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Problem

• Using a neural network, learn the map 

• Here,  is a stochastic process in a Hilbert space , starting in 
 at time .  

•  is the payoff functional 

• Learning on simulated data by exploiting the structure in Hilbert space

(Xt,x
s )s≥t H

x ∈ H t

𝒫 : H → ℝ

2

x ↦ 𝔼[𝒫(Xt,x
τ )]

H ⟶ ℝ



INFINITE DIMENSIONAL OPTION PRICING

Why?
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Why?
• Pricing options in electricity and gas markets 

• …as well as markets for temperature, wind and freight 

• Options written on forwards/futures contracts 
• …where delivery takes place over a period  

• EEX: calls and puts on flow forwards, 

[T1, T2]

t ≤ τ ≤ T1 < T2

4

C(t) = 𝔼[max( ̂Fτ(T1, T2) − K,0) | ℱt]

̂Ft(T1, T2) =
1

T2 − T1 ∫
T2

T1

Ft(T )dT



Why? … some notation
• Musiela parametrization: ,   is time-to-maturity 

• Let  be a Hilbert space of real-valued functions on , 

• where the evaluation functional  

• Assume integral operator    

ξ := T − t ξ

H ℝ+

δξ ∈ H*

𝒟λ ∈ L(H )
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Xt(ξ) := Ft(ξ + t)

̂Ft(T1, T2) = ̂Ft(t + (T1 − t), t + (T1 − t) + (T2 − T1))

=
1

T2 − T1 ∫
∞

0
1[0,T2−T1](u − (T1 − t))Xt(u)du

: = δT1−t𝒟T2−T1
(Xt)



Why? … back to options again
• Let  be the option’s payoff function 

• Model for the forward curve: assume H is a Banach algebra 
• Pointwise multiplication of curves 

• Log-forward curves given by -valued OU-process 
•  is -Wiener process in ,  is homogeneous Poisson random 

measure on  with Levy measure  

p : ℝ → ℝ

H
W Q H N

H ν(dz)
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p( ̂Fτ(T1, T2)) = p(δT1−τ𝒟T2−T1
(Xτ)) := 𝒫(Xτ)

Xt := exp(Yt)

dYt = ∂ξYtdt + α(t)dt + η(t)dW(t) + ∫H
γ(t, z) Ñ (dt, dz)



Why ?…
• Time-dependent, non-random coefficients, integrable 

• Mild solution 

• shift semigroup  strongly continuous with 
densely defined generator    

• No-arbitrage drift condition, 

𝒮t f := f( ⋅ + t)
∂ξ

7

Yt = 𝒮tY0 + ∫
t

0
𝒮t−sα(s)ds + ∫

t

0
𝒮t−sη(s)dW(s) + ∫

t

0 ∫H
𝒮t−sγ(s, z) Ñ (ds, dz)

|α( ⋅ ) | , ∥η( ⋅ )∥HS ∈ L2
loc(ℝ+), ∫H

|γ( ⋅ , z) |2 ν(dz) ∈ L1(ℝ+)

α(t, ⋅ ) = −
1
2

|Q1/2η*(t)(δ*⋅ 1) |2 − ∫H
{exp(γ(t, z)) − 1 − γ(t, z)} ν(dz)



Why?

• Using algebra-property and semigroup 

• Option price (zero risk free rate) 

• Or, withV(t) := V(t, Xt),
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Xτ = exp(Yτ) = exp(𝒮τ−tYt)exp(Zt,τ) = (𝒮τ−tX(t))exp(Zt,τ)

Zt,τ = ∫
τ

t
𝒮τ−sα(s)ds + ∫

τ

t
𝒮τ−sη(s)dW(s) + ∫

τ

t ∫H
𝒮τ−sγ(s, z) Ñ (ds, dz)

V(t) = 𝔼[p( ̂Fτ(T1, T2)) | ℱt] = 𝔼[𝒫(Xτ) | ℱt]

V(t, x) = 𝔼[𝒫((𝒮τ−tx)exp(Zt,τ))]
H ∋ x ↦ V(t, x) ∈ ℝ



…and now, really why!

• The option price is not a function of  

• The option price is depending on the term structure  

• Proposition: Suppose  is Lipschitz. Then V is well-defined and 
Lipschitz continuous.  
Proof: well-defined comes from exponential moments of Wiener 
process (Fernique) and exponential integrability in no-arbitrage 
condition of jumps. Lipschitz follows by direct calculation.

̂Ft(T1, T2)

T ↦ Ft(T )

p
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δT1−τ𝒟T2−T1
((𝒮τ−tx)exp(Zt,τ)) =

1
T2 − T1 ∫

T2−t

T1−t
x(v)eZt,τ(v−(τ−t))dv



Convenient minimization

• Let  be a measure on  supported on a compact 

• Define for  

• Proposition:  

Proof: A direct calculation shows

μ H

g ∈ L2(μ)

I(V ) = inf
g∈L2(μ)

I(g)
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I(g) = 𝔼[∫H
|𝒫(𝒮τ−tx exp(Zt,τ)) − g(x) |2 μ(dx)]

I(g) = ∫H
Var(𝒫(𝒮τ−tx exp(Zt,τ)))μ(dx) + ∫H

|V(t, x) − g(x) |2 μ(dx) ≥ I(V )



BACKGROUND AND OTHER APPLICATIONS
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Background
• Jentzen et al.: neural net to learn the map  

•  diffusion process on  
• Options on very-high dimensional baskets of assets 

• I.e., x is high dimensional 
• Numerical solution of PDEs in high dimensions  

• Cheridito, Teichmann et al.: optimal stopping and American options 

• Bayer, Cuchiero, Horvath et al.: implied rough volatility, local volatility 

• Weinan E et al.: stochastic control

Xt,x
τ ℝd
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ℝd ∋ x ↦ 𝔼[𝒫(Xt,x
τ )]



Other applications
• Hedging volume and price risk by quantos 

• Joint payoff on price and temperature 

• Virtual power plants and swing options 
• User-time contracts (volume-flexibility at strikes) 
• Gas and coal-fired power plants (strip of calls) 

• Fixed-income: call and puts on SOFR-futures 
• SOFR: secured overnight rates, US substitute for LIBOR 
• CME: trades in SOFR-futures, “flow forwards” on SOFR rates
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𝔼[𝒫(FE
τ (T1, T2))𝒬(FT

τ (T1, T2))]



NEURAL NETWORK IN HILBERT SPACE
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Classical neural networks (one layer)

• Given continuous function , find neural network 
that approximates it on a compact  

• Neural network 

• Fix continuous activation function  

• For  define a neuron  

• One-layer neural network (NN)

f ∈ C(ℝd, ℝ)
K ⊂ ℝd

σ : ℝ → ℝ
a ∈ ℝd, ℓ, b ∈ ℝ 𝒩ℓ,a,b ∈ C(ℝd, ℝ)
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x ↦ ℓσ(a⊤x + b)

N

∑
i=1

𝒩ℓi,ai,bi
(x) =

N

∑
i=1

ℓiσ(a⊤
i x + bi)



Universal approximation theorem

• For given activation function , define linear space generated by 
neurons 

• Universal approximation: under mild conditions on  

•   is dense with respect to the topology of uniform 
convergence on compacts.  

• For every  and compact , given  
there exists  and  such that

σ

σ
𝔑(σ)

f ∈ C(ℝd, ℝ) K ⊂ ℝd ϵ > 0
N ∈ ℕ ℓi, bi ∈ ℝ, ai ∈ ℝd
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𝔑(σ) := span {𝒩ℓ,a,b : ℓ, b ∈ ℝ, a ∈ ℝd}

sup
x∈K

f(x) −
N

∑
i=1

𝒩ℓi,ai,bi
(x) < ϵ



Neural network in infinite dimensions

• Extend network from  to , i.e., to infinite dimensional 
topological vector space  
• Approximate functions  

• Why? 
• Compute efficiently option prices on flow forwards 

• Hilbert space: exploit structure of basis functions  
• Train network using data AND structural information! 
• Flexibility on activation function across all dimensions 

ℝd ℝ∞

𝔛
f ∈ C(𝔛, ℝ)

𝔛 =
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Neural network 
• A neuron is defined by 

• Fixed activation function  

• Affine map , with  

• , with  topological dual of  

• Let  be a Frechet space 
• Complete metrizable locally convex topological vector space 

• Topology generated by seminorms  

• Consider  with locally convex topology generated by family of 
seminorms  

• Riesz representation theorem 

σ ∈ C(𝔛, 𝔛)
x ↦ Ax + b A ∈ L(𝔛), b ∈ 𝔛

ℓ ∈ 𝔛* 𝔛* 𝔛

𝔛

(pk)k∈ℕ

C(𝔛, ℝ)
{qK : K ⊂ 𝔛, compact}
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𝒩ℓ,A,b(x) = ⟨ℓ, σ(Ax + b)⟩



Universal approximation

• Activation function  is called discriminatory is for any fixed pair 
 

for all  implies that  

•  is a regular (signed) Borel measure on  

• Proposition: Let  be discriminatory. Then  is dense in 
 

Proof: Following Cybenko’s classical proof using Hahn-Banach. Riesz 
representation for linear functionals on  

σ
(μ, K )

ℓ ∈ 𝔛*, A ∈ L(𝔛), b ∈ 𝔛 μ = 0

μ K

σ 𝔑(σ)
C(𝔛, ℝ)

C(𝔛, ℝ)
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∫K
⟨ℓ, σ(Ax + b)⟩μ(dx) = 0



Discriminatory activation function?
• Restrict to activation functions being von-Neumann bounded 

• For any  there exists  such that 

• Fix a , define hyperplane  and half-spaces 

k ∈ ℕ ck > 0

ψ ∈ 𝔛*\{0} Ψ0
Ψ+, Ψ−
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sup
y∈σ(𝔛)

pk(y) ≤ ck

Ψ+ := {x ∈ 𝔛 : ⟨ψ, x⟩ > 0}
Ψ0 := Ker(ψ)
Ψ− := {x ∈ 𝔛 : ⟨ψ, x⟩ < 0}



Discriminatory by separating property 
• Activation function  is separating if there exists  

and  such that either  or 
 and  

for  

• Proposition: If  is von Neumann-bounded and separating, 
then it is discriminatory.   
Proof: Using the Hahn-Jordan decomposition of , and playing around 
wth the flexible choice of the neural network parameters  and 
separation of .

σ ψ ∈ 𝔛*\{0}
u0 + ,u−, u0 ∈ 𝔛 u+ ∉ span{u0, u−}

u− ∉ span{u0, u+}

* ∈ { + , − ,0}

σ

μ
ℓ, A, b

σ
21

lim
λ→∞

σ(λx) = u*, if x ∈ Ψ*



APPLICATION
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Pricing call options on monthly forwards

• Focus on Wiener case (no jumps) for , defined on  

• Volatility is identity operator  

•  Hilbert space of absolutely continuous functions on  with 
weak derivative decaying to zero faster than some monotonly 
increasing function  

• Filipovic space, “weighted Sobolev space”.  
• Separable and well-suited for forward dynamics  

• Neural network may exploit  
information from basis  
functions

Xτ 𝔛 = Hw
η = Id

Hw ℝ+

w
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1st: level

2nd: slope



Pricing calls….

• Delivery next month, and strike in one month at strike price 1 

• Train a neural network for , where  compact 

• Training using simulated data 
•  probability distribution on  (we use uniform distribution) 

• Draw  samples ,  and  

x ↦ V(0,x) x ∈ K

μ K
M (x(m), z(m))M

m=1 x(m) ∼ μ z(m) ∼ Z0,τ
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τ = T1 T2

1
12

2
12

0
Time (in years){delivery

inf
N,ℓi,Ai,bi

1
M

M

∑
m=1

𝒫((𝒮τx(m))exp(z(m))) −
N

∑
i=1

𝒩ℓi,Ai,bi
(x(m))

2



Choice of activation function

• Consider Lipschitz continuous function  

• We use 

• Let  and , and define 

•  is Lipschitz, von Neumann-bounded and separating!

β : ℝ → ℝ

ψ ∈ H*w\{0} z ∈ Hw, z ≠ 0

σ

25

lim
y→∞

β(y) = 1, lim
y→−∞

β(y) = 0, β(0) = 0

β(y) = max{0,1 − exp(−y)}

σ(x) := β(ψ(x))z



More specifications in training

• Compact set : 

• Training is done for a finite-dimensional projection of the neural 
network 

• Trained several networks with hidden nodes (neurons) ranging 
from 1 to 30 
• Stochastic gradient descent in training 
• M=10 million Monte Carlo samples  
• Implemented in Python using TensorFlow and Keras libraries

K
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KO := {
O

∑
k=1

xkek : xk ∈ [−r, r]}



Neural network architecture
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Validation

• Validated on 10.000 initial curves  with corresponding “true” 
option prices 

• ’s are randomly drawn from  
• “True” option prices calculated by Monte Carlo simulations, 

using 100.000 samples

x

x μ
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Option price as a function of initial curve

Level, first coordinate Slope, second coordinate

MSE

Nodes

x2 = x3 = . . . = x7 = 0 x1 = x3 = . . . = x7 = 0

x1 x2



Comparison

• Comparing with classical neural network 

• Samples the initial forward curve   

• Use networks with similar complexity 
• 10 and 20 discrete sample points of curves 
• 60-1800 parameters for 5-50 nodes in classical network, vs. 

63-1890 parameters for 1-30 nodes in Hilbert network

ξ ↦ x(ξ)
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MSE classical MSE Hilbert
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