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Convex Vector Optimization Problems



Convex Vector Optimization Problems

‘minimize’ f (x) (with respect to ≤C ) (P)

subject to x ∈ X ,

where

C ⊆ Rq is a solid, pointed, polyhedral convex ordering cone,

f : Rn → Rq is C -convex:

f (αx + (1− αy)) ≤C αf (x) + (1− α)f (y)

Feasible region X is convex.

f (X ) = {f (x) ∈ Rq | x ∈ X}.



Order Relation ≤C

Partial ordering induced by non-trivial convex pointed cone C ⊆ Rq:

v ≤C w ⇐⇒ w − v ∈ C

v

w

v + C



Solution Concepts: Set Optimization point of view

P := cl(f (X ) + C ) is convex and closed. (upper image)



Solution Concepts: Set Optimization point of view

A finite subset X̄ of X is called a finite (weak) ε-solution (w.r.t. c) to (P) if
it consists of only (weak minimizers) weak efficient solutions; and

conv f (X̄ ) + C − ε{c} ⊇ P.

(c ∈ intC is fixed.)

conv f (X̄ ) + C − ε{c} ⊇ P ⊇ conv f (X̄ ) + C .



Solution Concepts: Set Optimization point of view

A finite subset X̄ of X is called a finite (weak) ε-solution to (P) if it consists of
only (weak minimizers) weak efficient solutions; and

conv f (X̄ ) + C + B(0, ε) ⊇ P.

(No direction biasedness.)

conv f (X̄ ) + C + B(0, ε) ⊇ P ⊇ conv f (X̄ ) + C .



Literature and Motivation
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Journal of Optimization Theory and Applications. DOI: 10.1007/s10957-022-02045-8
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Assumptions

‘minimize’ f (x) (with respect to ≤C ) (P)

subject to x ∈ X

C is a closed convex cone that is also solid, pointed, and nontrivial.

f is a C -convex and continuous function.

X is a compact convex set with intX 6= ∅.



Norm Minimizing Scalarization and Relevant Results



Norm Minimizing Scalarization

‖·‖ is an arbitrary norm on Rq and v ∈ Rq.

minimize ‖z‖ subject to f (x)− z − v ≤C 0, x ∈ X , z ∈ Rq (P(v))

Convex program

The optimal value is d(v ,P).



Norm Minimizing Scalarization and the Lagrange Dual

minimize ‖z‖ subject to f (x)− z − v ≤C 0, x ∈ X , z ∈ Rq (P(v))

φ(w) := infx∈X ,z∈Rq L(x , z ,w), w ∈ Rq.

maximize φ(w) subject to w ∈ Rq. (D(v))

The optimal value of (D(v)):

sup
w∈Rq

φ(w) = sup

{
inf
x∈X

wTf (x)− wTv | ‖w‖∗ ≤ 1, w ∈ C+

}



Proposition

1. For every v ∈ Rq, there exist optimal solutions (xv , zv ) and w v to
problems (P(v)) and (D(v)), respectively, and the optimal values
coincide.

2. If v /∈ intP, then xv is a weak minimizer of (P).

3. If w v 6= 0, then,

H = {y ∈ Rq | (w v )Ty ≥ (w v )TΓ(xv )} ⊇ P.

Moreover, bdH is a supporting hyperplane of P both at Γ(xv ) and
y v = v + zv .
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problems (P(v)) and (D(v)), respectively, and the optimal values
coincide.
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3. If w v 6= 0, then,
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y v = v + zv .



The Primal Algorithm

(Algorithm 1)



The Primal Algorithm (Algorithm 1)

1. Find an initial outer approximation Pout
0 of P.

2. For k ≥ 0, find the vertices Vk of Pout
k .

3. For v ∈ Vk , solve (P(v)) to find the closest point v + zv on bdP.

4. If ‖zv‖ > ε, find the supporting halfspace Hk of P.

5. Update Pout
k+1 = Pout

k ∩Hk , go step 2.

6. If ‖zv‖ ≤ ε for all v ∈ Vk , STOP.



The Primal Algorithm (Algorithm 1)



Algorithm 1



Algorithm 1
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Algorithm 1



Algorithm 1

Proposition

If terminates, then Algorithm 1 returns a finite weak ε-solution X̄ to (P).
If terminates, then Algorithm 1 returns a finite ε-solution W̄ to (D).



Towards Finiteness

Lemma

Let v /∈ P and H be the supporting halfspace to P. If ‖zv‖ ≥ ε, then
B ∩H = ∅,

B :=
{
y ∈ {v}+ C | ‖y − v‖ ≤ ε

2

}
.

At each iteration, we discard a region with positive fixed volume from the
current outer approximation!



Towards Finiteness

Lemma

Let v /∈ P and H be the supporting halfspace to P. If ‖zv‖ ≥ ε, then
B ∩H = ∅,

B :=
{
y ∈ {v}+ C | ‖y − v‖ ≤ ε

2

}
.

At each iteration, we discard a region with positive fixed volume from the
current outer approximation!



A limitation of Algorithm 1

The region in which vertices of updated outer approximation can be found
may not be compact.

The finiteness of the algorithm is an open question!



A limitation of Algorithm 1

The region in which vertices of updated outer approximation can be found
may not be compact.

The finiteness of the algorithm is an open question!



Idea: A sufficiently large compact subset!



Towards a Modified Algorithm

S := {y ∈ Rq | w̄Ty ≤ β + α}

w̄ :=

∑J
j=1 w

j∥∥∥∑J
j=1 w

j
∥∥∥
∗

∈ intC+

β ≥ sup
x∈X

w̄TΓ(x)

α > max
v∈V0

(w̄Tv − β)+ + δH(Pout
0 ,P)



Proposition

Let v be a vertex of P̄out
k for some k ≥ 1. If v /∈ intS , then

y v = v + zv ∈ wMinC (P) \MinC (P).



Question: Do we really observe vertices out of S in practice?

Answer: YES!



Question: Do we really observe vertices out of S in practice?

Answer: YES!



Question: Is it sufficient to consider only the vertices within S and ignore
the others?

Answer: NO!



Question: Is it sufficient to consider only the vertices within S and ignore
the others?

Answer: NO!



Modified Primal Algorithm (Algorithm 2) - initialization

i.1. Find initial outer approximation P̄out
0 = Pout

0 of P.

i.2. Compute the set V̄0 of vertices of P̄out
0 .

i.3. For all v ∈ V̄0, solve (P(v)), find (xv , zv ), w v .

i.4. Compute δH(Pout
0 ,P), β and α.

i.5. Store an H-representation of S .



Algorithm 2 - main loop

1. An initial outer approximation P̄out
0 = Pout

0 of P.

2. For the kth iteration, k ≥ 0, let P̄out
k be the current outer

approximation.

3. V̄k is the set of vertices of P̄out
k ∩ S .

4. For a vertex v ∈ V̄k , find a point y v = v + zv on the boundary of P.

5. If ‖zv‖ > ε, find Hk of P at y v .

6. Current approximation is updated as P̄out
k+1 = P̄out

k ∩Hk .

7. ‖zv‖ ≤ ε for all vertices, the algorithm terminates.

Theorem
Algorithm 2 works correctly: if the algorithm terminates, then it returns a finite weak ε-solution
to (P).



Lemma

Let v /∈ P and H be the supporting halfspace to P. If ‖zv‖ ≥ ε, then
B ∩H = ∅,

B :=
{
y ∈ {v}+ C | ‖y − v‖ ≤ ε

2

}
.

Theorem

The Algorithm 2 terminates after a finite number of iterations.



Computational Results



Example

minimize Γ(x) = x with respect to ≤C

subject to ‖x − e‖2 ≤ 1, x ∈ Rq
,

where q = {3, 4} and the ordering cone is

C = Rq
+.

Outer approximation obtained from

Algorithm 1 using `2 norm



q=3 q=4

p Alg ε |X̄ | Opt Topt En Ten T ε |X̄ | Opt Topt En Ten T

1

1

0.05

33 52 13.29 20 0.31 13.68

0.5

30 41 11.66 12 0.22 11.95
2 42 59 15.59 17 0.26 15.99 57 69 19.27 11 0.28 19.71

Lit1 56 89 17.32 34 1.02 18.56 33 44 9.71 12 0.20 9.97

2

1 29 45 10.49 17 0.23 10.79 29 34 8.70 6 0.07 8.80
2 44 61 14.24 17 0.24 14.68 94 99 25.98 5 0.07 26.20

Lit 32 50 9.76 19 0.27 10.10 31 42 9.18 12 0.19 9.43

∞
1 21 34 8.15 14 0.16 8.35 8 9 2.34 2 0.02 2.38
2 37 51 12.39 13 0.15 12.61 11 15 4.23 1 0.02 4.39

Lit 21 34 6.76 14 0.15 6.96 8 9 2.05 2 0.02 2.09

1

1

0.01

175 262 69.13 88 20.17 92.99

0.1

143 177 52.94 34 2.67 56.25
2 161 235 62.55 73 10.56 75.28 232 273 78.37 38 5.05 84.42

Lit 256 397 76.54 142 113.29 212.22 412 510 111.49 91 48.25 165.40

2

1 128 196 46.51 69 8.41 56.52 -
2 145 209 49.42 64 6.56 57.29 -

Lit 139 213 41.49 75 10.39 53.88 208 265 57.93 46 5.08 63.67

∞
1 93 145 35.34 53 3.44 39.47 68 82 22.59 12 0.22 22.87
2 107 154 37.20 47 2.43 40.15 -

Lit 87 137 26.72 51 3.03 30.36 -

1[Löhne, et al., 2014]



Example

minimize Γ(x) = (‖x‖2
2 + b1x , ‖x‖2

2 + b2x , ‖x‖2
2 + b3x)T

with respect to ≤R3
+

subject to ‖x‖2
2 ≤ 100, 0 ≤ xi ≤ 10 for i ∈ {1, . . . , n}, x ∈ Rn,

where b̂1 = (0, 10, 120), b̂2 = (80,−448, 80), b̂3 = (−448, 80, 80) and b1, b2, b3 ∈ Rn.

(a) Let n = 3 and b1 = b̂1, b2 = b̂2, b3 = b̂3.

(b) Let n = 9 and b1 = (b̂1, b̂1, b̂1), b2 = (b̂2, b̂2, b̂2), b3 = (b̂3, b̂3, b̂3).

[Ehrgott, et al., 2011, Example 5.10]



n=3 n=9

ε p Alg |X̄ | Opt Topt En Ten T |X̄ | Opt Topt En Ten T

10

2

1 502 943 285.43 132 100.12 401.95 1561 2754 1159.60 225 753.05 2046.88
2 958 3924 1194.30 137 122.28 1339.09 1770 4213 1819.70 218 733.58 2682.37

Lit 305 965 259.85 164 211.23 502.43 2718 4520 1772.08 259 1324.24 3295.96

inf

1 197 592 179.71 106 41.61 227.61 1231 2106 901.81 152 150.43 1076.14
2 199 1206 390.99 100 36.67 432.99 3638 9222 4045.45 166 219.60 4301.63

Lit 180 586 157.46 101 33.60 196.24 2628 5057 1994.39 164 202.33 2231.07

5

2

1 1178 3127 932.65 245 1059.10 2175.25 4461 7968 3371.91 390 8008.67 12795.23
2 1207 5557 1702.79 259 1488.53 3441.28 7052 15662 6546.29 409 9908.03 18268.17

Lit 579 3932 1049.79 309 3046.66 4529.37 7046 11149 4307.21 476 16898.76 23603.25

inf

1 412 1740 526.33 185 325.59 907.19 3153 4538 1889.06 294 2164.45 4390.16
2 465 2655 837.24 188 374.95 1268.01 3570 8155 3482.44 305 2589.99 6470.71

Lit 342 1412 380.10 185 352.70 787.48 3146 4712 1845.91 300 2455.39 4663.98



Ararat, Ç., Ulus, F. and Umer, M.
A Norm Minimization-Based Convex Vector Optimization Algorithm

Journal of Optimization Theory and Applications.

DOI: 10.1007/s10957-022-02045-8

Novel norm minimization-based scalarization, free of direction
parameter.

Algorithms based on the new scalarization

Comparable performance of the algorithms.

Finiteness guarantee for the first time.

Convergence Rate: ongoing
After slight modifications, we prove O(k2/1−q); and working for a
better convergence rate.



Direction Free Geometric Dual Algorithm



Outer Approximation Algorithms for CVOPs
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The dual algorithms solve weighted sum scalarization:

inf
x∈X

wTf (x)

∗ [Heyde, 2013]



Outer Approximation Algorithms for CVOPs
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Ararat, Ç. and Tekgül, S. and Ulus, F.

“Geometric duality and a geometric dual algorithm for CVOPs.”



Geometric Dual Problem and Solution Concept



Geometric Dual Problem

‘maximize’ ξ(w) (with respect to ≤K ) (D)

subject to w ∈ C+,

where

ξ : Rq → Rq+1,

ξ(w) := (w1, . . . ,wq, inf
x∈X

wTf (x))T

eq+1 = (0, . . . , 0, 1)T ∈ Rq+1,

K := {λeq+1 | λ ≥ 0}



Solution Concept for (D)

D := ξ(C+)− K = {(wT, α)T ∈ Rq+1 | w ∈ C+, α ≤ infx∈X wTf (x)}



Solution Concept for (D)

A finite set W̄ ⊆ C+ ∩ Sq−1 is called a finite ε-solution of (D) if it
consists of only K -maximizers and

cone(conv ξ(W̄) + ε{eq+1})− K ⊇ D,

where Sq−1 := {z ∈ Rq | ‖z‖∗ = 1}.



Solution Concept for (D)

cone(conv ξ(W̄) + ε{eq+1})− K ⊇ D
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Solution Concept for (D)

cone(conv ξ(W̄) + ε{eq+1})− K ⊇ D



Geometric Duality Results



Supporting Hyperplanes of P

H : Rq+1 ⇒ Rq , H(w , α) := {y ∈ Rq | wTy − α ≥ 0}
H(w , α) := {y ∈ Rq | wTy − α = 0}.



Supporting Hyperplanes of D

H∗ : Rq ⇒ Rq+1, H∗(y) := {(wT, α)T ∈ Rq+1 | wTy − α ≥ 0}
H∗(y) := {(wT, α)T ∈ Rq+1 | wTy − α = 0}.



Geometric Duality Theorem

F∗D : set of all K -maximal proper face of D
FP : set of all C -minimal proper face of P

Ψ: F∗D ⇒ Rq , Ψ(F∗) :=
⋂

(wT,α)T∈F∗
H(w , α) ∩ P.

Theorem

Ψ is an inclusion-reversing one-to-one correspondence between F∗D and FP . The inverse map is
given by

Ψ−1(F ) :=
⋂
y∈F

H∗(y) ∩ D.



Geometric Duality Results

For closed and convex sets P̄ and D̄, we define

DP̄ := {(wT, α)T ∈ Rq+1 | ∀y ∈ P̄ : wTy − α ≥ 0},

PD̄ := {y ∈ Rq | ∀(wT, α)T ∈ D̄ : wTy − α ≥ 0}.

Proposition
We have

DP = D, PD = P

.

Let ∅ 6= P̄ ( Rq be a closed convex set. We have

P̄ = PDP̄ .

Let ∅ 6= D̄ ⊆ Rq+1 be a closed convex lower set. Suppose further that D̄ is a cone and
PD̄ 6= ∅. We have

DPD̄ = D.



The Geometric Dual Algorithm



Dual Algorithm



Dual Algorithm



Dual Algorithm

minimize wTf (x)

subject to x ∈ X .



Dual Algorithm



Dual Algorithm



Dual Algorithm



Dual Algorithm



Dual Algorithm



Dual Algorithm



Dual Algorithm

Proposition

When the dual algorithm terminates, it returns

a finite ε-solution W̄ to (D)

and a finite weak ε̃-solution X̄ to (P).

ε̃ =
ε

min
λ∈∆J−1

∥∥∥∑J
j=1 λjw

j
∥∥∥
∗

,

where w1, . . .wJ are the generating vectors of C+.



Computational Results



Proximity Measures

Primal error indicator

The actual Hausdorff distance



Proximity Measures

Primal error indicator
Hypervolume indicator

Hypervolume between the inner and outer approximations

HV :=

(
HV(Vo , r)− HV(Vi , r)

HV(Vo , r)

)
× 100.



Test Problems

minimize f (x) = ATx with respect to ≤Rq
+

subject to xTPx − 1 ≤ 0

P ∈ Rn×n is a symmetric positive definite matrix

A ∈ Rn×q
+

For q = 2, we take n ∈ {5, 10, 15, . . . , 50}
(50 randomly generated instance)

For q = 3, we take n ∈ {10, 15, 20, 25, 30}
(20 randomly generated instance)



Results for q = 3

n Alg Stop Opt Topt Topt/Opt En Ten T T/|X̄ | PE HV

10

1 ε1 = 0.5000 52.35 19.92 0.3801 5.05 0.09 46.41 0.91 0.4209 3.5805
2 ε2 = 0.2887 86.25 29.03 0.3363 4.40 0.20 71.36 70.84 0.1106 1.1973
1 ε3 = 0.1106 232.80 85.32 0.3655 6.90 0.16 200.13 0.92 0.1052 1.2846
2 T = 46.41 60.70 20.32 0.3336 4.05 0.24 48.43 0.80 0.2244 1.8735

15

1 ε1 = 0.5000 70.85 26.98 0.3777 5.60 0.09 63.54 0.93 0.4694 2.6458
2 ε2 = 0.2887 105.15 34.87 0.3311 4.70 0.26 84.58 0.80 0.1033 0.7146
1 ε3 = 0.1033 295.30 108.74 0.3677 7.45 0.21 251.56 0.91 0.0991 0.5690
2 T = 63.54 81.75 27.01 0.3307 4.40 0.36 65.51 0.81 0.2022 1.0703

20

1 ε1 = 0.5000 65.45 24.62 0.3797 5.50 0.09 57.12 0.92 0.4569 3.4845
2 ε2 = 0.2887 101.95 33.66 0.3302 4.65 0.24 81.31 0.80 0.1052 1.0783
1 ε3 = 0.1052 284.25 104.18 0.3672 7.35 0.19 238.73 0.91 0.1020 0.7881
2 T = 57.12 74.40 24.63 0.3324 4.30 0.29 59.06 0.80 0.1996 1.5307

25

1 ε1 = 0.5000 85.95 32.63 0.3786 5.95 0.12 82.51 0.98 0.4650 2.3063
2 ε2 = 0.2887 139.25 46.13 0.3306 4.95 0.34 112.65 0.81 0.1071 0.6154
1 ε3 = 0.1071 368.60 137.91 0.3736 7.70 0.26 340.28 1.01 0.1034 0.5063
2 T = 82.51 106.10 35.02 0.3297 4.80 0.56 84.55 0.80 0.1878 0.8167

30

1 ε1 = 0.5000 95.70 36.59 0.3818 6.00 0.12 91.27 0.99 0.4690 2.2715
2 ε2 = 0.2887 150.70 51.13 0.3386 5.15 0.43 131.15 0.87 0.1066 0.6110
1 ε3 = 0.1066 452.70 170.22 0.3751 8.05 0.32 419.02 1.02 0.1046 0.5420
2 T = 91.27 109.00 36.89 0.3381 4.60 0.48 93.41 0.86 0.2272 0.8947



Results for q = 3

Average PE (left) and HV (right) values under nearly equal runtime

(rows one and four of Table).



Results for q = 3

Average CPU time (left) and HV (right) values under nearly equal PE

(rows two and three of Table).



Results - different ordering cones

Average primal error values of random instances for q = 3 for ordering cones C1 (left),

C2 (middle) and C3 (right) when the algorithms are run under time limit of 50 seconds.



Results - different ordering cones

Average HV values of random instances for q = 3 for ordering cones C1 (left), C2

(middle) and C3 (right) when the algorithms are run under time limit of 50 seconds.
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Primal Algorithm [Ararat, et al., 2022], Primal Algorithm* and Dual Algorithm*

[Löhne, et al., 2014], DLSW [Dörfler, et al., 2021]
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[Löhne, et al., 2014], DLSW [Dörfler, et al., 2021]
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