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Financial contagion

Related to failures in a financial system

Triggered by correlated external shocks

Spreads through the system via contractual obligations

Undesirable consequences for internal/external members

Our focus: financial networks based on interbank liabilities (clearing systems)

Examples: Eisenberg, Noe ’01; Rogers, Veraart ’13; Kabanov et al. ’17 (survey)

Resource for payments: operating cash flow (exogenous)

A random shock on the operating cash flow → (in)ability to meet liabilities

WU Research Seminar Systemic risk computations June 24, 2022



Financial contagion

Related to failures in a financial system

Triggered by correlated external shocks

Spreads through the system via contractual obligations

Undesirable consequences for internal/external members

Our focus: financial networks based on interbank liabilities (clearing systems)

Examples: Eisenberg, Noe ’01; Rogers, Veraart ’13; Kabanov et al. ’17 (survey)

Resource for payments: operating cash flow (exogenous)

A random shock on the operating cash flow → (in)ability to meet liabilities

WU Research Seminar Systemic risk computations June 24, 2022



Financial contagion

Related to failures in a financial system

Triggered by correlated external shocks

Spreads through the system via contractual obligations

Undesirable consequences for internal/external members

Our focus: financial networks based on interbank liabilities (clearing systems)

Examples: Eisenberg, Noe ’01; Rogers, Veraart ’13; Kabanov et al. ’17 (survey)

Resource for payments: operating cash flow (exogenous)

A random shock on the operating cash flow → (in)ability to meet liabilities

WU Research Seminar Systemic risk computations June 24, 2022



Random shocks and aggregation functions

Financial network with nodes N = {1, . . . , n}

Random shock X = (X1, . . . , Xn)T ∈ L∞(Rn)

Aggregation function Λ: Rn → R̄:

- Λ(X(ω)) is an aggregate quantity associated to operating cash flow under
scenario ω ∈ Ω

- Simple examples: Λ(x) =
∑n

i=1 xi, Λ(x) = −
∑n

i=1 x
−
i

- More realistic examples: Λ(x) depends on the clearing mechanism.
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Eisenberg-Noe model

Financial network with nodes N = {1, . . . , n}

Operating cash flow vector: x = (x1, . . . , xn)T ∈ Rn
+ (e.g., x = X(ω))

Total obligation vector: p̄ = (p̄1, . . . , p̄n)T ∈ Rn
+

Relative liabilities matrix: π = (πij)i,j∈N ∈ Rn×n
+ stochastic matrix with πii = 0

x1

x2

x3

π12 = 0.3

π13 = 0.7
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Eisenberg-Noe model

Clearing (payment) vector: p = (p1, . . . , pn)T ∈ Rn
+

Each bank pays either what it owes or what it has.

p solves the fixed point problem

pi = p̄i ∧

(
xi +

n∑
j=1

πjipj

)
, i ∈ N ,

i.e., p = p̄ ∧
(
x+ πTp

)
.

LP formulation: maximize 1T
np subject to p ≤ x+ πTp, p ∈ [0n, p̄].

Bounded LP ⇒ Optimal solution p exists. ⇒ p is a clearing vector.

Aggregation function: Define ΛEN(x) to be the optimal value of the LP.

- Total debt paid at clearing.

- Other possibilities for ΛEN(x): payment received by a special node (“society”),
number of nondefaulting banks, etc.

We will work with more general optimization aggregation functions.

WU Research Seminar Systemic risk computations June 24, 2022



Eisenberg-Noe model

Clearing (payment) vector: p = (p1, . . . , pn)T ∈ Rn
+

Each bank pays either what it owes or what it has.

p solves the fixed point problem

pi = p̄i ∧

(
xi +

n∑
j=1

πjipj

)
, i ∈ N ,

i.e., p = p̄ ∧
(
x+ πTp

)
.

LP formulation: maximize 1T
np subject to p ≤ x+ πTp, p ∈ [0n, p̄].

Bounded LP ⇒ Optimal solution p exists. ⇒ p is a clearing vector.

Aggregation function: Define ΛEN(x) to be the optimal value of the LP.

- Total debt paid at clearing.

- Other possibilities for ΛEN(x): payment received by a special node (“society”),
number of nondefaulting banks, etc.

We will work with more general optimization aggregation functions.

WU Research Seminar Systemic risk computations June 24, 2022



Eisenberg-Noe model

Clearing (payment) vector: p = (p1, . . . , pn)T ∈ Rn
+

Each bank pays either what it owes or what it has.

p solves the fixed point problem

pi = p̄i ∧

(
xi +

n∑
j=1

πjipj

)
, i ∈ N ,

i.e., p = p̄ ∧
(
x+ πTp

)
.

LP formulation: maximize 1T
np subject to p ≤ x+ πTp, p ∈ [0n, p̄].

Bounded LP ⇒ Optimal solution p exists. ⇒ p is a clearing vector.

Aggregation function: Define ΛEN(x) to be the optimal value of the LP.

- Total debt paid at clearing.

- Other possibilities for ΛEN(x): payment received by a special node (“society”),
number of nondefaulting banks, etc.

We will work with more general optimization aggregation functions.

WU Research Seminar Systemic risk computations June 24, 2022



Eisenberg-Noe model

Clearing (payment) vector: p = (p1, . . . , pn)T ∈ Rn
+

Each bank pays either what it owes or what it has.

p solves the fixed point problem

pi = p̄i ∧

(
xi +

n∑
j=1

πjipj

)
, i ∈ N ,

i.e., p = p̄ ∧
(
x+ πTp

)
.

LP formulation: maximize 1T
np subject to p ≤ x+ πTp, p ∈ [0n, p̄].

Bounded LP ⇒ Optimal solution p exists. ⇒ p is a clearing vector.

Aggregation function: Define ΛEN(x) to be the optimal value of the LP.

- Total debt paid at clearing.

- Other possibilities for ΛEN(x): payment received by a special node (“society”),
number of nondefaulting banks, etc.

We will work with more general optimization aggregation functions.

WU Research Seminar Systemic risk computations June 24, 2022



Eisenberg-Noe model

Clearing (payment) vector: p = (p1, . . . , pn)T ∈ Rn
+

Each bank pays either what it owes or what it has.

p solves the fixed point problem

pi = p̄i ∧

(
xi +

n∑
j=1

πjipj

)
, i ∈ N ,

i.e., p = p̄ ∧
(
x+ πTp

)
.

LP formulation: maximize 1T
np subject to p ≤ x+ πTp, p ∈ [0n, p̄].

Bounded LP ⇒ Optimal solution p exists. ⇒ p is a clearing vector.

Aggregation function: Define ΛEN(x) to be the optimal value of the LP.

- Total debt paid at clearing.

- Other possibilities for ΛEN(x): payment received by a special node (“society”),
number of nondefaulting banks, etc.

We will work with more general optimization aggregation functions.

WU Research Seminar Systemic risk computations June 24, 2022



Eisenberg-Noe model

Clearing (payment) vector: p = (p1, . . . , pn)T ∈ Rn
+

Each bank pays either what it owes or what it has.

p solves the fixed point problem

pi = p̄i ∧

(
xi +

n∑
j=1

πjipj

)
, i ∈ N ,

i.e., p = p̄ ∧
(
x+ πTp

)
.

LP formulation: maximize 1T
np subject to p ≤ x+ πTp, p ∈ [0n, p̄].

Bounded LP ⇒ Optimal solution p exists. ⇒ p is a clearing vector.

Aggregation function: Define ΛEN(x) to be the optimal value of the LP.

- Total debt paid at clearing.

- Other possibilities for ΛEN(x): payment received by a special node (“society”),
number of nondefaulting banks, etc.

We will work with more general optimization aggregation functions.

WU Research Seminar Systemic risk computations June 24, 2022



Systemic risk measures

Random aggregate output: Λ(X) → Is it acceptable?

A = {ρ ≤ 0} acceptance set of a scalar monetary risk measure ρ : L∞(R)→ R

- Examples of ρ: −E, VaR, AVaR, entropic risk measure.

Look for a capital allocation vector y ∈ Rn that is “inserted” to the system before
the shock is realized to ensure acceptability.

Systemic risk measure insensitive to capital levels (Chen et al. ’13):

ρins(X) := ρ(Λ(X)).

Systemic risk measure sensitive to capital levels(Feinstein, Rudloff, Weber ’17; Biagini et

al. ’19):
R(X) := {y ∈ Rn | Λ(X + y) ∈ A} .

- A set-valued risk measure!

- Concave Λ, (quasi)convex ρ: dual representations in A., Rudloff ’20; A., Aygün ’22

- Today: more realistic / less regular Λ, linear/polyhedral ρ, computational aspects
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Systemic risk measure

Problem: Compute R(X) = {y ∈ Rn | Λ(X + y) ∈ A}.

View as multi-objective optimization:

minimize y w.r.t. Rn
+ subject to Λ(X + y) ∈ A, y ∈ Rn.

First trouble: Dimension is too large! Inconvenient for decision-making, available
algorithms work well mostly for 2-4 objectives.

Remedy: Reduce dimension via grouping.

Suppose there are G groups. Use a 0-1 matrix B ∈ RG×n so that for a capital
allocation vector z ∈ RG for groups

BTz = (z1, . . . , z1; . . . ; zG, . . . , zG)T ∈ Rn

gives the capital allocation vector for banks.

From now on, define

R(X) :=
{
z ∈ RG | Λ(X +BTz) ∈ A

}
.
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A general framework

Problem: Compute

R(X) :=
{
z ∈ RG | Λ(X +BTz) ∈ A

}
.

1 Λ(x) is calculated by the mixed-integer optimization problem

Λ(x) := sup{f(p) | (p, s) ∈ Y(x), p ∈ Rn, s ∈ Zd}.

- f : Rn → R is a strictly increasing continuous function.

- Y : Rn → 2Rn×Zd

is a set-valued function with closed graph and Y(·) ⊆ Ȳ for
some compact Ȳ.
⇒ Ensures attainment of sup and measurability of Λ(X).

- It will cover a signed version of RV model (hence also EN model).

2 A := {Y ∈ L∞(R) | E[Y ] ≥ γ}, where γ ∈ R is a threshold.

- In the paper: extended for polyhedral ρ, e.g., ρ = AVaR (Eichhorn, Römisch ’05).

- Arbitrary convex ρ is out-of-reach for solvers due to integer variables.
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some compact Ȳ.
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The extensive formulation

Compute R(X) :=
{
z ∈ RG | E[Λ(X +BTz)] ≥ γ

}
.

Generally a nonconvex upper set!

Theorem: Suppose that R(X) 6= ∅. Then,

R(X) = {z ∈ RG | E[f(P )] ≥ γ, (P ,S) ∈ L∞(Y(X +BTz))}.

- L∞(D): Essentially bounded measurable selections of random set D
- In the spirit of extensive formulations in two-stage stochastic programming

- Almost immediate for finite Ω by monotonicity

- Needs a careful justification for general Ω by measurable selection arguments

- Yields mixed-integer programming formulations for scalarizations.
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Weighted-sum scalarization

Let w ∈ RG
+\ {0G} and consider

P1 (w) = inf
z∈R(X)

wTz = inf
z∈Z

{
wTz | E[Λ(X +BTz)] ≥ γ

}
.

Corollary: Let w ∈ RG
+ \ {0G} and assume that R(X) 6= ∅. Then, P1 (w) equal the

optimal value of the problem

minimize wTz (P1(w))

subject to E[f(P )] ≥ γ,

(P ,S) ∈ L∞(Y(X +BTz)),

z ∈ RG, P ∈ L∞(Rn), S ∈ L∞(Zd).

When f is linear and Ω is finite, (P1(w)) is an MILP problem.
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Pascoletti-Serafini scalarization

Let v ∈ RG and consider

P2 (v) := inf
{
µ ∈ R | v + µ1G ∈ R (X)

}
= inf

{
µ ∈ R | E[Λ(X +BTv + µ1n)] ≥ γ

}
,

Corollary: Let w ∈ RG
+ \ {0G} and assume that R(X) 6= ∅. Then, P2 (v) equal the

optimal value of the problem

minimize µ ∈ R (P2(v))

subject to E[f(P )] ≥ γ,

(P ,S) ∈ L∞(Y(X +BTv + µ1n)),

v + µ1G ∈ Z, P ∈ L∞(Rn), S ∈ L∞(Zd).

When f is linear and Ω is finite, (P2(v)) is an MILP problem.

Scalarizations can be embedded into an algorithm for nonconvex multiobjective
optimization, e.g., (Nobakhtian, Shafiei ’17).
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Back to clearing systems

Which Y to work with?

EN model: Y(x) = {p ∈ [0n, p̄] | p ≤ x+ πTp̄} → d = 0, no integer variables!

Interested in adding two additional features:

- Default costs: Rogers-Veraart model

- Operating costs: xi < 0 is allowed

- We can have both features: signed Rogers-Veraart model

WU Research Seminar Systemic risk computations June 24, 2022



Signed Rogers-Veraart model

As in EN model:

Financial network with nodes N = {1, . . . , n}

Total obligations: p̄ ∈ Rn
+, relative liabilities: π = (πij)i,j∈N ∈ Rn×n

+

Signed operating cash flows:

Operating cash flow vector: x ∈ Rn

→ External liabilities (e.g. operating costs) are allowed.

Easy fix proposed in Eisenberg, Noe ’01: “Those operating costs could be captured by
appending to the financial system a ‘sink node,’ labeled, say, node 0.”

With x = X(ω) +BTz, changes network structure randomly and depending on
capital. → intractable

Major drawback: Interbank and external liabilities are equally senior.

Instead, assume that operating costs have seniority over interbank liabilities.

Default costs:

A defaulting node can use only a fraction α ∈ (0, 1] of positive operating cash flow,
and a fraction β ∈ (0, 1] of cash inflow from other nodes.
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Signed Rogers-Veraart model

Definition: p ∈ [0n, p̄] is called a clearing vector if, for every i ∈ N ,

- Immediate default: If (x+ πTp)i < 0, then pi = 0.

- Partial liquidity: If 0 ≤ (x+ πTp)i < p̄i, then pi =
(
(αx) ∧ x+ βπTp

)+
i

.

- Full commitment: If (x+ πTp)i ≥ p̄i, then pi = p̄i.

A fixed point characterization is immediate.

How about an optimization formulation?
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Signed Rogers-Veraart model

Theorem: Consider

maximize f(p) (RV(x))

subject to p̄isi −Miti ≤ xi + (πTp)i, i ∈ N ,
p̄isi ≤ pi ≤ p̄i(1− ti), i ∈ N ,

pi ≤ (αxi) ∧ xi + β(πTp)i + (Mi + p̄i)(si + ti), i ∈ N ,
0 ≤ pi ≤ p̄i, si, ti ∈ {0, 1} , i ∈ N ,

where Mi ∈ [x−i ,+∞) is a constant (big-M). Then, (RV(x)) has an optimal solution.
If (p, s, t) is an optimal solution, then p is a clearing vector.

ti checks if there is immediate default.

si checks if default costs are active (non-immediate default).

Now: We can define YRV(x) via the constraints, set ΛRV(x) as the optimal value.
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Systemic risk measure for signed Rogers-Veraart model

Compute RRV(X) :=
{
z ∈ RG | E[ΛRV(X +BTz)] ≥ γ

}
.

Take f(p) = 1T
np.

Combining the MILP for ΛRV with the mixed-integer formulations for scalarizations
yields extensive MILPs that can be solved by commercial solvers for finite Ω.

Then, we can run the nonconvex Benson-type algorithm of Nobakhtian, Shafiei ’17.
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Computational study: Rogers-Veraart model

Standard Rogers-Veraart model with positive shock

n = 45 banks: n1 = 15 big banks (“core”) + n2 = 30 small banks (“periphery”)

Finite probability space with K = 50 scenarios

Random shock: K instances of a Gaussian copula with gamma marginals

Network topology: instance of a random network with independent coin flips for
connections (Erdös-Rényi)

Connectivity probabilities:
core → core: 0.5, core → periphery: 0.1,
periphery → core: 0.3, periphery → periphery: 0.5

Risk measure: negative expectation with threshold γ = γp(1T
np̄) with γp ∈ [0, 1]

γp: average target fraction of total liabilities that should be met at clearing

Base case parameters: α = 0.7, β = 0.9, γp = 0.9
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connections (Erdös-Rényi)

Connectivity probabilities:
core → core: 0.5, core → periphery: 0.1,
periphery → core: 0.3, periphery → periphery: 0.5

Risk measure: negative expectation with threshold γ = γp(1T
np̄) with γp ∈ [0, 1]

γp: average target fraction of total liabilities that should be met at clearing

Base case parameters: α = 0.7, β = 0.9, γp = 0.9
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Sensitivity with respect to α

α | vert(LT )| T time(P2) (sec.) time(total) (min.)

0.1 273 333 12.2 67.5
0.3 461 484 10.6 85.3
0.5 592 602 5.2 52.5
0.7 583 584 3.9 37.7
0.9 589 589 3.4 33.3

As α increases, the discontinuity in fixed point formulation decreases, P2 becomes
easier.
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Sensitivity with respect to γp

γp | vert(LT )| T time(P2) (sec.) time(total) (min.)

0.2 13 13 13.8 3
0.3 51 51 30.3 25.7
0.4 94 94 36.6 57.4
0.5 165 165 98.6 271.2
0.6 223 223 138.5 514.9
0.7 389 389 204.3 1324.5
0.8 395 395 91.6 603.0
0.9 583 584 3.9 37.7

P2 and overall problem get more difficult around γp = 0.7.
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Sensitivity with respect to n1

Change the distribution of nodes among groups while n = n1 + n2 = 45 is fixed.

n1 | vert(LT )| T time(P2) (sec.) time(total) (min.)

5 6 6 1.0 0.1
10 436 436 4.0 29.0
15 583 584 3.9 37.7
20 516 517 7.9 68.0
25 557 557 6.1 56.8
30 371 371 5.8 35.8
35 187 187 6.1 19.0
40 106 108 5.2 9.4
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A three-group Rogers-Veraart network

n = 60 banks: n1 = 10, n2 = 20, n3 = 30
α = β = 0.9, γp = 0.99
Highly nonconvex!

| vert(LT )| T time(P2) (sec.) time(total) (min.)

975 19382 0.4 138.1
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Computational study: signed Eisenberg-Noe model

Random shock: K = 100 instances of a Gaussian random vector
Two groups with sizes n1 = 15 and n2 = 35
Computations take more time. The sets look smoother, sometimes convex-looking.
e.g., sensitivity with respect to connectivity probability 1→ 2:

qcon
1,2 | vert(LT )| T time(P2) (sec.) time(total) (hr.)

0.1 279 358 294.0 29.2
0.3 394 394 492.6 53.9
0.5 360 360 556.8 55.7
0.7 364 364 633.6 64.1
0.9 377 377 772.8 80.9
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Computational study: signed Eisenberg-Noe model

Difficulty increases drastically with K.
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This is a joint work with Nurtai Meimanjan.

An up-to-date preprint will soon be available at
www.arxiv.org/abs/1903.08367.

Thank you!
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