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Problem

» Using a neural network, learn the map

x = E[P(X)]

H— R

. Here, (X;"x)szt is a stochastic process in a Hilbert space H, starting in
x € H attime 1.

« 9. H — Ris the payoff functional

« Learning on simulated data by exploiting the structure in Hilbert space
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Why"?

INFINITE DIMENSIONAL OPTION PRICING
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Why?

* Pricing options in electricity and gas markets
« ...as well as markets for temperature, wind and freight

» Options written on forwards/futures contracts

- ...where delivery takes place over a period |7, T5]
- EEX: calls and puts on flow forwards, r <7 < 7T, < T,

C(1) = E[max(F(T,,T,) — K,0) | ]

1

R 1
F(T,,T,) = F(T)dT
t( 1 2) T2 B Tl JTI z( )
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Why? ... some notation

« Musiela parametrization: £ := T — ¢, ¢ is time-to-maturity
X[ (S) == I (S +1)

- Let H be a Hilbert space of real-valued functions on R,

« Wwhere the evaluation functional 55 e H*

F(T,, Ty = F(t+ (T, = 1), t + (T, = t) + (T, — T)))

1 oo
= 1 u— (T, — H)X,(u)du
T,— T, L j0.7,-7,)( — (T} = D)X, (u)

D =07 Dy, 1,(X)

- Assume integral operator 4, € L(H)
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Why? ... back to options again
« Letp : R — R be the option’s payoff function

p(F (T, Ty) = p(_Dr,_1/(X,) := PX,)

» Model for the forward curve: assume H is a Banach algebra
» Pointwise multiplication of curves

X, == exp(},)

« Log-forward curves given by /H-valued OU-process

- Wis O-Wiener process in H, N is homogeneous Poisson random
measure on [ with Levy measure v/(dz)

dY, = 0:Y,dt + a(t)dt + n(H)dW(z) + ‘ y(t, z)ﬁ(dt, dz)
H
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Why ?...

« Time-dependent, non-random coefficients, integrable

(s s € L2 (R,), [ (-, 2 Pud) € LI(R,)
H

 Mild solution

- shift semigroup &,/ := f( - + ) strongly continuous with
densely defined generator 65

l l

Yt:C‘SjtYo‘F{

0

S§,_a(s)ds + [

N

S n()AW(s) + ‘

N

{ S,_y(s,2)N(ds, dz)
H

L TTT——— T

« No-arbitrage drift condition,

. |
ot ) = — ) |0 2(1)(8*1) | - J 1exp(r(1,2)) = 1 = y(t,2) } v(dz)
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Why?
« Using algebra-property and semigroup

X, =exp(Y,) = eXp(oS’T_th)eXp(Zt,T) = (oS’T_tX(t))eXp(Zt,T)

Z,, = [ S._a(s)ds + [ S._n(s)dW(s) + [ J S._y(s,2)N(ds,dz)

t t t YH

» Option price (zero risk free rate)

V(t) = E[p(F (T}, Ty) | ] = E[P(X,) | F|]

. or, V(1) = V(1, X,), with

Vi, x) = E[P((S,_x)exp(Z, )]
Hox- V(t,x) € R
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...and now, really why!

- The option price is not a function of ﬁt(Tl, 1))

1 Tz—f ,
o1, D1, 1,((8_ X)exp(Z; ;) = ﬁ[ x()e "=y

T,—t

- The option price is depending on the term structure T +— F(T)

* Proposition: Suppose p is Lipschitz. Then V is well-defined and
Lipschitz continuous.

Proof: well-defined comes from exponential moments of Wiener
process (Fernique) and exponential integrability in no-arbitrage
condition of jumps. Lipschitz follows by direct calculation.
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Convenient minimization

« Let 1 be a measure on / supported on a compact

. Define for g € L*(u)

I(g) = [E[J | P(S._xexp(Z,.) — g(0) |2 u(dx)

H

Proposition: /(V) = 1inf I(g)
gEL*(p)
Proof: A direct calculation shows

Var(2(S,_,x exp(Z, )u(dx) + J | V(t, %) — g0 > p(dx) = (V)
H

I(g) = [
H
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BACKGROUND AND OTHER APPLICATIONS

1"
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Background

Jentzen et al.: neural net to learn the map

RS x > E[P(XEY)]

X! diffusion process on R
Options on very-high dimensional baskets of assets

* l.e., xis high dimensional
* Numerical solution of PDEs in high dimensions
Cheridito, Teichmann et al.: optimal stopping and American options

Bayer, Cuchiero, Horvath et al.: implied rough volatility, local volatility

Weinan E et al.: stochastic control

12
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Other applications

* Hedging volume and price risk by quantos
« Joint payoff on price and temperature

E[P(F (T, T,)Q(F(T,, T,))]

* Virtual power plants and swing options
» User-time contracts (volume-flexibility at strikes)
« Gas and coal-fired power plants (strip of calls)

* Fixed-income: call and puts on SOFR-futures
« SOFR: secured overnight rates, US substitute for LIBOR
« CME: trades in SOFR-futures, “flow forwards” on SOFR rates

13
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NEURAL NETWORK IN HILBERT SPACE
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Classical neural networks (one layer)

. Given continuous function f € C(RY, R), find neural network
that approximates it on a compact K C R4

 Neural network
« Fix continuous activation function o : R — R
. Fora € R, 7, b € R define a neuron Npap € C(RY, R)

x - fo(a'x + b)

* One-layer neural network (NN)

N N
Y Nypus® =) folalx+Db)

15
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Universal approximation theorem

« For given activation function o, define linear space generated by
neurons

N(o) :==span{AN,,, : £,b € R,a R’}

« Universal approximation: under mild conditions on o

«  Ji(o) is dense with respect to the topology of uniform
convergence on compacts.

. Forevery f € C(R?,R) and compact K C R, given ¢ > 0
there exists N € Nand 7., b, € R, a; € R such that

N
sup | f(x) — Z Npar@| <€
i=1

xekK

16
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Neural network in infinite dimensions

. Extend network from R to R i.e., to infinite dimensional
topological vector space X

- Approximate functions f € C(X,R)

« Why?
« Compute efficiently option prices on flow forwards

- X = Hilbert space: exploit structure of basis functions
« Train network using data AND structural information!

* Flexibility on activation function across all dimensions

17
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Neural network

* Aneuron is defined by
« Fixed activation function o € C(X, X)
- Affinemapx — Ax+ b,withA € L(X),b € X
« £ € X*, with X* topological dual of X

N o4 p(X) =(C,0(Ax + D))

—

« Let X be a Frechet space
« Complete metrizable locally convex topological vector space

. Topology generated by seminorms (p;)<x,

« Consider C(X, [R) with locally convex topology generated by family of
seminorms {g, : K C X, compact}

* Riesz representation theorem

18
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Universal approximation

« Activation function o is called discriminatory is for any fixed pair
(1, K)

[ (€,0(Ax+ b))u(dx) =0
K

forallZ € X* A € L(X),b € X implies that © = 0
« 4 is a regular (signed) Borel measure on K

- Proposition: Let ¢ be discriminatory. Then Yi(o) is dense in
C(X,R)
Proof. Following Cybenko’s classical proof using Hahn-Banach. Riesz
representation for linear functionals on C(X, R)

19
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Discriminatory activation function?

» Restrict to activation functions being von-Neumann bounded

« Forany k € N there exists ¢, > 0 such that

sup pi(y) < ¢,
veo(X)

- Fixay € X*\{0}, define hyperplane ¥ and half-spaces
Y, ,¥Y_

Y, ={xeX :: (y,x)>0}
¥, := Ker(y)
Y_={xeX :: (y,x) <0}

20



UiO ¢ Department of Mathematics
University of Oslo

Discriminatory by separating property

- Activation function o is separating if there exists iy € X*\{0}
and 1 + ,u_, uy € X such that either v, & span{u, u_} or

u_ & span{ug, u, } and

lim 6(Ax) = u., ifx € ¥,

A— 00

for * e {+,—.,0}

« Proposition: If o is von Neumann-bounded and separating,
then it is discriminatory.

Proof. Using the Hahn-Jordan decomposition of /1, and playing around
wth the flexible choice of the neural network parameters 7, A, b and
separation of o.

21
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APPLICATION

22
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Pricing call options on monthly forwards

- Focus on Wiener case (no jumps) for X, defined on X = H
« Volatility is identity operator 1 = Id

- H, Hilbert space of absolutely continuous functions on R, with
weak derivative decaying to zero faster than some monotonly
increasing function w

» Filipovic space, “weighted Sobolev space”.
« Separable and well-suited for forward dynamics

First 7 orthonormal basis functions
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Pricing calls....

* Delivery next month, and strike in one month at strike price 1

T = Tl T2
- | l » Time (in years)
1 delivery 2

 Train a neural network for x — V(0.,x), where x € K compact

« Training using simulated data

 u probability distribution on K (we use uniform distribution)

M
m=1"’

. Draw M samples (x"", 7)) x ~ yand 2 ~ Z
H 0,7
v 2

1 N
inf — PUS ™ exn(z™) — N N m)

PR =1 i=1

24
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Choice of activation function

« Consider Lipschitz continuous function / : R — R

lim p(y) =1, im f(y) =0, p(0)=0

y—>o0 y——00

« We use
p(y) = max{0,1 —exp(=y)}
- Lety € H5\{O}and z € H,,z # 0, and define

o(x) := p(y(x))z

P ———

« o is Lipschitz, von Neumann-bounded and separating!

25
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More specifications in training

« Compact set K:
0]

K, = Zxkek L X € =1, 7]
k=1

« Training is done for a finite-dimensional projection of the neural
network

» Trained several networks with hidden nodes (neurons) ranging
from 1 to 30

» Stochastic gradient descent in training
 M=10 million Monte Carlo samples
* Implemented in Python using TensorFlow and Keras libraries

26
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Neural network architecture

affine layer

A activation layer

input layer

linear form

g

@

output layer

U5

27
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Validation

« Validated on 10.000 initial curves x with corresponding “true”

option prices

« X’s are randomly drawn from p

» “True” option prices calculated by Monte Carlo simulations,
using 100.000 samples

Option price as a function of initial curve
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Comparison

« Comparing with classical neural network

« Samples the initial forward curve & — x(¢&)

* Use networks with similar complexity
10 and 20 discrete sample points of curves

« 60-1800 parameters for 5-50 nodes in classical network, vs.

63-1890 parameters for 1-30 nodes in Hilbert network

MSE classical MSE Hilbert
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mean squared error
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