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1 Classical copula modeling

= General goal: Modeling a df H or X ~ H with continuous margins
Fy, ..., Fy (for possibly high-dimensional, computational applications).
» Static: X models a joint loss in a risk management context; e.g., pt =
P(X > z) or ES(S) =E(S|S > F5'(a)) for S = X1+ + X,
Or X are residuals Y — E(Y') with Y componentwise depending on
a covariate vector Z in multi-response regression.
» Dynamic: X models joint innovations of an ARMA-GARCH process
or increments of dependent geometric Brownian motions.
= Sklar’'s Theorem:
» Analytical: H(xz) = C(Fi(x1),..., Fy(x,)) for a copula C, a distri-
bution function with U(0, 1) margins.
» Stochastic: Quantile transformation X = (F; '(Uh), ..., F; 1 (Uy)) ~
H and probability transformation U = (F1(X1), ..., Fy(Xq)) ~ C.
= Why: Useful from a computational point of view (e.g., estimation) or
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under asymmetric information (margins known, dependence unknown).

= Statistics: Instead of X, we now have X = (X ,..., X,)T € R*x4,

1) Given X, compute the pseudo-observations U = (U, ,... .U, )" €
R™*? with

~ 1 " Rij

Uij = Fnj(Xij) = —— kZl Lxy<x) = 37

where R;; = rank(X;;) among the component sample X1, ..., Xy;.

U,

2) Based on U, one needs to fit, test and select an adequate copula C.
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3) Simulate U,...,U

> F

Tigen from the fitted C' and estimate, for example:
"(u) where S = X1 + -+ Xq=F N (U1) + -+ F; ' (Ug)

Examples (QRM):
— Value-at-risk VaR,,(S) = Fg'(a) of the total loss S

Expected shortfall ES,(S) =E(S|S > F5'(a))

» Expectations = E(Vo(X)) = E(V(U)) where ¥(u) is given by
Uo(Fy (wa), ..., Fy ' (ua)) and so p~ = 3777 W(U).
Examples (MC):
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With \I/(’U,) - ]l{ul>u,,...,'u,d>’u,} we obtain that
w=EWU))=PU; >u,...,Us > u),

so exceedance probabilities, e.g., the probability of a flood
over multiple dikes or joint losses in a stock portfolio.

With ¥(u) = max{(F; *(u1) + - + F; '(ug))/d — K,0}
we obtain that u = IE(\I/(U)) is the expected payoff of a
European basket call option.



= Problems (with this classical modeling approach):
1) Step 2) above: Finding an adequate copula model C' for the pseudo-
observations in more than two dimensions (oftentimes all are rejected)
2) Large variance var(ngi S5 W (U;)) of the Monte Carlo estimator
in rare-event simulation scenarios.
= |deas:
1) Use (specific) neural networks (NNs) (= flexible dependence).
2) Use quasi-random sampling for such NNs (= variance reduction).
= Qutline:
» We first present basics of quasi-random sampling under dependence.
» We then study how NNs can be used as (pseudo-)random number
generators (RNGs) from copulas.
» We then address how NNs can be used as quasi-RNGs (QRNGs).
» For simplicity, we mainly focus on the case where F} = --- = F; are
U(0,1) in what follows (except for an ES,, example).
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2 Quasi-random numbers for copulas

= |f ¢ = II (independence), pseudo-random numbers (PRNs) can be
replaced by quasi-random numbers (QRNSs) for variance reduction.

= QRN sequences are low-discrepancy sequences P, = {v;}I~; (middle)

with D*(P,)

sup
z€(0,1]¢
= Example: Uy, ...

U,

Ngen

(left), randomized Sobol” Vi, ...,

V;

Ngen

#livC02) ([0, 2))| € O(n~"log"n).

(right):
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8 The RQMC estimator —— 5 =7 W(V;) is unbiased, fast and has a
gen i=1 ! !

smaller variance (which can be estimated from repeated randomizations).
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Question: How can we obtain QRNs from a general copula C?

dea: Could define Dy (P,) = sup [HEu€l02l —p(y e [0,2))),
z€(0,1]¢

but what's the order? And this does not lead to a construction principle.

However, one can transform Vi,...,V,__ to samples from C; see

Cambou et al. (2017). g
Inverse Rosenblatt transform R~!: Bijection to transform U’ ~
U(0,1)4 to U ~ C (known as conditional distribution method (CDM)
for sampling, a generalization of the inversion method to d > 1):
U= U1,
U = Cill(Ué |U1), (compare with Xo = Fy Y(U}) ~ Fy)

Uj = Cj_|11,...,j—1(U]/' | Uy,..., Uj_l), je {2, e ,d}.

Formula for the implementation (which needs to be inverted!):
Dj_1,..1Ch, (ur,...,uj)

Dj—1, 1C jo1(ur,...,ujq)

= Inverse known analytically for Normal, ¢, Clayton (but can be slow).

Cin,..jo1(ujlur, ... uj1) =
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= Example: 1000 PRNs (left) and QRNs (right) from a Clayton copula.
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= Disclaimer: We (here) judge from such pictures but even if not visible,
there may be variance reduction.

= Evaluating 077\11....7'71 is time-consuming even for normal, ¢, Clayton.
® For Gumbel copulas, Cj)q, . ;1 is tractable but C‘j*‘ll _____ i1 is not.

= See Cambou et al. (2017) for a different approach, but conceptually
(first component = frailty) and numerically challenging (a-stable gf).
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3 PRNs for copulas via GMMNs

= |dea: To address Problem 1) (flexible dependence), we consider

1 Ngen
E(¥(U)) ~ > (U, (1)
Mgen ;21
UZ:f9<F21(U;))7 izla---angena (2)
where '
> Uj,....U, = U@01) (later: Vi,...,V,,: randomized Sobol’);

» Fl(u) = (Ffl1 (ui),..., FZj (up)) maps to a prior distribution (®);
> [, is a trained generative neural network fy (GMMNs).

®  Training of fg learns a map from pseudo-random numbers from Z (here:
N,(0, I,)) to pseudo-random numbers from U ~ C.

® This is similar to R !, but computationally simpler to evaluate.

= Errors:
1) Monte Carlo error (1) (can be made arbitrarily small by the SLLN)

2) Neural network (NN) “bottleneck”™ (2) (small if NN trained correctly)
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3.1 What are NNs?

Input layer (prior data) Hidden layer Output layer (copula data)
(lzo,d():p) (l:].,dl) (ZZQ,dgzd)

(¢>1(W1,1.a0 +bi1) = al,l)

21 = ap,1

(¢>1(W1,2-ao +b12) = al,Z) (¢2(Wz,1-a1 +bo1) =ag1 = yl)

2 = a2 , - }
¢'s: activation functions .

W's: weight matrices

b's: bias vectors

(all one per layer) (¢2(W2,d2.a1 +b2.4,) = a9, = ydz)
Fdo = 40,do : Mathematically:
. y=fo(z) = fry10---0 fi(2)
where a; = fi(a;—1) = ¢y(Wia;—1 + by)
(¢1(W1,d1.a0 +b1,4,) = a1,d1) (componentwise) with a) = =
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Hyperparameters (fixed before training):

» The ¢;'s are the activation functions (e.g., ReLU ¢y(x) = max{0, z},
sigmoid ¢y(x) = 1/(1+e™7)).

» Number of layers, number of neurons per layer, number of epochs in
training and batch size (more later).

Parameter vector:

0 = (Wi,....Wri1,by,....br 1) consists of weight matrices and

biases (initialized randomly and with zeros, respectively).

0 is fitted (or: the NN is trained) by stochastic gradient descent

The error is measured with a cost function E(U,Y"), computed between

» the training data [/ = (U}, ..., U, )7 from (' (= target) and

» the outputs ¥V = fg(Z) of the NN from the prior sample Z =
(z!,....z}] ).

NN applications often use a scaled MSE E(U,Y) = ey —yi |3

2ntrn

as I/ = Fails to learn the map from Z to U properly.
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= Example:
» Left: Subsample of size 2000 of 60000 training data points of a ¢35
copula with correlation parameter 0.8.
» Center: Sample of size 2000 of a NN trained with the MSE F.
» Right: Sample of size 2000 of a NN trained with the “MMD" E.
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= The NN trained with the MSE E(U.Y") clearly did not capture the
distribution correctly.
= Learning a distribution (instead of a classification) is much harder.
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3.2 What are GMMNs?

Generative moment matching networks (GMMNs) use as E(U,Y") the
sample maximum mean discrepancy MMD(U,Y)

J Z Z Ul17Ul2 (Ui17Yi2)+K(Y117Y ))

tm i1=11i9=1
where K is a mixture of Gaussian kernels of different bandwidths. After
experimentation, we chose

llu—yl|2

=Ye * & =(0.001,0.01,0.15,0.25,0.50, 0.75).

Intuitively, MIMD takes into account all pairs of observations between

Ui, and Y}, (desirable, but costly = mini-batch optimization).

For the population version, one can show that MMD(UJ,Y ) = 0 if and
. d

onlyif U =Y.
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3.3

How are GMMNs trained?

= Training algorithm (mini-batch optimization):

1)
2)

5)

Initialize 6 (weights T, Wa: uniform entries; biases by, be: 0)
Partition the (7, d)-data matrix U and prior (ngn,d)-matrix Z
into batches (/2 T /Mpat blocks of npat (batch size) rows each).
For each batch, update 6 by a stochastic gradient step (Adam).
After & nym/npat gradient steps, [/ and 7 are exhausted and one
epoch is completed. Shuffle their rows and go to Step 2).

Training finishes after 7, epochs.

= Setup in our experiments:
» p = d (inspired from R~! in the CDM);

>

>

single hidden layer (universal approximation theorem: given suitable
activation functions, single hidden layer NNs with d; < oo can
approximate any continuous function on a compact subset of ]Rd);

d1 = 300 neurons in the hidden layer;
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» ¢ to be ReLU (fast) and ¢» to be sigmoid (maps to (0, 1));

» batch size npy = 5000 (trade-off: large enough for “bottleneck”
error to be small; small enough to not be memory-prohibitive);

» number of epochs 7.y, = 300; and (a rather large number of)

» ngn = 60000 pseudo-samples from C (available for all models).

3.4 How can GMMNs generate QRNs from C?

Algorithm 3.1 (GMMN quasi-random sampling)
1) Generate RQMC points Vi,...,V;, .. (e.g., randomized Sobol').

2) Compute the prior samples Z;, = Fgl(%) i=1,...,Ngen.
3) Return the pseudo-observations of Y; = f4;(Z;), i =1,...,ngen.

GMMNSs are fast to evaluate and sufficiently smooth to preserve low discrep-
ancy. If all the mixed partial derivatives of h = Wo fs0 FZ_1 exist a.e. and
are continuous, then under Owen-type scrambling, var(ﬁ YT (Vi) =
O (ngan(log n1gen )P~ 1).
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3.5 Do GMMNs generate samples from C' well?

PRNs, GMMN PRNs, GMMN QRNs, R-transformed GMMN QRNs:
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C(uy, up) = min{ul ™ ug, uyuy 2} (without R):
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One can consider box plots of realization of the Cramér—von Mises statistic

S = [ e (1) =€) 4 u0),

is the empirical copula (ecdf of the pseudo-obs.) of ngen = 1000

en

where (',

PRNs, GMMN PRNs and GMMN QRNs (d € {3,10}):
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3.6 Variance-reduction effect?

Sample standard deviation of the estimator of P(UU > 0.99) computed
from PRNs, GMMN QRNs and QRNs:
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Sample standard deviation of the estimator of E(S|S > Fg'(0.99))
(N(0,1) margins) computed from PRNs and GMMN QRNs (no QRNs):

3 | — CopuapRNG a=051
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Summary

We can learn a QRNG from any joint model based on a PRNG for C.
If C'is known, this is easy. If only a sample is available, n, needs to
be sufficiently large (depending on the application).

Gain: Universality (all models), computability (robustness, run time),
especially useful for real data (where the true model is unknown).
Challenges:

1) Kendall's tau near 1;

2) training needs a GPU server (evaluation “needs” TensorFlow);

3) joint tail behavior;

4) d > 10.

Open problem: For d >> 10, must training be improved (as distributions
become harder to learn) or do RQMC point sets generally deteriorate?
(GMMNs are still smooth). One could try (¢,m, s)-nets other than
Sobol" (but no related R package or standalone C code available).
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