A mixed-integer programming approach for computing systemic risk measures

Çağın Ararat Bilkent University

joint work with Nurtai Meimanjan

June 24, 2022

Vienna University of Economics and Business

- Related to failures in a financial system
- Triggered by correlated external shocks
- Spreads through the system via contractual obligations
- Undesirable consequences for internal/external members

- Related to failures in a financial system
- Triggered by correlated external shocks
- Spreads through the system via contractual obligations
- Undesirable consequences for internal/external members
- Our focus: financial networks based on interbank liabilities (clearing systems)
- Examples: Eisenberg, Noe '01; Rogers, Veraart '13; Kabanov et al. '17 (survey)

- Related to failures in a financial system
- Triggered by correlated external shocks
- Spreads through the system via contractual obligations
- Undesirable consequences for internal/external members
- Our focus: financial networks based on interbank liabilities (clearing systems)
- Examples: Eisenberg, Noe '01; Rogers, Veraart '13; Kabanov et al. '17 (survey)
- Resource for payments: operating cash flow (exogenous)
- A random shock on the operating cash flow \rightarrow (in)ability to meet liabilities

- Financial network with nodes $\mathcal{N} = \{1, \dots, n\}$
- Random shock $\boldsymbol{X} = (X_1, \dots, X_n)^{\mathsf{T}} \in L^{\infty}(\mathbb{R}^n)$

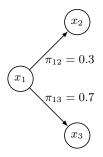
- Financial network with nodes $\mathcal{N} = \{1, \dots, n\}$
- Random shock $\boldsymbol{X} = (X_1, \dots, X_n)^{\mathsf{T}} \in L^{\infty}(\mathbb{R}^n)$
- Aggregation function $\Lambda \colon \mathbb{R}^n \to \overline{\mathbb{R}}$:
 - $\Lambda(\pmb{X}(\omega))$ is an aggregate quantity associated to operating cash flow under scenario $\omega\in\Omega$

- Financial network with nodes $\mathcal{N} = \{1, \dots, n\}$
- Random shock $\boldsymbol{X} = (X_1, \dots, X_n)^{\mathsf{T}} \in L^{\infty}(\mathbb{R}^n)$
- Aggregation function $\Lambda \colon \mathbb{R}^n \to \overline{\mathbb{R}}$:
 - $\Lambda(\pmb{X}(\omega))$ is an aggregate quantity associated to operating cash flow under scenario $\omega\in\Omega$
 - Simple examples: $\Lambda(\pmb{x}) = \sum_{i=1}^n x_i$, $\Lambda(\pmb{x}) = -\sum_{i=1}^n x_i^-$
 - More realistic examples: $\Lambda(\boldsymbol{x})$ depends on the clearing mechanism.

- Financial network with nodes $\mathcal{N} = \{1, \dots, n\}$
- Operating cash flow vector: $\boldsymbol{x} = (x_1, \dots, x_n)^{\mathsf{T}} \in \mathbb{R}^n_+$ (e.g., $\boldsymbol{x} = \boldsymbol{X}(\omega)$)

- Financial network with nodes $\mathcal{N} = \{1, \dots, n\}$
- Operating cash flow vector: $\boldsymbol{x} = (x_1, \dots, x_n)^{\mathsf{T}} \in \mathbb{R}^n_+$ (e.g., $\boldsymbol{x} = \boldsymbol{X}(\omega)$)
- Total obligation vector: $\bar{\boldsymbol{p}} = \left(\bar{p}_1, \dots, \bar{p}_n\right)^{\mathsf{T}} \in \mathbb{R}^n_+$

- Financial network with nodes $\mathcal{N} = \{1, \dots, n\}$
- Operating cash flow vector: $\boldsymbol{x} = (x_1, \dots, x_n)^{\mathsf{T}} \in \mathbb{R}^n_+$ (e.g., $\boldsymbol{x} = \boldsymbol{X}(\omega)$)
- Total obligation vector: $\bar{\boldsymbol{p}} = \left(\bar{p}_1, \dots, \bar{p}_n\right)^{\mathsf{T}} \in \mathbb{R}^n_+$
- Relative liabilities matrix: $\boldsymbol{\pi} = (\pi_{ij})_{i,j \in \mathcal{N}} \in \mathbb{R}^{n \times n}_+$ stochastic matrix with $\pi_{ii} = 0$



- Clearing (payment) vector: $\boldsymbol{p} = \left(p_1, \ldots, p_n\right)^{\mathsf{T}} \in \mathbb{R}^n_+$
- Each bank pays either what it owes or what it has.

- Clearing (payment) vector: $\boldsymbol{p} = (p_1, \dots, p_n)^{\mathsf{T}} \in \mathbb{R}^n_+$
- Each bank pays either what it owes or what it has.
- *p* solves the fixed point problem

$$p_i = \overline{p}_i \wedge \left(x_i + \sum_{j=1}^n \pi_{ji} p_j \right), \quad i \in \mathcal{N},$$

- Clearing (payment) vector: $\boldsymbol{p} = (p_1, \dots, p_n)^{\mathsf{T}} \in \mathbb{R}^n_+$
- Each bank pays either what it owes or what it has.
- *p* solves the fixed point problem

$$p_i = \overline{p}_i \wedge \left(x_i + \sum_{j=1}^n \pi_{ji} p_j \right), \quad i \in \mathcal{N},$$

- LP formulation: maximize $\mathbf{1}_n^{\mathsf{T}} p$ subject to $p \leq x + \pi^{\mathsf{T}} p$, $p \in [\mathbf{0}_n, \bar{p}]$.
- Bounded LP \Rightarrow Optimal solution p exists. $\Rightarrow p$ is a clearing vector.

- Clearing (payment) vector: $\boldsymbol{p} = (p_1, \dots, p_n)^{\mathsf{T}} \in \mathbb{R}^n_+$
- Each bank pays either what it owes or what it has.
- *p* solves the fixed point problem

$$p_i = \overline{p}_i \wedge \left(x_i + \sum_{j=1}^n \pi_{ji} p_j \right), \quad i \in \mathcal{N},$$

- LP formulation: maximize $\mathbf{1}_n^{\mathsf{T}} p$ subject to $p \leq x + \pi^{\mathsf{T}} p$, $p \in [\mathbf{0}_n, \bar{p}]$.
- Bounded LP \Rightarrow Optimal solution p exists. $\Rightarrow p$ is a clearing vector.
- Aggregation function: Define $\Lambda^{\sf EN}(\boldsymbol{x})$ to be the optimal value of the LP.

- Clearing (payment) vector: $\boldsymbol{p} = (p_1, \dots, p_n)^{\mathsf{T}} \in \mathbb{R}^n_+$
- Each bank pays either what it owes or what it has.
- *p* solves the fixed point problem

$$p_i = \overline{p}_i \wedge \left(x_i + \sum_{j=1}^n \pi_{ji} p_j \right), \quad i \in \mathcal{N},$$

- LP formulation: maximize $\mathbf{1}_n^{\mathsf{T}} m{p}$ subject to $m{p} \leq m{x} + m{\pi}^{\mathsf{T}} m{p}, \quad m{p} \in [m{0}_n, ar{m{p}}].$
- Bounded LP \Rightarrow Optimal solution p exists. $\Rightarrow p$ is a clearing vector.
- Aggregation function: Define $\Lambda^{EN}(x)$ to be the optimal value of the LP.
 - Total debt paid at clearing.
 - Other possibilities for $\Lambda^{\sf EN}(\pmb{x})$: payment received by a special node ("society"), number of nondefaulting banks, etc.

- Clearing (payment) vector: $\boldsymbol{p} = (p_1, \dots, p_n)^{\mathsf{T}} \in \mathbb{R}^n_+$
- Each bank pays either what it owes or what it has.
- p solves the fixed point problem

$$p_i = \overline{p}_i \wedge \left(x_i + \sum_{j=1}^n \pi_{ji} p_j \right), \quad i \in \mathcal{N},$$

- LP formulation: maximize $\mathbf{1}_n^{\mathsf{T}} m{p}$ subject to $m{p} \leq m{x} + m{\pi}^{\mathsf{T}} m{p}, \quad m{p} \in [m{0}_n, ar{m{p}}].$
- Bounded LP \Rightarrow Optimal solution p exists. $\Rightarrow p$ is a clearing vector.
- Aggregation function: Define $\Lambda^{EN}(x)$ to be the optimal value of the LP.
 - Total debt paid at clearing.
 - Other possibilities for $\Lambda^{\sf EN}(\pmb{x})$: payment received by a special node ("society"), number of nondefaulting banks, etc.
- We will work with more general optimization aggregation functions.

• Random aggregate output: $\Lambda(\mathbf{X}) \rightarrow \mathsf{Is}$ it acceptable?

- Random aggregate output: $\Lambda(\boldsymbol{X}) \rightarrow \mathsf{Is}$ it acceptable?
- $\mathcal{A} = \{ \rho \leq 0 \}$ acceptance set of a scalar monetary risk measure $\rho \colon L^{\infty}(\mathbb{R}) \to \mathbb{R}$
 - Examples of ρ : $-\mathbb{E}$, VaR, AVaR, entropic risk measure.

- Random aggregate output: $\Lambda(\boldsymbol{X}) \rightarrow \mathsf{Is}$ it acceptable?
- $\mathcal{A} = \{ \rho \leq 0 \}$ acceptance set of a scalar monetary risk measure $\rho \colon L^{\infty}(\mathbb{R}) \to \mathbb{R}$
 - Examples of ρ : $-\mathbb{E}$, VaR, AVaR, entropic risk measure.
- Look for a capital allocation vector $y \in \mathbb{R}^n$ that is "inserted" to the system before the shock is realized to ensure acceptability.

- Random aggregate output: $\Lambda({m X})
 ightarrow {\sf Is}$ it acceptable?
- $\mathcal{A} = \{\rho \leq 0\}$ acceptance set of a scalar monetary risk measure $\rho \colon L^{\infty}(\mathbb{R}) \to \mathbb{R}$
 - Examples of ρ : $-\mathbb{E}$, VaR, AVaR, entropic risk measure.
- Look for a capital allocation vector $y \in \mathbb{R}^n$ that is "inserted" to the system before the shock is realized to ensure acceptability.
- Systemic risk measure insensitive to capital levels (Chen et al. '13):

$$\rho^{\mathsf{ins}}(\boldsymbol{X}) \coloneqq \rho(\Lambda(\boldsymbol{X})).$$

$$R(\boldsymbol{X}) \coloneqq \{ \boldsymbol{y} \in \mathbb{R}^n \mid \Lambda(\boldsymbol{X} + \boldsymbol{y}) \in \mathcal{A} \}.$$

- Random aggregate output: $\Lambda({m X})
 ightarrow {\sf Is}$ it acceptable?
- $\mathcal{A} = \{\rho \leq 0\}$ acceptance set of a scalar monetary risk measure $\rho \colon L^{\infty}(\mathbb{R}) \to \mathbb{R}$
 - Examples of ρ : $-\mathbb{E}$, VaR, AVaR, entropic risk measure.
- Look for a capital allocation vector $y \in \mathbb{R}^n$ that is "inserted" to the system before the shock is realized to ensure acceptability.
- Systemic risk measure insensitive to capital levels (Chen et al. '13):

$$\rho^{\mathsf{ins}}(\boldsymbol{X}) \coloneqq \rho(\Lambda(\boldsymbol{X})).$$

$$R(\boldsymbol{X}) \coloneqq \{ \boldsymbol{y} \in \mathbb{R}^n \mid \Lambda(\boldsymbol{X} + \boldsymbol{y}) \in \mathcal{A} \}.$$

- A set-valued risk measure!

- Random aggregate output: $\Lambda(\boldsymbol{X}) \rightarrow \mathsf{Is}$ it acceptable?
- $\mathcal{A} = \{\rho \leq 0\}$ acceptance set of a scalar monetary risk measure $\rho \colon L^{\infty}(\mathbb{R}) \to \mathbb{R}$
 - Examples of ρ : $-\mathbb{E}$, VaR, AVaR, entropic risk measure.
- Look for a capital allocation vector $y \in \mathbb{R}^n$ that is "inserted" to the system before the shock is realized to ensure acceptability.
- Systemic risk measure insensitive to capital levels (Chen et al. '13):

$$\rho^{\mathsf{ins}}(\boldsymbol{X}) \coloneqq \rho(\Lambda(\boldsymbol{X})).$$

$$R(\boldsymbol{X}) \coloneqq \{ \boldsymbol{y} \in \mathbb{R}^n \mid \Lambda(\boldsymbol{X} + \boldsymbol{y}) \in \mathcal{A} \}.$$

- A set-valued risk measure!
- Concave Λ , (quasi)convex ρ : dual representations in A., Rudloff '20; A., Aygün '22

- Random aggregate output: $\Lambda(\boldsymbol{X}) \rightarrow \mathsf{Is}$ it acceptable?
- $\mathcal{A} = \{ \rho \leq 0 \}$ acceptance set of a scalar monetary risk measure $\rho \colon L^{\infty}(\mathbb{R}) \to \mathbb{R}$
 - Examples of ρ : $-\mathbb{E}$, VaR, AVaR, entropic risk measure.
- Look for a capital allocation vector $y \in \mathbb{R}^n$ that is "inserted" to the system before the shock is realized to ensure acceptability.
- Systemic risk measure insensitive to capital levels (Chen et al. '13):

$$\rho^{\mathsf{ins}}(\boldsymbol{X}) \coloneqq \rho(\Lambda(\boldsymbol{X})).$$

$$R(\boldsymbol{X}) \coloneqq \{ \boldsymbol{y} \in \mathbb{R}^n \mid \Lambda(\boldsymbol{X} + \boldsymbol{y}) \in \mathcal{A} \}.$$

- A set-valued risk measure!
- Concave Λ , (quasi)convex ρ : dual representations in A., Rudloff '20; A., Aygün '22
- Today: more realistic / less regular $\Lambda,$ linear/polyhedral $\rho,$ computational aspects

• Problem: Compute $R(\mathbf{X}) = \{\mathbf{y} \in \mathbb{R}^n \mid \Lambda(\mathbf{X} + \mathbf{y}) \in \mathcal{A}\}.$

Systemic risk measure

- Problem: Compute $R(\mathbf{X}) = \{\mathbf{y} \in \mathbb{R}^n \mid \Lambda(\mathbf{X} + \mathbf{y}) \in \mathcal{A}\}.$
- View as multi-objective optimization:

```
minimize \boldsymbol{y} w.r.t. \mathbb{R}^n_+ subject to \Lambda(\boldsymbol{X} + \boldsymbol{y}) \in \mathcal{A}, \ \boldsymbol{y} \in \mathbb{R}^n.
```

- Problem: Compute $R(\mathbf{X}) = \{\mathbf{y} \in \mathbb{R}^n \mid \Lambda(\mathbf{X} + \mathbf{y}) \in \mathcal{A}\}.$
- View as multi-objective optimization:

```
minimize \boldsymbol{y} w.r.t. \mathbb{R}^n_+ subject to \Lambda(\boldsymbol{X} + \boldsymbol{y}) \in \mathcal{A}, \ \boldsymbol{y} \in \mathbb{R}^n.
```

• First trouble: Dimension is too large! Inconvenient for decision-making, available algorithms work well mostly for 2-4 objectives.

- Problem: Compute $R(\mathbf{X}) = \{\mathbf{y} \in \mathbb{R}^n \mid \Lambda(\mathbf{X} + \mathbf{y}) \in \mathcal{A}\}.$
- View as multi-objective optimization:

```
minimize \boldsymbol{y} w.r.t. \mathbb{R}^n_+ subject to \Lambda(\boldsymbol{X} + \boldsymbol{y}) \in \mathcal{A}, \ \boldsymbol{y} \in \mathbb{R}^n.
```

- First trouble: Dimension is too large! Inconvenient for decision-making, available algorithms work well mostly for 2-4 objectives.
- Remedy: Reduce dimension via grouping.

- Problem: Compute $R(\mathbf{X}) = \{\mathbf{y} \in \mathbb{R}^n \mid \Lambda(\mathbf{X} + \mathbf{y}) \in \mathcal{A}\}.$
- View as multi-objective optimization:

```
minimize \boldsymbol{y} w.r.t. \mathbb{R}^n_+ subject to \Lambda(\boldsymbol{X} + \boldsymbol{y}) \in \mathcal{A}, \ \boldsymbol{y} \in \mathbb{R}^n.
```

- First trouble: Dimension is too large! Inconvenient for decision-making, available algorithms work well mostly for 2-4 objectives.
- Remedy: Reduce dimension via grouping.
- Suppose there are G groups. Use a 0-1 matrix $B \in \mathbb{R}^{G \times n}$ so that for a capital allocation vector $z \in \mathbb{R}^{G}$ for groups

$$oldsymbol{B}^{\mathsf{T}}oldsymbol{z} = \left(z_1,\ldots,z_1;\ldots;z_G,\ldots,z_G
ight)^{\mathsf{T}} \in \mathbb{R}^n$$

gives the capital allocation vector for banks.

- Problem: Compute $R(\mathbf{X}) = \{\mathbf{y} \in \mathbb{R}^n \mid \Lambda(\mathbf{X} + \mathbf{y}) \in \mathcal{A}\}.$
- View as multi-objective optimization:

```
minimize \boldsymbol{y} w.r.t. \mathbb{R}^n_+ subject to \Lambda(\boldsymbol{X} + \boldsymbol{y}) \in \mathcal{A}, \ \boldsymbol{y} \in \mathbb{R}^n.
```

- First trouble: Dimension is too large! Inconvenient for decision-making, available algorithms work well mostly for 2-4 objectives.
- Remedy: Reduce dimension via grouping.
- Suppose there are G groups. Use a 0-1 matrix $B \in \mathbb{R}^{G \times n}$ so that for a capital allocation vector $z \in \mathbb{R}^{G}$ for groups

$$oldsymbol{B}^{\mathsf{T}}oldsymbol{z} = \left(z_1,\ldots,z_1;\ldots;z_G,\ldots,z_G
ight)^{\mathsf{T}} \in \mathbb{R}^n$$

gives the capital allocation vector for banks.

• From now on, define

$$R(\boldsymbol{X}) \coloneqq \left\{ \boldsymbol{z} \in \mathbb{R}^G \mid \Lambda(\boldsymbol{X} + \boldsymbol{B}^{\mathsf{T}} \boldsymbol{z}) \in \mathcal{A}
ight\}.$$

$$R(\boldsymbol{X})\coloneqq\left\{ \boldsymbol{z}\in\mathbb{R}^{G}\mid\Lambda(\boldsymbol{X}+\boldsymbol{B}^{\mathsf{T}}\boldsymbol{z})\in\mathcal{A}
ight\} .$$

 ${\small \bigcirc} \ \Lambda({\pmb x}) \text{ is calculated by the mixed-integer optimization problem}$

$$\Lambda(\boldsymbol{x})\coloneqq \sup\{f(\boldsymbol{p})\mid (\boldsymbol{p},\boldsymbol{s})\in\mathcal{Y}(\boldsymbol{x}), \ \boldsymbol{p}\in\mathbb{R}^n, \ \boldsymbol{s}\in\mathbb{Z}^d\}.$$

$$R(\boldsymbol{X}) \coloneqq \left\{ \boldsymbol{z} \in \mathbb{R}^G \mid \Lambda(\boldsymbol{X} + \boldsymbol{B}^{\mathsf{T}} \boldsymbol{z}) \in \mathcal{A}
ight\}.$$

 ${\color{black} 0}\ \Lambda({\color{black} x})$ is calculated by the mixed-integer optimization problem

 $\Lambda(\boldsymbol{x}) \coloneqq \sup\{f(\boldsymbol{p}) \mid (\boldsymbol{p}, \boldsymbol{s}) \in \mathcal{Y}(\boldsymbol{x}), \ \boldsymbol{p} \in \mathbb{R}^n, \ \boldsymbol{s} \in \mathbb{Z}^d\}.$

- $f \colon \mathbb{R}^n \to \mathbb{R}$ is a strictly increasing continuous function.

$$R(\boldsymbol{X}) \coloneqq \left\{ \boldsymbol{z} \in \mathbb{R}^G \mid \Lambda(\boldsymbol{X} + \boldsymbol{B}^{\mathsf{T}} \boldsymbol{z}) \in \mathcal{A}
ight\}.$$

() $\Lambda(\boldsymbol{x})$ is calculated by the mixed-integer optimization problem

$$\Lambda(\boldsymbol{x}) \coloneqq \sup\{f(\boldsymbol{p}) \mid (\boldsymbol{p}, \boldsymbol{s}) \in \mathcal{Y}(\boldsymbol{x}), \ \boldsymbol{p} \in \mathbb{R}^n, \ \boldsymbol{s} \in \mathbb{Z}^d\}.$$

- $f \colon \mathbb{R}^n \to \mathbb{R}$ is a strictly increasing continuous function.
- $\mathcal{Y}: \mathbb{R}^n \to 2^{\mathbb{R}^n \times \mathbb{Z}^d}$ is a set-valued function with closed graph and $\mathcal{Y}(\cdot) \subseteq \overline{\mathcal{Y}}$ for some compact $\overline{\mathcal{Y}}$.
 - \Rightarrow Ensures attainment of sup and measurability of $\Lambda(\mathbf{X})$.

$$R(\boldsymbol{X})\coloneqq\left\{ \boldsymbol{z}\in\mathbb{R}^{G}\mid\Lambda(\boldsymbol{X}+\boldsymbol{B}^{\mathsf{T}}\boldsymbol{z})\in\mathcal{A}
ight\} .$$

 $\textbf{0} \ \ \Lambda(\boldsymbol{x}) \ \text{is calculated by the mixed-integer optimization problem}$

$$\Lambda(\boldsymbol{x}) \coloneqq \sup\{f(\boldsymbol{p}) \mid (\boldsymbol{p}, \boldsymbol{s}) \in \mathcal{Y}(\boldsymbol{x}), \ \boldsymbol{p} \in \mathbb{R}^n, \ \boldsymbol{s} \in \mathbb{Z}^d\}.$$

- $f \colon \mathbb{R}^n \to \mathbb{R}$ is a strictly increasing continuous function.
- $\mathcal{Y}: \mathbb{R}^n \to 2^{\mathbb{R}^n \times \mathbb{Z}^d}$ is a set-valued function with closed graph and $\mathcal{Y}(\cdot) \subseteq \overline{\mathcal{Y}}$ for some compact $\overline{\mathcal{Y}}$.
 - \Rightarrow Ensures attainment of sup and measurability of $\Lambda(\mathbf{X})$.
- It will cover a signed version of RV model (hence also EN model).

$$R(\boldsymbol{X}) \coloneqq \left\{ \boldsymbol{z} \in \mathbb{R}^G \mid \Lambda(\boldsymbol{X} + \boldsymbol{B}^{\mathsf{T}} \boldsymbol{z}) \in \mathcal{A}
ight\}.$$

() $\Lambda(\boldsymbol{x})$ is calculated by the mixed-integer optimization problem

$$\Lambda(\boldsymbol{x}) \coloneqq \sup\{f(\boldsymbol{p}) \mid (\boldsymbol{p}, \boldsymbol{s}) \in \mathcal{Y}(\boldsymbol{x}), \ \boldsymbol{p} \in \mathbb{R}^n, \ \boldsymbol{s} \in \mathbb{Z}^d\}.$$

- $f \colon \mathbb{R}^n \to \mathbb{R}$ is a strictly increasing continuous function.
- $\mathcal{Y}: \mathbb{R}^n \to 2^{\mathbb{R}^n \times \mathbb{Z}^d}$ is a set-valued function with closed graph and $\mathcal{Y}(\cdot) \subseteq \overline{\mathcal{Y}}$ for some compact $\overline{\mathcal{Y}}$.
 - \Rightarrow Ensures attainment of sup and measurability of $\Lambda(\mathbf{X})$.
- It will cover a signed version of RV model (hence also EN model).

2
$$\mathcal{A} \coloneqq \{Y \in L^{\infty}(\mathbb{R}) \mid \mathbb{E}[Y] \ge \gamma\}$$
, where $\gamma \in \mathbb{R}$ is a threshold.

$$R(oldsymbol{X})\coloneqq\left\{oldsymbol{z}\in\mathbb{R}^G\mid\Lambda(oldsymbol{X}+oldsymbol{B}^{\mathsf{T}}oldsymbol{z})\in\mathcal{A}
ight\}.$$

() $\Lambda(\boldsymbol{x})$ is calculated by the mixed-integer optimization problem

$$\Lambda(\boldsymbol{x}) \coloneqq \sup\{f(\boldsymbol{p}) \mid (\boldsymbol{p}, \boldsymbol{s}) \in \mathcal{Y}(\boldsymbol{x}), \ \boldsymbol{p} \in \mathbb{R}^n, \ \boldsymbol{s} \in \mathbb{Z}^d\}.$$

- $f \colon \mathbb{R}^n \to \mathbb{R}$ is a strictly increasing continuous function.
- $\mathcal{Y}: \mathbb{R}^n \to 2^{\mathbb{R}^n \times \mathbb{Z}^d}$ is a set-valued function with closed graph and $\mathcal{Y}(\cdot) \subseteq \overline{\mathcal{Y}}$ for some compact $\overline{\mathcal{Y}}$.
 - \Rightarrow Ensures attainment of sup and measurability of $\Lambda(\mathbf{X})$.
- It will cover a signed version of RV model (hence also EN model).
- $\textbf{ 2 } \mathcal{A} \coloneqq \{Y \in L^{\infty}(\mathbb{R}) \mid \mathbb{E}[Y] \geq \gamma\}, \text{ where } \gamma \in \mathbb{R} \text{ is a threshold.}$
 - In the paper: extended for polyhedral ρ , e.g., $\rho = AVaR$ (Eichhorn, Römisch '05).

$$R(\boldsymbol{X}) \coloneqq \left\{ \boldsymbol{z} \in \mathbb{R}^G \mid \Lambda(\boldsymbol{X} + \boldsymbol{B}^{\mathsf{T}} \boldsymbol{z}) \in \mathcal{A}
ight\}.$$

 $\textbf{0} \ \ \Lambda(\boldsymbol{x}) \ \text{is calculated by the mixed-integer optimization problem}$

$$\Lambda(\boldsymbol{x}) \coloneqq \sup\{f(\boldsymbol{p}) \mid (\boldsymbol{p}, \boldsymbol{s}) \in \mathcal{Y}(\boldsymbol{x}), \ \boldsymbol{p} \in \mathbb{R}^n, \ \boldsymbol{s} \in \mathbb{Z}^d\}.$$

- $f \colon \mathbb{R}^n \to \mathbb{R}$ is a strictly increasing continuous function.

- $\mathcal{Y}: \mathbb{R}^n \to 2^{\mathbb{R}^n \times \mathbb{Z}^d}$ is a set-valued function with closed graph and $\mathcal{Y}(\cdot) \subseteq \overline{\mathcal{Y}}$ for some compact $\overline{\mathcal{Y}}$.

 \Rightarrow Ensures attainment of sup and measurability of $\Lambda(\mathbf{X})$.

- It will cover a signed version of RV model (hence also EN model).

2 $\mathcal{A} \coloneqq \{Y \in L^{\infty}(\mathbb{R}) \mid \mathbb{E}[Y] \ge \gamma\}$, where $\gamma \in \mathbb{R}$ is a threshold.

- In the paper: extended for polyhedral ρ , e.g., $\rho = AVaR$ (Eichhorn, Römisch '05).
- Arbitrary convex ρ is out-of-reach for solvers due to integer variables.

- Compute $R(\mathbf{X}) \coloneqq \{ \mathbf{z} \in \mathbb{R}^G \mid \mathbb{E}[\Lambda(\mathbf{X} + \mathbf{B}^{\mathsf{T}} \mathbf{z})] \geq \gamma \}.$
- Generally a nonconvex upper set!

- Compute $R(\mathbf{X}) \coloneqq \{ \mathbf{z} \in \mathbb{R}^G \mid \mathbb{E}[\Lambda(\mathbf{X} + \mathbf{B}^{\mathsf{T}} \mathbf{z})] \geq \gamma \}.$
- Generally a nonconvex upper set!
- Theorem: Suppose that $R(\mathbf{X}) \neq \emptyset$. Then,

$$R(\boldsymbol{X}) = \{ \boldsymbol{z} \in \mathbb{R}^G \mid \mathbb{E}[f(\boldsymbol{P})] \geq \gamma, (\boldsymbol{P}, \boldsymbol{S}) \in L^{\infty}(\mathcal{Y}(\boldsymbol{X} + \boldsymbol{B}^{\mathsf{T}} \boldsymbol{z})) \}.$$

- Compute $R(\boldsymbol{X}) \coloneqq \{ \boldsymbol{z} \in \mathbb{R}^G \mid \mathbb{E}[\Lambda(\boldsymbol{X} + \boldsymbol{B}^{\mathsf{T}} \boldsymbol{z})] \geq \gamma \}.$
- Generally a nonconvex upper set!
- Theorem: Suppose that $R(\mathbf{X}) \neq \emptyset$. Then,

$$R(\boldsymbol{X}) = \{ \boldsymbol{z} \in \mathbb{R}^G \mid \mathbb{E}[f(\boldsymbol{P})] \geq \gamma, (\boldsymbol{P}, \boldsymbol{S}) \in L^{\infty}(\mathcal{Y}(\boldsymbol{X} + \boldsymbol{B}^{\mathsf{T}} \boldsymbol{z})) \}.$$

- $L^\infty(\mathcal{D})$: Essentially bounded measurable selections of random set \mathcal{D}

- Compute $R(\boldsymbol{X}) \coloneqq \{ \boldsymbol{z} \in \mathbb{R}^G \mid \mathbb{E}[\Lambda(\boldsymbol{X} + \boldsymbol{B}^{\mathsf{T}} \boldsymbol{z})] \geq \gamma \}.$
- Generally a nonconvex upper set!
- Theorem: Suppose that $R(\mathbf{X}) \neq \emptyset$. Then,

$$R(\boldsymbol{X}) = \{ \boldsymbol{z} \in \mathbb{R}^G \mid \mathbb{E}[f(\boldsymbol{P})] \geq \gamma, (\boldsymbol{P}, \boldsymbol{S}) \in L^{\infty}(\mathcal{Y}(\boldsymbol{X} + \boldsymbol{B}^{\mathsf{T}}\boldsymbol{z})) \}.$$

- $L^\infty(\mathcal{D})$: Essentially bounded measurable selections of random set \mathcal{D}
- In the spirit of extensive formulations in two-stage stochastic programming

- Compute $R(\boldsymbol{X}) \coloneqq \{ \boldsymbol{z} \in \mathbb{R}^G \mid \mathbb{E}[\Lambda(\boldsymbol{X} + \boldsymbol{B}^{\mathsf{T}} \boldsymbol{z})] \geq \gamma \}.$
- Generally a nonconvex upper set!
- Theorem: Suppose that $R(\mathbf{X}) \neq \emptyset$. Then,

$$R(\boldsymbol{X}) = \{ \boldsymbol{z} \in \mathbb{R}^G \mid \mathbb{E}[f(\boldsymbol{P})] \geq \gamma, (\boldsymbol{P}, \boldsymbol{S}) \in L^{\infty}(\mathcal{Y}(\boldsymbol{X} + \boldsymbol{B}^{\mathsf{T}} \boldsymbol{z})) \}.$$

- $L^\infty(\mathcal{D})$: Essentially bounded measurable selections of random set $\mathcal D$
- In the spirit of extensive formulations in two-stage stochastic programming
- Almost immediate for finite $\boldsymbol{\Omega}$ by monotonicity

- Compute $R(\boldsymbol{X}) \coloneqq \{ \boldsymbol{z} \in \mathbb{R}^G \mid \mathbb{E}[\Lambda(\boldsymbol{X} + \boldsymbol{B}^{\mathsf{T}} \boldsymbol{z})] \geq \gamma \}.$
- Generally a nonconvex upper set!
- Theorem: Suppose that $R(\mathbf{X}) \neq \emptyset$. Then,

$$R(\boldsymbol{X}) = \{ \boldsymbol{z} \in \mathbb{R}^G \mid \mathbb{E}[f(\boldsymbol{P})] \geq \gamma, (\boldsymbol{P}, \boldsymbol{S}) \in L^{\infty}(\mathcal{Y}(\boldsymbol{X} + \boldsymbol{B}^{\mathsf{T}}\boldsymbol{z})) \}.$$

- $L^\infty(\mathcal{D})$: Essentially bounded measurable selections of random set \mathcal{D}
- In the spirit of extensive formulations in two-stage stochastic programming
- Almost immediate for finite $\boldsymbol{\Omega}$ by monotonicity
- Needs a careful justification for general Ω by measurable selection arguments
- Yields mixed-integer programming formulations for scalarizations.

• Let $oldsymbol{w} \in \mathbb{R}^G_+ ackslash \{ oldsymbol{0}_G \}$ and consider

$$\mathcal{P}_{1}(\boldsymbol{w}) = \inf_{\boldsymbol{z} \in R(\boldsymbol{X})} \boldsymbol{w}^{\mathsf{T}} \boldsymbol{z} = \inf_{\boldsymbol{z} \in \mathcal{Z}} \{ \boldsymbol{w}^{\mathsf{T}} \boldsymbol{z} \mid \mathbb{E}[\Lambda(\boldsymbol{X} + \boldsymbol{B}^{\mathsf{T}} \boldsymbol{z})] \geq \gamma \}.$$

• Let $oldsymbol{w} \in \mathbb{R}^G_+ ackslash \{ oldsymbol{0}_G \}$ and consider

$$\mathcal{P}_1\left(oldsymbol{w}
ight) = \inf_{oldsymbol{z} \in R(oldsymbol{X})} oldsymbol{w}^{\mathsf{T}} oldsymbol{z} = \inf_{oldsymbol{z} \in \mathcal{Z}} ig\{oldsymbol{w}^{\mathsf{T}} oldsymbol{z} \mid \mathbb{E}[\Lambda(oldsymbol{X} + oldsymbol{B}^{\mathsf{T}} oldsymbol{z})] \geq \gammaig\}.$$

• Corollary: Let $w \in \mathbb{R}^G_+ \setminus \{\mathbf{0}_G\}$ and assume that $R(X) \neq \emptyset$. Then, $\mathcal{P}_1(w)$ equal the optimal value of the problem

$$\begin{array}{ll} \text{minimize} \quad \boldsymbol{w}^{\mathsf{T}}\boldsymbol{z} & (\mathsf{P}_{1}(\boldsymbol{w})) \\ \text{subject to} \quad \mathbb{E}[f(\boldsymbol{P})] \geq \gamma, \\ & (\boldsymbol{P}, \boldsymbol{S}) \in L^{\infty}(\mathcal{Y}(\boldsymbol{X} + \boldsymbol{B}^{\mathsf{T}}\boldsymbol{z})), \\ & \boldsymbol{z} \in \mathbb{R}^{G}, \quad \boldsymbol{P} \in L^{\infty}(\mathbb{R}^{n}), \quad \boldsymbol{S} \in L^{\infty}(\mathbb{Z}^{d}). \end{array}$$

• Let $oldsymbol{w} \in \mathbb{R}^G_+ ackslash \{ oldsymbol{0}_G \}$ and consider

$$\mathcal{P}_1\left(oldsymbol{w}
ight) = \inf_{oldsymbol{z} \in R(oldsymbol{X})} oldsymbol{w}^{\mathsf{T}} oldsymbol{z} = \inf_{oldsymbol{z} \in \mathcal{Z}} ig\{oldsymbol{w}^{\mathsf{T}} oldsymbol{z} \mid \mathbb{E}[\Lambda(oldsymbol{X} + oldsymbol{B}^{\mathsf{T}} oldsymbol{z})] \geq \gammaig\}.$$

• Corollary: Let $w \in \mathbb{R}^G_+ \setminus \{\mathbf{0}_G\}$ and assume that $R(X) \neq \emptyset$. Then, $\mathcal{P}_1(w)$ equal the optimal value of the problem

$$\begin{array}{ll} \text{minimize} \quad \boldsymbol{w}^{\mathsf{T}} \boldsymbol{z} & (\mathsf{P}_{1}(\boldsymbol{w})) \\ \text{subject to} \quad \mathbb{E}[f(\boldsymbol{P})] \geq \gamma, \\ & (\boldsymbol{P}, \boldsymbol{S}) \in L^{\infty}(\mathcal{Y}(\boldsymbol{X} + \boldsymbol{B}^{\mathsf{T}} \boldsymbol{z})), \\ & \boldsymbol{z} \in \mathbb{R}^{G}, \quad \boldsymbol{P} \in L^{\infty}(\mathbb{R}^{n}), \quad \boldsymbol{S} \in L^{\infty}(\mathbb{Z}^{d}). \end{array}$$

• When f is linear and Ω is finite, $(\mathsf{P}_1(\boldsymbol{w}))$ is an MILP problem.

• Let $oldsymbol{v} \in \mathbb{R}^G$ and consider

$$\begin{split} \mathcal{P}_{2}\left(\boldsymbol{v}\right) &\coloneqq \inf \big\{ \mu \in \mathbb{R} \mid \boldsymbol{v} + \mu \mathbf{1}_{G} \in R\left(\boldsymbol{X}\right) \big\} \\ &= \inf \big\{ \mu \in \mathbb{R} \mid \mathbb{E}[\Lambda(\boldsymbol{X} + \boldsymbol{B}^{\mathsf{T}}\boldsymbol{v} + \mu \mathbf{1}_{n})] \geq \gamma \big\}, \end{split}$$

• Let $oldsymbol{v} \in \mathbb{R}^G$ and consider

$$egin{aligned} \mathcal{P}_2\left(oldsymbol{v}
ight)\coloneqq&\inf\left\{\mu\in\mathbb{R}\midoldsymbol{v}+\muoldsymbol{1}_G\in R\left(oldsymbol{X}
ight)
ight\}\ &=\inf\left\{\mu\in\mathbb{R}\mid\mathbb{E}[\Lambda(oldsymbol{X}+oldsymbol{B}^{\mathsf{T}}oldsymbol{v}+\muoldsymbol{1}_n)]\geq\gamma
ight\}, \end{aligned}$$

• Corollary: Let $w \in \mathbb{R}^G_+ \setminus \{\mathbf{0}_G\}$ and assume that $R(X) \neq \emptyset$. Then, $\mathcal{P}_2(v)$ equal the optimal value of the problem

$$\begin{array}{ll} \text{minimize} & \mu \in \mathbb{R} & (\mathsf{P}_2(\boldsymbol{v})) \\ \text{subject to} & \mathbb{E}[f(\boldsymbol{P})] \geq \gamma, \\ & (\boldsymbol{P}, \boldsymbol{S}) \in L^{\infty}(\mathcal{Y}(\boldsymbol{X} + \boldsymbol{B}^{\mathsf{T}} \boldsymbol{v} + \mu \mathbf{1}_n)), \\ & \boldsymbol{v} + \mu \mathbf{1}_G \in \mathcal{Z}, \quad \boldsymbol{P} \in L^{\infty}(\mathbb{R}^n), \quad \boldsymbol{S} \in L^{\infty}(\mathbb{Z}^d). \end{array}$$

• Let $oldsymbol{v} \in \mathbb{R}^G$ and consider

$$egin{aligned} \mathcal{P}_2\left(oldsymbol{v}
ight)\coloneqq&\inf\left\{\mu\in\mathbb{R}\midoldsymbol{v}+\muoldsymbol{1}_G\in R\left(oldsymbol{X}
ight)
ight\}\ &=\inf\left\{\mu\in\mathbb{R}\mid\mathbb{E}[\Lambda(oldsymbol{X}+oldsymbol{B}^{\mathsf{T}}oldsymbol{v}+\muoldsymbol{1}_n)]\geq\gamma
ight\}, \end{aligned}$$

• Corollary: Let $w \in \mathbb{R}^G_+ \setminus \{\mathbf{0}_G\}$ and assume that $R(X) \neq \emptyset$. Then, $\mathcal{P}_2(v)$ equal the optimal value of the problem

$$\begin{array}{ll} \text{minimize} & \mu \in \mathbb{R} & (\mathsf{P}_2(\boldsymbol{v})) \\ \text{subject to} & \mathbb{E}[f(\boldsymbol{P})] \geq \gamma, \\ & (\boldsymbol{P}, \boldsymbol{S}) \in L^{\infty}(\mathcal{Y}(\boldsymbol{X} + \boldsymbol{B}^{\mathsf{T}} \boldsymbol{v} + \mu \mathbf{1}_n)), \\ & \boldsymbol{v} + \mu \mathbf{1}_G \in \mathcal{Z}, \quad \boldsymbol{P} \in L^{\infty}(\mathbb{R}^n), \quad \boldsymbol{S} \in L^{\infty}(\mathbb{Z}^d). \end{array}$$

- When f is linear and Ω is finite, $(\mathsf{P}_2(\boldsymbol{v}))$ is an MILP problem.
- Scalarizations can be embedded into an algorithm for nonconvex multiobjective optimization, e.g., (Nobakhtian, Shafiei '17).

- Which \mathcal{Y} to work with?
- EN model: $\mathcal{Y}(\boldsymbol{x}) = \{ \boldsymbol{p} \in [\boldsymbol{0}_n, \bar{\boldsymbol{p}}] \mid \boldsymbol{p} \leq \boldsymbol{x} + \boldsymbol{\pi}^{\mathsf{T}} \bar{\boldsymbol{p}} \} \rightarrow d = 0$, no integer variables!
- Interested in adding two additional features:
 - Default costs: Rogers-Veraart model
 - Operating costs: $x_i < 0$ is allowed
 - We can have both features: signed Rogers-Veraart model

As in EN model:

- Financial network with nodes $\mathcal{N} = \{1, \dots, n\}$
- Total obligations: $\bar{p} \in \mathbb{R}^n_+$, relative liabilities: $\pi = (\pi_{ij})_{i,j \in \mathcal{N}} \in \mathbb{R}^{n \times n}_+$

As in EN model:

- Financial network with nodes $\mathcal{N} = \{1, \dots, n\}$
- Total obligations: $\bar{p} \in \mathbb{R}^n_+$, relative liabilities: $\pi = (\pi_{ij})_{i,j \in \mathcal{N}} \in \mathbb{R}^{n \times n}_+$

Signed operating cash flows:

- Operating cash flow vector: $oldsymbol{x} \in \mathbb{R}^n$
 - \rightarrow External liabilities (e.g. operating costs) are allowed.

As in EN model:

- Financial network with nodes $\mathcal{N} = \{1, \dots, n\}$
- Total obligations: $\bar{p} \in \mathbb{R}^n_+$, relative liabilities: $\pi = (\pi_{ij})_{i,j \in \mathcal{N}} \in \mathbb{R}^{n \times n}_+$

Signed operating cash flows:

- Operating cash flow vector: x ∈ ℝⁿ
 → External liabilities (e.g. operating costs) are allowed.
- Easy fix proposed in Eisenberg, Noe '01: "Those operating costs could be captured by appending to the financial system a 'sink node,' labeled, say, node 0."
- With $x = X(\omega) + B^{\mathsf{T}}z$, changes network structure randomly and depending on capital. \rightarrow intractable

As in EN model:

- Financial network with nodes $\mathcal{N} = \{1, \dots, n\}$
- Total obligations: $\bar{p} \in \mathbb{R}^n_+$, relative liabilities: $\pi = (\pi_{ij})_{i,j \in \mathcal{N}} \in \mathbb{R}^{n \times n}_+$

Signed operating cash flows:

- Operating cash flow vector: x ∈ ℝⁿ
 → External liabilities (e.g. operating costs) are allowed.
- Easy fix proposed in Eisenberg, Noe '01: "Those operating costs could be captured by appending to the financial system a 'sink node,' labeled, say, node 0."
- With $x = X(\omega) + B^{\mathsf{T}}z$, changes network structure randomly and depending on capital. \rightarrow intractable
- Major drawback: Interbank and external liabilities are equally senior.

As in EN model:

- Financial network with nodes $\mathcal{N} = \{1, \dots, n\}$
- Total obligations: $\bar{p} \in \mathbb{R}^n_+$, relative liabilities: $\pi = (\pi_{ij})_{i,j \in \mathcal{N}} \in \mathbb{R}^{n \times n}_+$

Signed operating cash flows:

- Operating cash flow vector: x ∈ ℝⁿ
 → External liabilities (e.g. operating costs) are allowed.
- Easy fix proposed in Eisenberg, Noe '01: "Those operating costs could be captured by appending to the financial system a 'sink node,' labeled, say, node 0."
- With $x = X(\omega) + B^{\mathsf{T}}z$, changes network structure randomly and depending on capital. \rightarrow intractable
- Major drawback: Interbank and external liabilities are equally senior.
- Instead, assume that operating costs have seniority over interbank liabilities.

Default costs:

• A defaulting node can use only a fraction $\alpha \in (0,1]$ of positive operating cash flow, and a fraction $\beta \in (0,1]$ of cash inflow from other nodes.

- Definition: $p \in [\mathbf{0}_n, \bar{p}]$ is called a clearing vector if, for every $i \in \mathcal{N}$,
 - Immediate default: If $(\boldsymbol{x} + \boldsymbol{\pi}^{\mathsf{T}} \boldsymbol{p})_i < 0$, then $p_i = 0$.

- Definition: $p \in [\mathbf{0}_n, \bar{p}]$ is called a clearing vector if, for every $i \in \mathcal{N}$,
 - Immediate default: If $(\boldsymbol{x} + \boldsymbol{\pi}^{\mathsf{T}} \boldsymbol{p})_i < 0$, then $p_i = 0$.
 - Partial liquidity: If $0 \leq (\boldsymbol{x} + \boldsymbol{\pi}^{\mathsf{T}} \boldsymbol{p})_i < \bar{p}_i$, then $p_i = ((\alpha \boldsymbol{x}) \wedge \boldsymbol{x} + \beta \boldsymbol{\pi}^{\mathsf{T}} \boldsymbol{p})_i^+$.

- Definition: $p \in [\mathbf{0}_n, \bar{p}]$ is called a clearing vector if, for every $i \in \mathcal{N}$,
 - Immediate default: If $(\boldsymbol{x} + \boldsymbol{\pi}^{\mathsf{T}} \boldsymbol{p})_i < 0$, then $p_i = 0$.
 - Partial liquidity: If $0 \leq (\boldsymbol{x} + \boldsymbol{\pi}^{\mathsf{T}} \boldsymbol{p})_i < \bar{p}_i$, then $p_i = ((\alpha \boldsymbol{x}) \wedge \boldsymbol{x} + \beta \boldsymbol{\pi}^{\mathsf{T}} \boldsymbol{p})_i^+$.
 - Full commitment: If $(\boldsymbol{x} + \boldsymbol{\pi}^{\mathsf{T}} \boldsymbol{p})_i \geq \bar{p}_i$, then $p_i = \bar{p}_i$.

- Definition: $oldsymbol{p} \in [oldsymbol{0}_n, oldsymbol{ar{p}}]$ is called a clearing vector if, for every $i \in \mathcal{N}$,
 - Immediate default: If $(\boldsymbol{x} + \boldsymbol{\pi}^{\mathsf{T}} \boldsymbol{p})_i < 0$, then $p_i = 0$.
 - Partial liquidity: If $0 \leq (\boldsymbol{x} + \boldsymbol{\pi}^{\mathsf{T}} \boldsymbol{p})_i < \bar{p}_i$, then $p_i = ((\alpha \boldsymbol{x}) \wedge \boldsymbol{x} + \beta \boldsymbol{\pi}^{\mathsf{T}} \boldsymbol{p})_i^+$.
 - Full commitment: If $(\boldsymbol{x} + \boldsymbol{\pi}^{\mathsf{T}} \boldsymbol{p})_i \geq \bar{p}_i$, then $p_i = \bar{p}_i$.
- A fixed point characterization is immediate.

- Definition: $p \in [\mathbf{0}_n, \bar{p}]$ is called a clearing vector if, for every $i \in \mathcal{N}$,
 - Immediate default: If $(\boldsymbol{x} + \boldsymbol{\pi}^{\mathsf{T}} \boldsymbol{p})_i < 0$, then $p_i = 0$.
 - Partial liquidity: If $0 \leq (\boldsymbol{x} + \boldsymbol{\pi}^{\mathsf{T}} \boldsymbol{p})_i < \bar{p}_i$, then $p_i = ((\alpha \boldsymbol{x}) \wedge \boldsymbol{x} + \beta \boldsymbol{\pi}^{\mathsf{T}} \boldsymbol{p})_i^+$.
 - Full commitment: If $(\boldsymbol{x} + \boldsymbol{\pi}^{\mathsf{T}} \boldsymbol{p})_i \geq \bar{p}_i$, then $p_i = \bar{p}_i$.
- A fixed point characterization is immediate.
- How about an optimization formulation?

• Theorem: Consider

$$\begin{array}{ll} \text{maximize} & f(\boldsymbol{p}) & (\mathsf{RV}(\boldsymbol{x})) \\ \text{subject to} & \bar{p}_i s_i - M_i t_i \leq x_i + (\boldsymbol{\pi}^\mathsf{T} \boldsymbol{p})_i, & i \in \mathcal{N}, \\ & \bar{p}_i s_i \leq p_i \leq \bar{p}_i (1 - t_i), & i \in \mathcal{N}, \\ & p_i \leq (\alpha x_i) \wedge x_i + \beta(\boldsymbol{\pi}^\mathsf{T} \boldsymbol{p})_i + (M_i + \bar{p}_i)(s_i + t_i), & i \in \mathcal{N}, \\ & 0 \leq p_i \leq \bar{p}_i, \quad s_i, t_i \in \{0, 1\}, & i \in \mathcal{N}, \end{array}$$

where $M_i \in [x_i^-, +\infty)$ is a constant (big-M). Then, $(\mathsf{RV}(x))$ has an optimal solution. If (p, s, t) is an optimal solution, then p is a clearing vector.

• Theorem: Consider

$$\begin{array}{ll} \text{maximize} & f(\boldsymbol{p}) & (\mathsf{RV}(\boldsymbol{x})) \\ \text{subject to} & \bar{p}_i s_i - M_i t_i \leq x_i + (\boldsymbol{\pi}^\mathsf{T} \boldsymbol{p})_i, & i \in \mathcal{N}, \\ & \bar{p}_i s_i \leq p_i \leq \bar{p}_i (1 - t_i), & i \in \mathcal{N}, \\ & p_i \leq (\alpha x_i) \wedge x_i + \beta(\boldsymbol{\pi}^\mathsf{T} \boldsymbol{p})_i + (M_i + \bar{p}_i)(s_i + t_i), & i \in \mathcal{N}, \\ & 0 \leq p_i \leq \bar{p}_i, \quad s_i, t_i \in \{0, 1\}, & i \in \mathcal{N}, \end{array}$$

where $M_i \in [x_i^-, +\infty)$ is a constant (big-M). Then, $(\mathsf{RV}(x))$ has an optimal solution. If (p, s, t) is an optimal solution, then p is a clearing vector.

- t_i checks if there is immediate default.
- s_i checks if default costs are active (non-immediate default).

• Theorem: Consider

$$\begin{array}{ll} \text{maximize} & f(\boldsymbol{p}) & (\mathsf{RV}(\boldsymbol{x})) \\ \text{subject to} & \bar{p}_i s_i - M_i t_i \leq x_i + (\boldsymbol{\pi}^\mathsf{T} \boldsymbol{p})_i, & i \in \mathcal{N}, \\ & \bar{p}_i s_i \leq p_i \leq \bar{p}_i (1 - t_i), & i \in \mathcal{N}, \\ & p_i \leq (\alpha x_i) \wedge x_i + \beta(\boldsymbol{\pi}^\mathsf{T} \boldsymbol{p})_i + (M_i + \bar{p}_i)(s_i + t_i), & i \in \mathcal{N}, \\ & 0 \leq p_i \leq \bar{p}_i, \quad s_i, t_i \in \{0, 1\}, & i \in \mathcal{N}, \end{array}$$

where $M_i \in [x_i^-, +\infty)$ is a constant (big-M). Then, $(\mathsf{RV}(x))$ has an optimal solution. If (p, s, t) is an optimal solution, then p is a clearing vector.

- t_i checks if there is immediate default.
- s_i checks if default costs are active (non-immediate default).
- Now: We can define $\mathcal{Y}^{\mathsf{RV}}(x)$ via the constraints, set $\Lambda^{\mathsf{RV}}(x)$ as the optimal value.

• Compute $R^{\mathsf{RV}}(\boldsymbol{X}) \coloneqq \{ \boldsymbol{z} \in \mathbb{R}^G \mid \mathbb{E}[\Lambda^{\mathsf{RV}}(\boldsymbol{X} + \boldsymbol{B}^{\mathsf{T}}\boldsymbol{z})] \geq \gamma \}.$

- Compute $R^{\mathsf{RV}}(\boldsymbol{X}) \coloneqq \{ \boldsymbol{z} \in \mathbb{R}^G \mid \mathbb{E}[\Lambda^{\mathsf{RV}}(\boldsymbol{X} + \boldsymbol{B}^{\mathsf{T}}\boldsymbol{z})] \geq \gamma \}.$
- Take $f(\boldsymbol{p}) = \mathbf{1}_n^\mathsf{T} \boldsymbol{p}$.

- Compute $R^{\mathsf{RV}}(\boldsymbol{X}) \coloneqq \{ \boldsymbol{z} \in \mathbb{R}^G \mid \mathbb{E}[\Lambda^{\mathsf{RV}}(\boldsymbol{X} + \boldsymbol{B}^{\mathsf{T}}\boldsymbol{z})] \geq \gamma \}.$
- Take $f(\boldsymbol{p}) = \boldsymbol{1}_n^{\mathsf{T}} \boldsymbol{p}$.
- Combining the MILP for Λ^{RV} with the mixed-integer formulations for scalarizations yields extensive MILPs that can be solved by commercial solvers for finite Ω .

- Compute $R^{\mathsf{RV}}(\boldsymbol{X}) \coloneqq \{ \boldsymbol{z} \in \mathbb{R}^G \mid \mathbb{E}[\Lambda^{\mathsf{RV}}(\boldsymbol{X} + \boldsymbol{B}^{\mathsf{T}}\boldsymbol{z})] \geq \gamma \}.$
- Take $f(\boldsymbol{p}) = \mathbf{1}_n^\mathsf{T} \boldsymbol{p}$.
- Combining the MILP for Λ^{RV} with the mixed-integer formulations for scalarizations yields extensive MILPs that can be solved by commercial solvers for finite Ω .
- Then, we can run the nonconvex Benson-type algorithm of Nobakhtian, Shafiei '17.

- Standard Rogers-Veraart model with positive shock
- n = 45 banks: $n_1 = 15$ big banks ("core") + $n_2 = 30$ small banks ("periphery")

- Standard Rogers-Veraart model with positive shock
- n = 45 banks: $n_1 = 15$ big banks ("core") + $n_2 = 30$ small banks ("periphery")
- Finite probability space with K = 50 scenarios
- Random shock: K instances of a Gaussian copula with gamma marginals

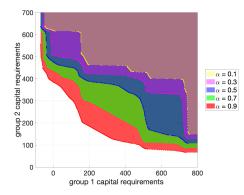
- Standard Rogers-Veraart model with positive shock
- n = 45 banks: $n_1 = 15$ big banks ("core") + $n_2 = 30$ small banks ("periphery")
- Finite probability space with K = 50 scenarios
- Random shock: K instances of a Gaussian copula with gamma marginals
- Network topology: instance of a random network with independent coin flips for connections (Erdös-Rényi)
- Connectivity probabilities: core → core: 0.5, core → periphery: 0.1, periphery → core: 0.3, periphery → periphery: 0.5

- Standard Rogers-Veraart model with positive shock
- n = 45 banks: $n_1 = 15$ big banks ("core") + $n_2 = 30$ small banks ("periphery")
- Finite probability space with K = 50 scenarios
- Random shock: K instances of a Gaussian copula with gamma marginals
- Network topology: instance of a random network with independent coin flips for connections (Erdös-Rényi)
- Connectivity probabilities: core → core: 0.5, core → periphery: 0.1, periphery → core: 0.3, periphery → periphery: 0.5
- Risk measure: negative expectation with threshold $\gamma = \gamma^{\mathsf{p}}(\mathbf{1}_{n}^{\mathsf{T}}\bar{p})$ with $\gamma^{\mathsf{p}} \in [0,1]$
- $\gamma^{\rm p}$: average target fraction of total liabilities that should be met at clearing
- Base case parameters: $\alpha = 0.7$, $\beta = 0.9$, $\gamma^{p} = 0.9$

Sensitivity with respect to α

α	$ \operatorname{vert}(\mathcal{L}^T) $	Т	$\overline{time}(\mathcal{P}_2)$ (sec.)	time(total) (min.)
0.1	273	333	12.2	67.5
0.3	461	484	10.6	85.3
0.5	592	602	5.2	52.5
0.7	583	584	3.9	37.7
0.9	589	589	3.4	33.3

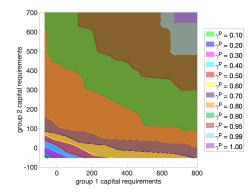
• As α increases, the discontinuity in fixed point formulation decreases, \mathcal{P}_2 becomes easier.



Sensitivity with respect to γ^{p}

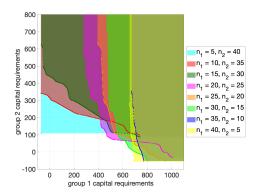
γ^{p}	$ \operatorname{vert}(\mathcal{L}^T) $	Т	$\overline{time}(\mathcal{P}_2)$ (sec.)	time(total) (min.)
0.2	13	13	13.8	3
0.3	51	51	30.3	25.7
0.4	94	94	36.6	57.4
0.5	165	165	98.6	271.2
0.6	223	223	138.5	514.9
0.7	389	389	204.3	1324.5
0.8	395	395	91.6	603.0
0.9	583	584	3.9	37.7

• \mathcal{P}_2 and overall problem get more difficult around $\gamma^{\mathsf{p}} = 0.7$.



• Change the distribution of nodes among groups while $n = n_1 + n_2 = 45$ is fixed.

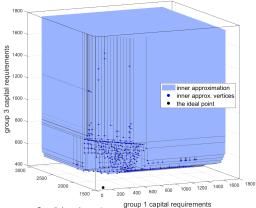
n_1	$ \operatorname{vert}(\mathcal{L}^T) $	Т	$\overline{time}(\mathcal{P}_2)$ (sec.)	time(total) (min.)
5	6	6	1.0	0.1
10	436	436	4.0	29.0
15	583	584	3.9	37.7
20	516	517	7.9	68.0
25	557	557	6.1	56.8
30	371	371	5.8	35.8
35	187	187	6.1	19.0
40	106	108	5.2	9.4



A three-group Rogers-Veraart network

- n = 60 banks: $n_1 = 10$, $n_2 = 20$, $n_3 = 30$
- $\alpha = \beta = 0.9$, $\gamma^{\rm p} = 0.99$
- Highly nonconvex!

[$ \operatorname{vert}(\mathcal{L}^T) $	Т	$\overline{time}(\mathcal{P}_2)$ (sec.)	time(total) (min.)
	975	19382	0.4	138.1

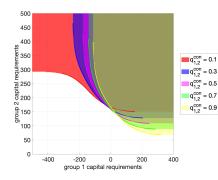


group 2 capital requirements

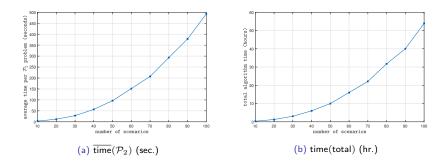
Computational study: signed Eisenberg-Noe model

- Random shock: K = 100 instances of a Gaussian random vector
- Two groups with sizes $n_1 = 15$ and $n_2 = 35$
- Computations take more time. The sets look smoother, sometimes convex-looking.
- e.g., sensitivity with respect to connectivity probability $1 \rightarrow 2$:

$q_{1,2}^{con}$	$ \operatorname{vert}(\mathcal{L}^T) $	Т	$\overline{time}(\mathcal{P}_2)$ (sec.)	time(total) (hr.)
0.1	279	358	294.0	29.2
0.3	394	394	492.6	53.9
0.5	360	360	556.8	55.7
0.7	364	364	633.6	64.1
0.9	377	377	772.8	80.9



• Difficulty increases drastically with K.



This is a joint work with Nurtai Meimanjan.

An up-to-date preprint will soon be available at www.arxiv.org/abs/1903.08367.

Thank you!