           | model                     | algorithm         |
| [Ehrgott, et al., 2011]  | -                           | Inner point<br>(fixed) | Arbitrary                | Pascoletti<br>Serafini ** | -                 |
| [Löhne, et al., 2014]    | -                           | Fixed                  | Arbitrary                | Pascoletti                | Geometric dual    |
|                          |                             |                        |                          | Serafini                  | algorithm         |
| [Dörfler, et al., 2021]  | -                           | Inner point            | Distance to inner        | Pascoletti                |                   |
|                          |                             | (changing)             | approximation            | Serafini                  | -                 |
| [Keskin, Ulus, 2022]     | -                           | Several                | Several                  | Pascoletti                |                   |
|                          |                             | variants               | Variants                 | Serafini                  | -                 |
| [Ararat, et al., 2022]*  | Finiteness                  | Not                    | Arbitrary                | Norm                      |                   |
|                          |                             | Relevant               |                          | minimizing                | -                 |

\* Ararat, Ç., Ulus, F. and Umer, M. (2022) A Norm Minimization-Based Convex Vector Optimization Algorithm Journal of Optimization Theory and Applications. DOI: 10.1007/s10957-022-02045-8

\*\* [Pascoletti, Serafini, 1984]

| 'minimize' | $f(x)$ (with respect to $\leq_C$ ) | (P) |
|------------|------------------------------------|-----|
| subject to | $x \in \mathcal{X}$                |     |

- C is a closed convex cone that is also solid, pointed, and nontrivial.
- *f* is a *C*-convex and continuous function.
- $\mathcal{X}$  is a compact convex set with int  $\mathcal{X} \neq \emptyset$ .

### Norm Minimizing Scalarization and Relevant Results

 $\|\cdot\|$  is an arbitrary norm on  $\mathbb{R}^q$  and  $v \in \mathbb{R}^q$ .

## minimize ||z|| subject to $f(x) - z - v \leq_C 0$ , $x \in \mathcal{X}$ , $z \in \mathbb{R}^q$ (P(v))

- Convex program
- The optimal value is  $d(v, \mathcal{P})$ .

minimize 
$$||z||$$
 subject to  $f(x) - z - v \leq_C 0$ ,  $x \in \mathcal{X}, z \in \mathbb{R}^q$  (P(v))

 $\phi(w) := \inf_{x \in X, z \in \mathbb{R}^q} L(x, z, w), \quad w \in \mathbb{R}^q.$ 

maximize  $\phi(w)$  subject to  $w \in \mathbb{R}^q$ .

(D(v))

The optimal value of (D(v)):

$$\sup_{w \in \mathbb{R}^{q}} \phi(w) = \sup \left\{ \inf_{x \in \mathcal{X}} w^{\mathsf{T}} f(x) - w^{\mathsf{T}} v \mid \left\| w \right\|_{*} \leq 1, \ w \in C^{+} \right\}$$

1. For every  $v \in \mathbb{R}^q$ , there exist optimal solutions  $(x^v, z^v)$  and  $w^v$  to problems (P(v)) and (D(v)), respectively, and the optimal values coincide.

- 1. For every  $v \in \mathbb{R}^q$ , there exist optimal solutions  $(x^v, z^v)$  and  $w^v$  to problems (P(v)) and (D(v)), respectively, and the optimal values coincide.
- 2. If  $v \notin int \mathcal{P}$ , then  $x^{v}$  is a weak minimizer of (P).

- 1. For every  $v \in \mathbb{R}^q$ , there exist optimal solutions  $(x^v, z^v)$  and  $w^v$  to problems (P(v)) and (D(v)), respectively, and the optimal values coincide.
- 2. If  $v \notin int \mathcal{P}$ , then  $x^{v}$  is a weak minimizer of (P).
- 3. If  $w^{v} \neq 0$ , then,

$$\mathcal{H} = \{ y \in \mathbb{R}^q \mid (w^v)^\mathsf{T} y \ge (w^v)^\mathsf{T} \mathsf{\Gamma}(x^v) \} \supseteq \mathcal{P}_1$$

Moreover, bd  $\mathcal{H}$  is a supporting hyperplane of  $\mathcal{P}$  both at  $\Gamma(x^{v})$  and  $y^{v} = v + z^{v}$ .

### The Primal Algorithm

(Algorithm 1)

- 1. Find an initial outer approximation  $\mathcal{P}_0^{\text{out}}$  of  $\mathcal{P}$ .
- 2. For  $k \ge 0$ , find the vertices  $V_k$  of  $\mathcal{P}_k^{\text{out}}$ .
- 3. For  $v \in V_k$ , solve (P(v)) to find the closest point  $v + z^v$  on  $bd \mathcal{P}$ .
- 4. If  $||z^{\nu}|| > \epsilon$ , find the supporting halfspace  $\mathcal{H}_k$  of  $\mathcal{P}$ .
- 5. Update  $\mathcal{P}_{k+1}^{\text{out}} = \mathcal{P}_k^{\text{out}} \cap \mathcal{H}_k$ , go step 2.
- 6. If  $||z^{\nu}|| \leq \epsilon$  for all  $\nu \in V_k$ , STOP.

### The Primal Algorithm (Algorithm 1)













If terminates, then Algorithm 1 returns a finite weak  $\epsilon$ -solution  $\bar{X}$  to (P). If terminates, then Algorithm 1 returns a finite  $\epsilon$ -solution  $\bar{W}$  to (D).

#### Lemma

Let  $v \notin \mathcal{P}$  and  $\mathcal{H}$  be the supporting halfspace to  $\mathcal{P}$ . If  $||z^{v}|| \ge \epsilon$ , then  $B \cap \mathcal{H} = \emptyset$ ,  $B := \left\{ y \in \{v\} + C \mid ||y - v|| \le \frac{\epsilon}{2} \right\}$ .

#### Lemma

Let  $v \notin \mathcal{P}$  and  $\mathcal{H}$  be the supporting halfspace to  $\mathcal{P}$ . If  $||z^{v}|| \ge \epsilon$ , then  $B \cap \mathcal{H} = \emptyset$ ,  $B := \left\{ y \in \{v\} + C \mid ||y - v|| \le \frac{\epsilon}{2} \right\}$ .

At each iteration, we discard a region with positive fixed volume from the current outer approximation!

The region in which vertices of updated outer approximation can be found may not be compact.



The region in which vertices of updated outer approximation can be found may not be compact.



The finiteness of the algorithm is an open question!

### Idea: A sufficiently large compact subset!



$$S := \{ y \in \mathbb{R}^{q} \mid \bar{w}^{\mathsf{T}} y \leq \beta + \alpha \}$$
$$\bar{w} := \frac{\sum_{j=1}^{J} w^{j}}{\left\| \sum_{j=1}^{J} w^{j} \right\|_{*}} \in \operatorname{int} C^{+}$$
$$\beta \geq \sup_{x \in \mathcal{X}} \bar{w}^{\mathsf{T}} \Gamma(x)$$

$$\alpha > \max_{\mathbf{v} \in \mathcal{V}_0} (\bar{\mathbf{w}}^{\mathsf{T}} \mathbf{v} - \beta)^+ + \delta^H (\mathcal{P}_0^{\mathsf{out}}, \mathcal{P})$$



Let v be a vertex of  $\overline{\mathcal{P}}_k^{out}$  for some  $k \ge 1$ . If  $v \notin \text{int } S$ , then  $y^v = v + z^v \in \text{wMin}_{\mathcal{C}}(\mathcal{P}) \setminus \text{Min}_{\mathcal{C}}(\mathcal{P})$ .



**Question:** Do we really observe vertices out of *S* in practice?

**Question:** Do we really observe vertices out of *S* in practice?



Answer: YES!

**Question:** Is it sufficient to consider only the vertices within *S* and ignore the others?



**Question:** Is it sufficient to consider only the vertices within *S* and ignore the others?



Answer: NO!
## Modified Primal Algorithm (Algorithm 2) - initialization

- i.1. Find initial outer approximation  $\bar{\mathcal{P}}_0^{out} = \mathcal{P}_0^{out}$  of  $\mathcal{P}$ .
- i.2. Compute the set  $\bar{V}_0$  of vertices of  $\bar{\mathcal{P}}_0^{out}$ .
- i.3. For all  $v \in \overline{\mathcal{V}}_0$ , solve (P(v)), find  $(x^v, z^v)$ ,  $w^v$ .
- i.4. Compute  $\delta^{H}(\mathcal{P}_{0}^{\text{out}}, \mathcal{P})$ ,  $\beta$  and  $\alpha$ .
- i.5. Store an H-representation of S.



- 1. An initial outer approximation  $\bar{\mathcal{P}}_0^{\text{out}} = \mathcal{P}_0^{\text{out}}$  of  $\mathcal{P}$ .
- 2. For the  $k^{th}$  iteration,  $k \ge 0$ , let  $\bar{\mathcal{P}}_k^{\text{out}}$  be the current outer approximation.
- 3.  $\bar{V}_k$  is the set of vertices of  $\bar{\mathcal{P}}_k^{\text{out}} \cap S$ .
- 4. For a vertex  $v \in \overline{\mathcal{V}}_k$ , find a point  $y^v = v + z^v$  on the boundary of  $\mathcal{P}$ .
- 5. If  $||z^{\nu}|| > \epsilon$ , find  $\mathcal{H}_k$  of  $\mathcal{P}$  at  $y^{\nu}$ .
- 6. Current approximation is updated as  $\bar{\mathcal{P}}_{k+1}^{\text{out}} = \bar{\mathcal{P}}_{k}^{\text{out}} \cap \mathcal{H}_{k}$ .
- 7.  $||z^{\nu}|| \leq \epsilon$  for all vertices, the algorithm terminates.

#### Theorem

Algorithm 2 works correctly: if the algorithm terminates, then it returns a finite weak  $\epsilon$ -solution to (P).

#### Lemma

Let  $v \notin \mathcal{P}$  and  $\mathcal{H}$  be the supporting halfspace to  $\mathcal{P}$ . If  $||z^{v}|| \ge \epsilon$ , then  $B \cap \mathcal{H} = \emptyset$ ,  $B := \left\{ y \in \{v\} + C \mid ||y - v|| \le \frac{\epsilon}{2} \right\}$ .

#### Theorem

The Algorithm 2 terminates after a finite number of iterations.

# Computational Results

#### Example

minimize  $\Gamma(x) = x$  with respect to  $\leq_C$ subject to  $||x - e||_2 \leq 1, x \in \mathbb{R}^q$ , where  $q = \{3, 4\}$  and the ordering cone is  $C = \mathbb{R}^q_+$ .



Outer approximation obtained from Algorithm 1 using  $\ell_2$  norm

|          |                  | q=3  |                       |     |                  |     |          |        | q=4 |                       |     |                  |    |          |        |
|----------|------------------|------|-----------------------|-----|------------------|-----|----------|--------|-----|-----------------------|-----|------------------|----|----------|--------|
| р        | Alg              | ε    | $ \bar{\mathcal{X}} $ | Opt | T <sub>opt</sub> | En  | $T_{en}$ | т      | ε   | $ \bar{\mathcal{X}} $ | Opt | T <sub>opt</sub> | En | $T_{en}$ | т      |
|          | 1                |      | 33                    | 52  | 13.29            | 20  | 0.31     | 13.68  |     | 30                    | 41  | 11.66            | 12 | 0.22     | 11.95  |
| 1        | 2                |      | 42                    | 59  | 15.59            | 17  | 0.26     | 15.99  |     | 57                    | 69  | 19.27            | 11 | 0.28     | 19.71  |
| -        | Lit <sup>1</sup> |      | 56                    | 89  | 17.32            | 34  | 1.02     | 18.56  |     | 33                    | 44  | 9.71             | 12 | 0.20     | 9.97   |
| 2        | 1                |      | 29                    | 45  | 10.49            | 17  | 0.23     | 10.79  |     | 29                    | 34  | 8.70             | б  | 0.07     | 8.80   |
|          | 2                | 0.05 | 44                    | 61  | 14.24            | 17  | 0.24     | 14.68  | 0.5 | 94                    | 99  | 25.98            | 5  | 0.07     | 26.20  |
|          | Lit              | 0.05 | 32                    | 50  | 9.76             | 19  | 0.27     | 10.10  | 0.5 | 31                    | 42  | 9.18             | 12 | 0.19     | 9.43   |
|          | 1                | 1    | 21                    | 34  | 8.15             | 14  | 0.16     | 8.35   | 1   | 8                     | 9   | 2.34             | 2  | 0.02     | 2.38   |
| $\infty$ | 2                |      | 37                    | 51  | 12.39            | 13  | 0.15     | 12.61  |     | 11                    | 15  | 4.23             | 1  | 0.02     | 4.39   |
|          | Lit              |      | 21                    | 34  | 6.76             | 14  | 0.15     | 6.96   |     | 8                     | 9   | 2.05             | 2  | 0.02     | 2.09   |
|          | 1                |      | 175                   | 262 | 69.13            | 88  | 20.17    | 92.99  |     | 143                   | 177 | 52.94            | 34 | 2.67     | 56.25  |
| 1        | 2                | 0.01 | 161                   | 235 | 62.55            | 73  | 10.56    | 75.28  |     | 232                   | 273 | 78.37            | 38 | 5.05     | 84.42  |
|          | Lit              |      | 256                   | 397 | 76.54            | 142 | 113.29   | 212.22 |     | 412                   | 510 | 111.49           | 91 | 48.25    | 165.40 |
|          | 1                |      | 128                   | 196 | 46.51            | 69  | 8.41     | 56.52  |     |                       |     |                  | -  |          |        |
| 2        | 2                |      | 145                   | 209 | 49.42            | 64  | 6.56     | 57.29  | 0.1 |                       |     |                  | -  |          |        |
|          | Lit              |      | 139                   | 213 | 41.49            | 75  | 10.39    | 53.88  |     | 208                   | 265 | 57.93            | 46 | 5.08     | 63.67  |
|          | 1                |      | 93                    | 145 | 35.34            | 53  | 3.44     | 39.47  |     | 68                    | 82  | 22.59            | 12 | 0.22     | 22.87  |
| $\infty$ | 2                |      | 107                   | 154 | 37.20            | 47  | 2.43     | 40.15  |     |                       |     |                  | -  |          |        |
|          | Lit              |      | 87                    | 137 | 26.72            | 51  | 3.03     | 30.36  |     |                       |     |                  | -  |          |        |

### Example

w

$$\begin{array}{ll} \text{minimize } \Gamma(x) = (\|x\|_2^2 + b^1 x, \|x\|_2^2 + b^2 x, \|x\|_2^2 + b^3 x)^{\mathsf{T}} \\ & \text{with respect to } \leq_{\mathbb{R}^3_+} \\ \text{subject to } \|x\|_2^2 \leq 100, \ 0 \leq x_i \leq 10 \ \text{for } i \in \{1, \dots, n\}, \ x \in \mathbb{R}^n, \\ \\ \text{where } \hat{b}^1 = (0, 10, 120), \hat{b}^2 = (80, -448, 80), \hat{b}^3 = (-448, 80, 80) \ \text{and } b^1, b^2, b^3 \in \mathbb{R}^n. \\ \\ \textcircled{0} \quad \text{Let } n = 3 \ \text{and } b^1 = \hat{b}^1, b^2 = \hat{b}^2, b^3 = \hat{b}^3. \\ \\ \textcircled{0} \quad \text{Let } n = 9 \ \text{and } b^1 = (\hat{b}^1, \hat{b}^1, \hat{b}^1), b^2 = (\hat{b}^2, \hat{b}^2, \hat{b}^2), b^3 = (\hat{b}^3, \hat{b}^3, \hat{b}^3). \\ \\ \hline \\ \text{[Ehrgott, et al., 2011, Example 5.10]} \end{array}$$

|    |     |     | n=3                   |      |           |     |          |         | <i>n</i> =9           |       |           |     |          |          |
|----|-----|-----|-----------------------|------|-----------|-----|----------|---------|-----------------------|-------|-----------|-----|----------|----------|
| ε  | р   | Alg | $ \bar{\mathcal{X}} $ | Opt  | $T_{opt}$ | En  | $T_{en}$ | Т       | $ \bar{\mathcal{X}} $ | Opt   | $T_{opt}$ | En  | $T_{en}$ | Т        |
| 10 | 2   | 1   | 502                   | 943  | 285.43    | 132 | 100.12   | 401.95  | 1561                  | 2754  | 1159.60   | 225 | 753.05   | 2046.88  |
|    |     | 2   | 958                   | 3924 | 1194.30   | 137 | 122.28   | 1339.09 | 1770                  | 4213  | 1819.70   | 218 | 733.58   | 2682.37  |
|    |     | Lit | 305                   | 965  | 259.85    | 164 | 211.23   | 502.43  | 2718                  | 4520  | 1772.08   | 259 | 1324.24  | 3295.96  |
|    | inf | 1   | 197                   | 592  | 179.71    | 106 | 41.61    | 227.61  | 1231                  | 2106  | 901.81    | 152 | 150.43   | 1076.14  |
|    |     | 2   | 199                   | 1206 | 390.99    | 100 | 36.67    | 432.99  | 3638                  | 9222  | 4045.45   | 166 | 219.60   | 4301.63  |
|    |     | Lit | 180                   | 586  | 157.46    | 101 | 33.60    | 196.24  | 2628                  | 5057  | 1994.39   | 164 | 202.33   | 2231.07  |
| 5  | 2   | 1   | 1178                  | 3127 | 932.65    | 245 | 1059.10  | 2175.25 | 4461                  | 7968  | 3371.91   | 390 | 8008.67  | 12795.23 |
|    |     | 2   | 1207                  | 5557 | 1702.79   | 259 | 1488.53  | 3441.28 | 7052                  | 15662 | 6546.29   | 409 | 9908.03  | 18268.17 |
|    |     | Lit | 579                   | 3932 | 1049.79   | 309 | 3046.66  | 4529.37 | 7046                  | 11149 | 4307.21   | 476 | 16898.76 | 23603.25 |
|    |     | 1   | 412                   | 1740 | 526.33    | 185 | 325.59   | 907.19  | 3153                  | 4538  | 1889.06   | 294 | 2164.45  | 4390.16  |
|    | inf | 2   | 465                   | 2655 | 837.24    | 188 | 374.95   | 1268.01 | 3570                  | 8155  | 3482.44   | 305 | 2589.99  | 6470.71  |
|    |     | Lit | 342                   | 1412 | 380.10    | 185 | 352.70   | 787.48  | 3146                  | 4712  | 1845.91   | 300 | 2455.39  | 4663.98  |

Ararat, Ç., Ulus, F. and Umer, M. A Norm Minimization-Based Convex Vector Optimization Algorithm Journal of Optimization Theory and Applications. DOI: 10.1007/s10957-022-02045-8

- Novel norm minimization-based scalarization, free of direction parameter.
- Algorithms based on the new scalarization
- Comparable performance of the algorithms.
- Finiteness guarantee for the first time.
- Convergence Rate: ongoing After slight modifications, we prove O(k<sup>2/1-q</sup>); and working for a better convergence rate.

## Direction Free Geometric Dual Algorithm

## Outer Approximation Algorithms for CVOPs

| Algorithm               | Finiteness /<br>Convergence | Choice of<br>Direction        | Vertex<br>Selection (VS) | Scalarization<br>Model | Dual<br>Algorithm            |
|-------------------------|-----------------------------|-------------------------------|--------------------------|------------------------|------------------------------|
| [Klamrath at al. 2002]  | Convergence                 | Inner point                   | Distance                 | Gauge-based            | Inner approx.                |
| [Riamoth, et al., 2005] | for biobjective             | (fixed)                       | to upper image           | model                  | algorithm                    |
| [Ehrgott, et al., 2011] | -                           | - Inner point<br>- (fixed) Ar |                          | Pascoletti<br>Serafini | -                            |
| [Löhne, et al., 2014]   | -                           | Fixed                         | Arbitrary                | Pascoletti<br>Serafini | Geometric dual<br>algorithm* |
| [Dörfler, et al., 2021] | -                           | Inner point                   | Distance to inner        | Pascoletti             | -                            |
|                         |                             | (changing)                    | approximation            | Seratini               |                              |
| [Keskin, Ulus, 2022]    | -                           | Several                       | Several                  | Pascoletti             | -                            |
| [,]                     |                             | variants                      | Variants                 | Serafini               |                              |
| [A react at al. 2022]   | F:=:+=====                  | Not                           | ۸                        | Norm                   |                              |
| [Ararat, et al., 2022]  | Finiteness                  | Relevant                      | Arbitrary                | minimizing             | -                            |

The dual algorithms solve weighted sum scalarization:

 $\inf_{x\in\mathcal{X}}w^{\mathsf{T}}f(x)$ 

\* [Heyde, 2013]

## Outer Approximation Algorithms for CVOPs

| Algorithm                | Finiteness /<br>Convergence | Choice of<br>Direction | Vertex<br>Selection (VS) | Scalarization<br>Model | Dual<br>Algorithm |  |
|--------------------------|-----------------------------|------------------------|--------------------------|------------------------|-------------------|--|
| [Klammath at al. 2002]   | Convergence                 | Inner point            | Distance                 | Gauge-based            | Inner approx.     |  |
| [Kiamroun, et al., 2005] | for biobjective             | (fixed)                | to upper image           | model                  | algorithm         |  |
| [Ebraott at al. 2011]    |                             | Inner point            | Arbitrany                | Pascoletti             |                   |  |
| [Enrgott, et al., 2011]  | -                           | (fixed)                | Arbitrary                | Serafini *             | -                 |  |
| [Löhno ot al. 2014]      |                             | Fixed                  | Arbitrany                | Pascoletti             | Geometric dual    |  |
| [Lonne, et al., 2014]    | -                           | r ixeu                 | Arbitrary                | Serafini               | algorithm         |  |
| [Därfler et al. 2021]    |                             | Inner point            | Distance to inner        | Pascoletti             | -                 |  |
| [Dorner, et al., 2021]   | -                           | (changing)             | approximation            | Serafini               |                   |  |
| [Kockin Illus 2022]      |                             | Several                | Several                  | Pascoletti             | -                 |  |
| [Reskin, Olus, 2022]     | -                           | variants               | Variants                 | Serafini               |                   |  |
| [Ararat at al 2022]      | Einitonocc                  | Not                    | Arbitrany                | Norm                   | Geometric dual    |  |
| [Ararac, et al., 2022]   | rinicelless                 | Relevant               | Arbitrary                | minimizing             | algorithm*        |  |

Ararat, Ç. and Tekgül, S. and Ulus, F.

"Geometric duality and a geometric dual algorithm for CVOPs."

# Geometric Dual Problem and Solution Concept



• 
$$e^{q+1} = (0, \dots, 0, 1)^{\mathsf{T}} \in \mathbb{R}^{q+1},$$
  
 $\mathcal{K} \coloneqq \{\lambda e^{q+1} \mid \lambda \ge 0\}$ 

 $\mathcal{D} := \xi(C^+) - K = \{ (w^{\mathsf{T}}, \alpha)^{\mathsf{T}} \in \mathbb{R}^{q+1} \mid w \in C^+, \ \alpha \leq \inf_{x \in \mathcal{X}} w^{\mathsf{T}} f(x) \}$ 



A finite set  $\overline{W} \subseteq C^+ \cap \mathbb{S}^{q-1}$  is called a **finite**  $\epsilon$ -solution of (D) if it consists of only *K*-maximizers and

 $\operatorname{cone}(\operatorname{conv}\xi(\bar{\mathcal{W}})+\epsilon\{e^{q+1}\})-K\supseteq\mathcal{D},$ 

where  $\mathbb{S}^{q-1} \coloneqq \{z \in \mathbb{R}^q \mid ||z||_* = 1\}.$ 

 $\operatorname{cone}(\operatorname{conv}\xi(\overline{\mathcal{W}}) + \epsilon\{e^{q+1}\}) - K \supseteq \mathcal{D}$ 



## $\operatorname{cone}(\operatorname{conv}\xi(\bar{\mathcal{W}}) + \epsilon\{e^{q+1}\}) - K \supseteq \mathcal{D}$



### $\operatorname{cone}(\operatorname{conv}\xi(\bar{\mathcal{W}})+\epsilon\{e^{q+1}\})-K\supseteq\mathcal{D}$



### $\operatorname{cone}(\operatorname{conv}\xi(\bar{\mathcal{W}})+\epsilon\{e^{q+1}\})-K\supseteq\mathcal{D}$



### $\operatorname{cone}(\operatorname{conv}\xi(\bar{\mathcal{W}})+\epsilon\{e^{q+1}\})-K\supseteq\mathcal{D}$



# Geometric Duality Results

# Supporting Hyperplanes of ${\cal P}$

$$\begin{aligned} \mathcal{H} \colon \mathbb{R}^{q+1} \rightrightarrows \mathbb{R}^{q}, \quad \mathcal{H}(w,\alpha) &\coloneqq \{ y \in \mathbb{R}^{q} \mid w^{\mathsf{T}} y - \alpha \geq 0 \} \\ H(w,\alpha) &\coloneqq \{ y \in \mathbb{R}^{q} \mid w^{\mathsf{T}} y - \alpha = 0 \}. \end{aligned}$$



# Supporting Hyperplanes of $\mathcal D$

$$\begin{split} \mathcal{H}^* \colon \mathbb{R}^q \rightrightarrows \mathbb{R}^{q+1}, \quad \mathcal{H}^*(y) \coloneqq \{ (w^{\mathsf{T}}, \alpha)^{\mathsf{T}} \in \mathbb{R}^{q+1} \mid w^{\mathsf{T}}y - \alpha \ge 0 \} \\ \quad H^*(y) \coloneqq \{ (w^{\mathsf{T}}, \alpha)^{\mathsf{T}} \in \mathbb{R}^{q+1} \mid w^{\mathsf{T}}y - \alpha = 0 \}. \end{split}$$



 $\mathcal{F}_{\mathcal{D}}^*$  : set of all *K*-maximal proper face of  $\mathcal{D}$  $\mathcal{F}_{\mathcal{P}}$  : set of all *C*-minimal proper face of  $\mathcal{P}$ 

$$\Psi\colon \mathcal{F}^*_{\mathcal{D}}\rightrightarrows \mathbb{R}^q, \quad \Psi(F^*)\coloneqq \bigcap_{(w^{\mathsf{T}},\alpha)^{\mathsf{T}}\in F^*}H(w,\alpha)\cap \mathcal{P}.$$

#### Theorem

 $\Psi$  is an inclusion-reversing one-to-one correspondence between  $\mathcal{F}_{\mathcal{D}}^*$  and  $\mathcal{F}_{\mathcal{P}}$ . The inverse map is given by

$$\Psi^{-1}(F) \coloneqq \bigcap_{y \in F} H^*(y) \cap \mathcal{D}.$$

### Geometric Duality Results

For closed and convex sets  $\bar{\mathcal{P}}$  and  $\bar{\mathcal{D}}\text{,}$  we define

$$\begin{split} \mathcal{D}_{\bar{\mathcal{P}}} &:= \{ (w^{\mathsf{T}}, \alpha)^{\mathsf{T}} \in \mathbb{R}^{q+1} \mid \forall y \in \bar{\mathcal{P}} \colon w^{\mathsf{T}}y - \alpha \geq 0 \}, \\ \mathcal{P}_{\bar{\mathcal{D}}} &:= \{ y \in \mathbb{R}^{q} \mid \forall (w^{\mathsf{T}}, \alpha)^{\mathsf{T}} \in \bar{\mathcal{D}} \colon w^{\mathsf{T}}y - \alpha \geq 0 \}. \end{split}$$

#### Proposition

We have

$$\mathcal{D}_{\mathcal{P}} = \mathcal{D}, \quad \mathcal{P}_{\mathcal{D}} = \mathcal{P}$$

• Let  $\emptyset \neq \bar{\mathcal{P}} \subsetneq \mathbb{R}^q$  be a closed convex set. We have

$$\bar{\mathcal{P}} = \mathcal{P}_{\mathcal{D}_{\bar{\mathcal{P}}}}.$$

• Let  $\emptyset \neq \overline{\mathcal{D}} \subseteq \mathbb{R}^{q+1}$  be a closed convex lower set. Suppose further that  $\overline{\mathcal{D}}$  is a cone and  $\mathcal{P}_{\overline{\mathcal{D}}} \neq \emptyset$ . We have

$$\mathcal{D}_{\mathcal{P}_{\tilde{\mathcal{D}}}} = \mathcal{D}$$

## The Geometric Dual Algorithm


















#### Proposition

When the dual algorithm terminates, it returns

- a finite  $\epsilon$ -solution  $\overline{W}$  to (D)
- and a finite weak  $\tilde{\epsilon}$ -solution  $\bar{\mathcal{X}}$  to (P).

$$\tilde{\epsilon} = \frac{\epsilon}{\min_{\lambda \in \Delta^{J-1}} \left\| \sum_{j=1}^{J} \lambda_j w^j \right\|_*},$$

where  $w^1, \ldots w^J$  are the generating vectors of  $C^+$ .

## Computational Results

## **Proximity Measures**

• Primal error indicator

The actual Hausdorff distance



## **Proximity Measures**

- Primal error indicator
- Hypervolume indicator

Hypervolume between the inner and outer approximations



$$\mathsf{HV} \coloneqq \left(\frac{\mathsf{HV}(\mathcal{V}_o, r) - \mathsf{HV}(\mathcal{V}_i, r)}{\mathsf{HV}(\mathcal{V}_o, r)}\right) \times 100.$$

minimize  $f(x) = A^{\mathsf{T}}x$  with respect to  $\leq_{\mathbb{R}^q_+}$ subject to  $x^{\mathsf{T}}Px - 1 \leq 0$ 

- $P \in \mathbb{R}^{n \times n}$  is a symmetric positive definite matrix
- $A \in \mathbb{R}^{n \times q}_+$
- For *q* = 2, we take *n* ∈ {5, 10, 15, ..., 50} (50 randomly generated instance)
- For q = 3, we take n ∈ {10, 15, 20, 25, 30} (20 randomly generated instance)

| n  | Alg | Stop                  | Opt    | T <sub>opt</sub> | $T_{opt}/Opt$ | En   | $T_{en}$ | Т      | $T/ ar{\mathcal{X}} $ | PE     | HV     |
|----|-----|-----------------------|--------|------------------|---------------|------|----------|--------|-----------------------|--------|--------|
| 10 | 1   | $\epsilon_1 = 0.5000$ | 52.35  | 19.92            | 0.3801        | 5.05 | 0.09     | 46.41  | 0.91                  | 0.4209 | 3.5805 |
|    | 2   | $\epsilon_2 = 0.2887$ | 86.25  | 29.03            | 0.3363        | 4.40 | 0.20     | 71.36  | 70.84                 | 0.1106 | 1.1973 |
|    | 1   | $\epsilon_3 = 0.1106$ | 232.80 | 85.32            | 0.3655        | 6.90 | 0.16     | 200.13 | 0.92                  | 0.1052 | 1.2846 |
|    | 2   | T = 46.41             | 60.70  | 20.32            | 0.3336        | 4.05 | 0.24     | 48.43  | 0.80                  | 0.2244 | 1.8735 |
| 15 | 1   | $\epsilon_1 = 0.5000$ | 70.85  | 26.98            | 0.3777        | 5.60 | 0.09     | 63.54  | 0.93                  | 0.4694 | 2.6458 |
|    | 2   | $\epsilon_2 = 0.2887$ | 105.15 | 34.87            | 0.3311        | 4.70 | 0.26     | 84.58  | 0.80                  | 0.1033 | 0.7146 |
|    | 1   | $\epsilon_3 = 0.1033$ | 295.30 | 108.74           | 0.3677        | 7.45 | 0.21     | 251.56 | 0.91                  | 0.0991 | 0.5690 |
|    | 2   | T = 63.54             | 81.75  | 27.01            | 0.3307        | 4.40 | 0.36     | 65.51  | 0.81                  | 0.2022 | 1.0703 |
| 20 | 1   | $\epsilon_1 = 0.5000$ | 65.45  | 24.62            | 0.3797        | 5.50 | 0.09     | 57.12  | 0.92                  | 0.4569 | 3.4845 |
|    | 2   | $\epsilon_2 = 0.2887$ | 101.95 | 33.66            | 0.3302        | 4.65 | 0.24     | 81.31  | 0.80                  | 0.1052 | 1.0783 |
|    | 1   | $\epsilon_3 = 0.1052$ | 284.25 | 104.18           | 0.3672        | 7.35 | 0.19     | 238.73 | 0.91                  | 0.1020 | 0.7881 |
|    | 2   | T = 57.12             | 74.40  | 24.63            | 0.3324        | 4.30 | 0.29     | 59.06  | 0.80                  | 0.1996 | 1.5307 |
| 25 | 1   | $\epsilon_1 = 0.5000$ | 85.95  | 32.63            | 0.3786        | 5.95 | 0.12     | 82.51  | 0.98                  | 0.4650 | 2.3063 |
|    | 2   | $\epsilon_2 = 0.2887$ | 139.25 | 46.13            | 0.3306        | 4.95 | 0.34     | 112.65 | 0.81                  | 0.1071 | 0.6154 |
|    | 1   | $\epsilon_3 = 0.1071$ | 368.60 | 137.91           | 0.3736        | 7.70 | 0.26     | 340.28 | 1.01                  | 0.1034 | 0.5063 |
|    | 2   | T = 82.51             | 106.10 | 35.02            | 0.3297        | 4.80 | 0.56     | 84.55  | 0.80                  | 0.1878 | 0.8167 |
| 30 | 1   | $\epsilon_1 = 0.5000$ | 95.70  | 36.59            | 0.3818        | 6.00 | 0.12     | 91.27  | 0.99                  | 0.4690 | 2.2715 |
|    | 2   | $\epsilon_2 = 0.2887$ | 150.70 | 51.13            | 0.3386        | 5.15 | 0.43     | 131.15 | 0.87                  | 0.1066 | 0.6110 |
|    | 1   | $\epsilon_3 = 0.1066$ | 452.70 | 170.22           | 0.3751        | 8.05 | 0.32     | 419.02 | 1.02                  | 0.1046 | 0.5420 |
|    | 2   | T = 91.27             | 109.00 | 36.89            | 0.3381        | 4.60 | 0.48     | 93.41  | 0.86                  | 0.2272 | 0.8947 |

### Results for q = 3



Average PE (left) and HV (right) values under nearly equal runtime (rows one and four of Table).

### Results for q = 3



Average CPU time (left) and HV (right) values under nearly equal PE (rows two and three of Table).

#### Results - different ordering cones



Average primal error values of random instances for q = 3 for ordering cones  $C_1$  (left),  $C_2$  (middle) and  $C_3$  (right) when the algorithms are run under time limit of 50 seconds.

#### Results - different ordering cones



Average HV values of random instances for q = 3 for ordering cones  $C_1$  (left),  $C_2$  (middle) and  $C_3$  (right) when the algorithms are run under time limit of 50 seconds.

#### Performance Profiles [Dolan, Moré, 2002]



Primal Algorithm [Ararat, et al., 2022], Primal Algorithm\* and Dual Algorithm\* [Löhne, et al., 2014], DLSW [Dörfler, et al., 2021]



Primal Algorithm [Ararat, et al., 2022], Primal Algorithm\* and Dual Algorithm\* [Löhne, et al., 2014], DLSW [Dörfler, et al., 2021]

Ararat, Ç. and Tekgül, S. and Ulus, F. "Geometric duality and a geometric dual algorithm for CVOPs." *Under revision - SIAM Journal on Optimization.* arxiv preprint no: 2108.07053 Ararat, Ç. and Tekgül, S. and Ulus, F. "Geometric duality and a geometric dual algorithm for CVOPs." *Under revision - SIAM Journal on Optimization*. arxiv preprint no: 2108.07053

- Geometric duality relations free of direction parameter
- Algorithm based on the new results
- Promising performance of the algorithm

Ararat, Ç. and Tekgül, S. and Ulus, F. "Geometric duality and a geometric dual algorithm for CVOPs." *Under revision - SIAM Journal on Optimization*. arxiv preprint no: 2108.07053

- Geometric duality relations free of direction parameter
- Algorithm based on the new results
- Promising performance of the algorithm
- Finiteness and convergence rate: Future Work!

#### References

Pascoletti, A. and Serafini, P. Scalarizing vector optimization problems Journal of Optimization Theory and Applications, 42, 499–524, 1984.

Dolan, E. D. and Moré, J. J. Benchmarking optimization software with performance profiles *Mathematical programming*, 91:2, 201–213, 2002.

Klamroth, K., Tind, J. and and Wiecek, M. M. Unbiased Approximation in Multicriteria Optimization Mathematical Methods of Operations Research, 56, 413–437, 2003.

Ehrgott, M., Shao, L. and Schöbel, A. An approximation algorithm for convex multi-objective programming problems *Journal of Global Optimization*, 50:3, 397–416, 2011.

Heyde, F. Geometric duality for convex vector optimization problems Journal of Convex Analysis, 20:3, 813-832, 2013.

Löhne, A., Rudloff, B. and Ulus, F. Primal and dual approximation algorithms for convex vector optimization problems Journal of Global Optimization, 60:4, 713–736, 2014.

Dörfler, D., Löhne, A., Schneider, C. and Weißing, B. A Benson-type algorithm for bounded convex vector optimization problems with vertex selection *Optimization Methods and Software*, DOI: 10.1080/10556788.2021.1880579.

Ararat, Ç., Ulus, F. and Umer, M. A Norm Minimization-Based Convex Vector Optimization Algorithm Journal of Optimization Theory and Applications. DOI: 10.1007/s10957-022-02045-8

Keskin, İ. N. and Ulus, F. Outer approximation algorithms for convex vector optimization problems *Submitted*. arxiv preprint no: 2109.07119

# Thank you!