

Pricing options on flow forwards by neural networks in Hilbert space

Fred Espen Benth

Joint work with Nils Detering (UC Santa Barbara) and Luca Galimberti (NTNU)

Problem

• Using a neural network, learn the map

$$x \mapsto \mathbb{E}[\mathscr{P}(X^{t,x}_{\tau})]$$
$$H \longrightarrow \mathbb{R}$$

- Here, $(X_s^{t,x})_{s \ge t}$ is a stochastic process in a Hilbert space H, starting in $x \in H$ at time t.
- $\mathscr{P}: H \to \mathbb{R}$ is the payoff functional
- Learning on simulated data by exploiting the structure in Hilbert space

UiO **Content of Mathematics**

University of Oslo

Why?

INFINITE DIMENSIONAL OPTION PRICING

Why?

- Pricing options in electricity and gas markets
 - ...as well as markets for temperature, wind and freight
- Options written on forwards/futures contracts
 - ...where delivery takes place over a period $[T_1, T_2]$
- EEX: calls and puts on flow forwards, $t \le \tau \le T_1 < T_2$

$$C(t) = \mathbb{E}[\max(\hat{F}_{\tau}(T_1, T_2) - K, 0) | \mathcal{F}_t]$$

$$\hat{F}_t(T_1, T_2) = \frac{1}{T_2 - T_1} \int_{T_1}^{T_2} F_t(T) dT$$

Why? ... some notation

• Musiela parametrization: $\xi := T - t$, ξ is time-to-maturity

 $X_t(\xi) := F_t(\xi + t)$

- Let *H* be a Hilbert space of real-valued functions on \mathbb{R}_+ ,
 - where the evaluation functional $\delta_{\xi} \in H^*$

$$\begin{split} \hat{F}_t(T_1, T_2) &= \hat{F}_t(t + (T_1 - t), t + (T_1 - t) + (T_2 - T_1)) \\ &= \frac{1}{T_2 - T_1} \int_0^\infty \mathbb{1}_{[0, T_2 - T_1]} (u - (T_1 - t)) X_t(u) du \\ &:= \delta_{T_1 - t} \mathscr{D}_{T_2 - T_1} (X_t) \end{split}$$

• Assume integral operator $\mathcal{D}_{\lambda} \in L(H)$

University of Oslo

Why? ... back to options again

- Let $p : \mathbb{R} \to \mathbb{R}$ be the option's payoff function $p(\hat{F}_{\tau}(T_1, T_2)) = p(\delta_{T_1 - \tau} \mathscr{D}_{T_2 - T_1}(X_{\tau})) := \mathscr{P}(X_{\tau})$
- Model for the forward curve: assume *H* is a Banach algebra
 - Pointwise multiplication of curves

$$X_t := \exp(Y_t)$$

- Log-forward curves given by *H*-valued OU-process
 - *W* is *Q*-Wiener process in *H*, *N* is homogeneous Poisson random measure on *H* with Levy measure $\nu(dz)$

$$dY_t = \partial_{\xi} Y_t dt + \alpha(t) dt + \eta(t) dW(t) + \int_{H} \gamma(t, z) \widetilde{N}(dt, dz)$$

Why ?...

• Time-dependent, non-random coefficients, integrable

 $\|\alpha(\cdot)\|, \quad \|\eta(\cdot)\|_{HS} \in L^2_{loc}(\mathbb{R}_+), \quad \int_{\mathcal{U}} |\gamma(\cdot,z)|^2 \nu(dz) \in L^1(\mathbb{R}_+)$

- Mild solution
 - shift semigroup $\mathcal{S}_t f := f(\cdot + t)$ strongly continuous with densely defined generator ∂_{ξ}

$$Y_t = \mathcal{S}_t Y_0 + \int_0^t \mathcal{S}_{t-s} \alpha(s) ds + \int_0^t \mathcal{S}_{t-s} \eta(s) dW(s) + \int_0^t \int_H \mathcal{S}_{t-s} \gamma(s,z) \widetilde{N}(ds,dz)$$

• No-arbitrage drift condition,

$$\alpha(t, \cdot) = -\frac{1}{2} |Q^{1/2} \eta^*(t)(\delta^* 1)|^2 - \int_H \left\{ \exp(\gamma(t, z)) - 1 - \gamma(t, z) \right\} \nu(dz)$$

Why?

• Using algebra-property and semigroup

 $X_{\tau} = \exp(Y_{\tau}) = \exp(\mathscr{S}_{\tau-t}Y_t)\exp(Z_{t,\tau}) = (\mathscr{S}_{\tau-t}X(t))\exp(Z_{t,\tau})$

$$Z_{t,\tau} = \int_{t}^{\tau} \mathcal{S}_{\tau-s} \alpha(s) ds + \int_{t}^{\tau} \mathcal{S}_{\tau-s} \eta(s) dW(s) + \int_{t}^{\tau} \int_{H} \mathcal{S}_{\tau-s} \gamma(s,z) \widetilde{N}(ds,dz)$$

• Option price (zero risk free rate)

$$V(t) = \mathbb{E}[p(\hat{F}_{\tau}(T_1, T_2)) \mid \mathcal{F}_t] = \mathbb{E}[\mathcal{P}(X_{\tau}) \mid \mathcal{F}_t]$$

• Or, $V(t) := V(t, X_t)$, with

$$V(t, x) = \mathbb{E}[\mathscr{P}((\mathscr{S}_{\tau-t}x)\exp(Z_{t,\tau}))]$$
$$H \ni x \mapsto V(t, x) \in \mathbb{R}$$

...and now, really why!

• The option price is *not* a function of $\hat{F}_t(T_1, T_2)$

$$\delta_{T_1 - \tau} \mathcal{D}_{T_2 - T_1}((\mathcal{S}_{\tau - t} x) \exp(Z_{t, \tau})) = \frac{1}{T_2 - T_1} \int_{T_1 - t}^{T_2 - t} x(v) e^{Z_{t, \tau}(v - (\tau - t))} dv$$

- The option price is depending on the *term structure* $T \mapsto F_t(T)$
- Proposition: Suppose p is Lipschitz. Then V is well-defined and Lipschitz continuous.

Proof: well-defined comes from exponential moments of Wiener process (Fernique) and exponential integrability in no-arbitrage condition of jumps. Lipschitz follows by direct calculation.

Convenient minimization

- Let μ be a measure on H supported on a compact
- Define for $g \in L^2(\mu)$

$$I(g) = \mathbb{E}\left[\int_{H} |\mathscr{P}(\mathscr{S}_{\tau-t}x \exp(Z_{t,\tau})) - g(x)|^{2} \mu(dx)\right]$$

• Proposition: $I(V) = \inf_{g \in L^2(\mu)} I(g)$

Proof: A direct calculation shows

$$I(g) = \int_{H} \operatorname{Var}(\mathscr{P}(\mathscr{S}_{\tau-t}x \exp(Z_{t,\tau})))\mu(dx) + \int_{H} |V(t,x) - g(x)|^{2} \mu(dx) \ge I(V)$$

UiO **Content of Mathematics**

University of Oslo

BACKGROUND AND OTHER APPLICATIONS

Background

• Jentzen et al.: neural net to learn the map

 $\mathbb{R}^d \ni x \mapsto \mathbb{E}[\mathscr{P}(X^{t,x}_\tau)]$

- $X_{\tau}^{t,x}$ diffusion process on \mathbb{R}^d
- Options on very-high dimensional baskets of assets
 - I.e., **x** is high dimensional
 - Numerical solution of PDEs in high dimensions
- Cheridito, Teichmann et al.: optimal stopping and American options
- Bayer, Cuchiero, Horvath et al.: implied rough volatility, local volatility
- Weinan E et al.: stochastic control

Other applications

- Hedging volume and price risk by quantos
 - Joint payoff on price and temperature

 $\mathbb{E}[\mathcal{P}(F^E_\tau(T_1,T_2))\mathcal{Q}(F^T_\tau(T_1,T_2))]$

- Virtual power plants and swing options
 - User-time contracts (volume-flexibility at strikes)
 - Gas and coal-fired power plants (strip of calls)
- Fixed-income: call and puts on SOFR-futures
 - SOFR: secured overnight rates, US substitute for LIBOR
 - CME: trades in SOFR-futures, "flow forwards" on SOFR rates

UiO **Content of Mathematics**

University of Oslo

NEURAL NETWORK IN HILBERT SPACE

Classical neural networks (one layer)

- Given continuous function $f \in C(\mathbb{R}^d, \mathbb{R})$, find neural network that approximates it on a compact $K \subset \mathbb{R}^d$
- Neural network
 - Fix continuous activation function $\sigma : \mathbb{R} \to \mathbb{R}$
 - For $a \in \mathbb{R}^d$, $\ell, b \in \mathbb{R}$ define a neuron $\mathcal{N}_{\ell,a,b} \in C(\mathbb{R}^d, \mathbb{R})$ $x \mapsto \ell \sigma(a^{\mathsf{T}}x + b)$
- One-layer neural network (NN)

$$\sum_{i=1}^{N} \mathcal{N}_{\ell_i, a_i, b_i}(x) = \sum_{i=1}^{N} \ell_i \sigma(a_i^{\mathsf{T}} x + b_i)$$

Universal approximation theorem

For given activation function *o*, define linear space generated by neurons

$$\mathfrak{N}(\sigma) := \operatorname{span}\left\{\mathscr{N}_{\ell,a,b} \,:\, \ell, b \in \mathbb{R}, a \in \mathbb{R}^d\right\}$$

- Universal approximation: under mild conditions on σ
 - $\mathfrak{N}(\sigma)$ is dense with respect to the topology of uniform convergence on compacts.
 - For every $f \in C(\mathbb{R}^d, \mathbb{R})$ and compact $K \subset \mathbb{R}^d$, given $\epsilon > 0$ there exists $N \in \mathbb{N}$ and $\ell_i, b_i \in \mathbb{R}, a_i \in \mathbb{R}^d$ such that

$$\sup_{x \in K} \left| f(x) - \sum_{i=1}^{N} \mathcal{N}_{\ell_i, a_i, b_i}(x) \right| < \epsilon$$

Neural network in infinite dimensions

- Extend network from \mathbb{R}^d to \mathbb{R}^∞ , i.e., to infinite dimensional topological vector space \mathfrak{X}
 - Approximate functions $f \in C(\mathfrak{X}, \mathbb{R})$
- Why?
 - Compute efficiently option prices on flow forwards
- \mathfrak{X} = Hilbert space: exploit structure of basis functions
 - Train network using data AND structural information!
 - Flexibility on activation function across all dimensions

Neural network

- A neuron is defined by
 - Fixed activation function $\sigma \in C(\mathfrak{X}, \mathfrak{X})$
 - Affine map $x \mapsto Ax + b$, with $A \in L(\mathfrak{X}), b \in \mathfrak{X}$
 - $\ell \in \mathfrak{X}^*$, with \mathfrak{X}^* topological dual of \mathfrak{X}

$$\mathcal{N}_{\ell,A,b}(x) = \langle \ell, \sigma(Ax+b) \rangle$$

- Let \mathfrak{X} be a Frechet space
 - Complete metrizable locally convex topological vector space
 - Topology generated by seminorms $(p_k)_{k \in \mathbb{N}}$
- Consider C(𝔅, ℝ) with locally convex topology generated by family of seminorms {q_K : K ⊂ 𝔅, compact}
 - Riesz representation theorem

Universal approximation

• Activation function σ is called *discriminatory* is for any fixed pair (μ, K) $\int_{K} \langle \ell, \sigma(Ax + b) \rangle \mu(dx) = 0$

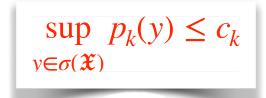
for all $\ell \in \mathfrak{X}^*$, $A \in L(\mathfrak{X})$, $b \in \mathfrak{X}$ implies that $\mu = 0$

- μ is a regular (signed) Borel measure on K
- **Proposition**: Let σ be discriminatory. Then $\mathfrak{N}(\sigma)$ is dense in $C(\mathfrak{X}, \mathbb{R})$

Proof: Following Cybenko's classical proof using Hahn-Banach. Riesz representation for linear functionals on $C(\mathfrak{X}, \mathbb{R})$

Discriminatory activation function?

- Restrict to activation functions being *von-Neumann bounded*
 - For any $k \in \mathbb{N}$ there exists $c_k > 0$ such that



• Fix a $\psi \in \mathfrak{X}^* \setminus \{0\}$, define hyperplane Ψ_0 and half-spaces Ψ_+, Ψ_-

$$\Psi_{+} := \{ x \in \mathfrak{X} : \langle \psi, x \rangle > 0 \}$$
$$\Psi_{0} := \mathsf{Ker}(\psi)$$
$$\Psi_{-} := \{ x \in \mathfrak{X} : \langle \psi, x \rangle < 0 \}$$

Discriminatory by separating property

• Activation function σ is *separating* if there exists $\psi \in \mathfrak{X}^* \setminus \{0\}$ and $u_0 + , u_-, u_0 \in \mathfrak{X}$ such that either $u_+ \notin \operatorname{span}\{u_0, u_-\}$ or $u_- \notin \operatorname{span}\{u_0, u_+\}$ and

$$\lim_{\lambda \to \infty} \sigma(\lambda x) = u_*, \text{ if } x \in \Psi_*$$

for $* \in \{+, -, 0\}$

• **Proposition**: If σ is von Neumann-bounded and separating, then it is discriminatory.

Proof: Using the Hahn-Jordan decomposition of μ , and playing around wth the flexible choice of the neural network parameters ℓ , *A*, *b* and separation of σ .

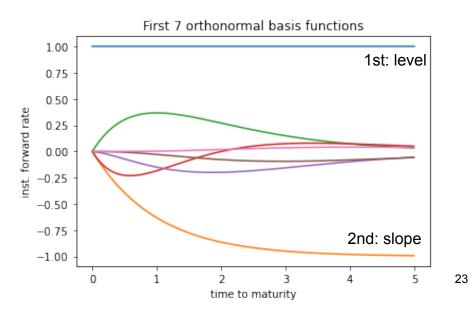
APPLICATION

University of Oslo

Pricing call options on monthly forwards

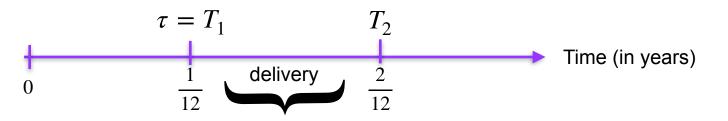
- Focus on Wiener case (no jumps) for X_{τ} , defined on $\mathfrak{X} = H_{w}$
 - Volatility is identity operator $\eta = Id$
 - H_w Hilbert space of absolutely continuous functions on \mathbb{R}_+ with weak derivative decaying to zero faster than some monotonly increasing function w
 - Filipovic space, "weighted Sobolev space".
 - Separable and well-suited for forward dynamics

 Neural network may exploit information from basis functions



Pricing calls....

• Delivery next month, and strike in one month at strike price 1



- Train a neural network for $x \mapsto V(0,x)$, where $x \in K$ compact
- Training using *simulated* data
 - μ probability distribution on *K* (we use uniform distribution)
 - Draw M samples $(x^{(m)}, z^{(m)})_{m=1}^M$, $x^{(m)} \sim \mu$ and $z^{(m)} \sim Z_{0,\tau}$

$$\inf_{N,\ell_i,A_i,b_i} \frac{1}{M} \sum_{m=1}^{M} \left| \mathscr{P}((\mathscr{S}_{\tau} x^{(m)}) \exp(z^{(m)})) - \sum_{i=1}^{N} \mathscr{N}_{\ell_i,A_i,b_i}(x^{(m)}) \right|^2$$

University of Oslo

Choice of activation function

• Consider Lipschitz continuous function $\beta : \mathbb{R} \to \mathbb{R}$

 $\lim_{y \to \infty} \beta(y) = 1, \lim_{y \to -\infty} \beta(y) = 0, \quad \beta(0) = 0$

• We use

$$\beta(y) = \max\{0, 1 - \exp(-y)\}$$

• Let $\psi \in H_w^* \setminus \{0\}$ and $z \in H_w, z \neq 0$, and define

$$\sigma(x) := \beta(\psi(x))z$$

• *σ* is Lipschitz, **von Neumann-bounded** and **separating**!

University of Oslo

More specifications in training

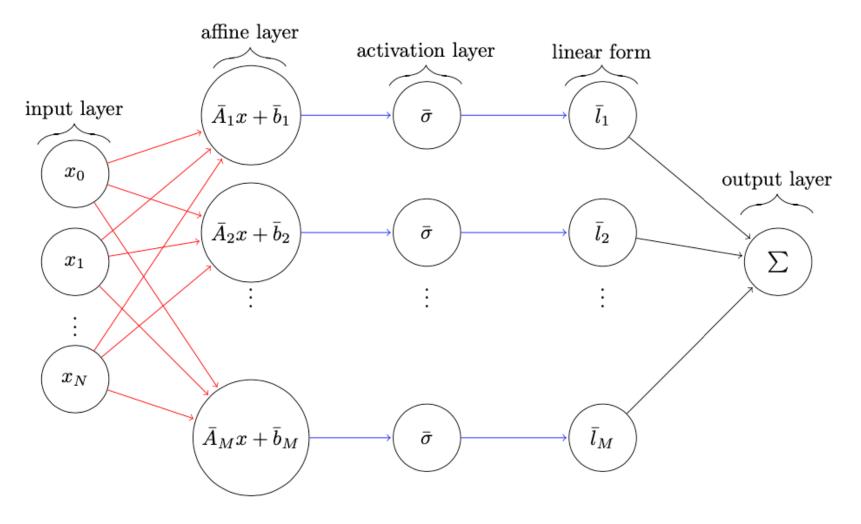
• Compact set *K*:

$$K_O := \left\{ \sum_{k=1}^O x_k e_k : x_k \in [-r, r] \right\}$$

- Training is done for a finite-dimensional projection of the neural network
- Trained several networks with hidden nodes (neurons) ranging from 1 to 30
 - Stochastic gradient descent in training
 - M=10 million Monte Carlo samples
 - Implemented in Python using TensorFlow and Keras libraries

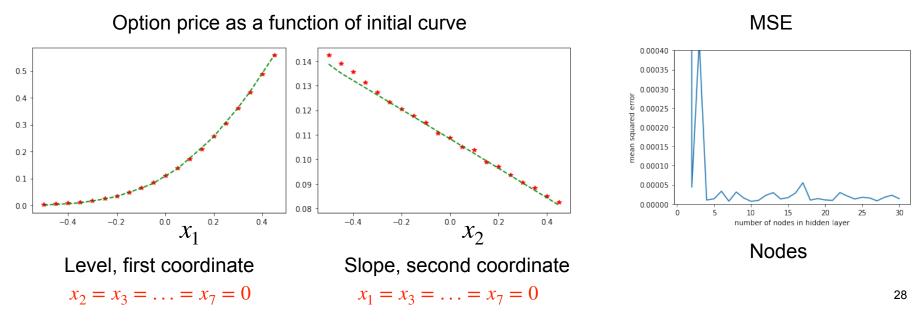
University of Oslo

Neural network architecture



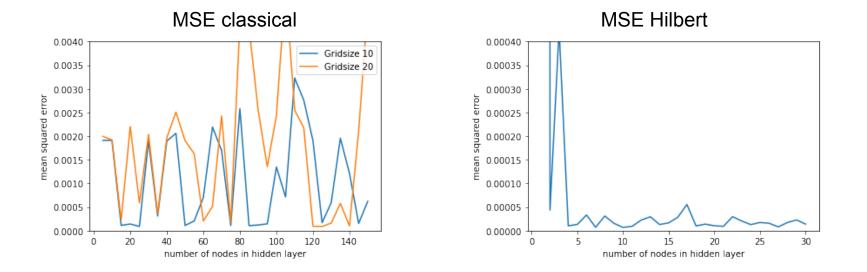
Validation

- Validated on 10.000 initial curves x with corresponding "true" option prices
 - x's are randomly drawn from μ
 - "True" option prices calculated by Monte Carlo simulations, using 100.000 samples



Comparison

- Comparing with classical neural network
 - Samples the initial forward curve $\xi \mapsto x(\xi)$
- Use networks with similar complexity
 - 10 and 20 discrete sample points of curves
 - 60-1800 parameters for 5-50 nodes in classical network, vs.
 63-1890 parameters for 1-30 nodes in Hilbert network



References

- Benth, Detering, Galimberti: Neural networks in Frechet spaces. *Arxiv: 2109.13512*
- Benth, Detering, Galimberti: Pricing options on flow forward by neural networks in Hilbert space. *Arxiv: 2202.11606*