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Motivating example
Motivating data from The Cancer Genome Atlas

Archer et al. (2014, 2010)

56 subjects

20 normal liver tissue (healthy)
16 cirrhotic tissue (disease)
20 with hepatocellular carcinoma (severe disease)

Methylation levels for 45 genes

Goal: build predictive model to classify tissue based on methylation
profile

p ≈ n ⇒ predictive model requires regularization

Excerpt from data:

Liver CDKN2B_seq_50_S294_F DDIT3_P1313_R ERN1_P809_R GML_E144_F . . .
Normal -0.35633416 -1.31056556 0.9657593169 0.45453048
Normal -0.47508349 -0.66903874 0.9537646464 0.57388473
Tumor 1.37096496 1.37428021 0.4118315292 0.72121947
Tumor 0.54953731 1.06033861 0.4063716945 -1.08468387

Cirrhosis non-HCC 0.55573061 0.59576393 -0.6224016200 0.70409687
Cirrhosis non-HCC -1.17830718 0.03673283 0.0004964171 -1.14753553

.

.

.
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Ordinal regression overview

Response variable has finite number of ordered categories

For example, 1=poor, 2=fair, 3=good, 4=excellent

Common approaches
Treat outcome as numeric

Interpretation is problematic

Multinomial regression

Does not take advantage of label ordering

Ordinal regression

Fewer parameters than multinomial regression, but less flexible.
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Motivation & research contributions

Motivation 1: Limited software available for ordinal regression
regularization and variable selection (true in 2015).

Contribution: Proposed and implemented coordinate descent
algorithm for broad class of models with elastic net penalty

Motivation 2: How to choose between ordinal and unordered
multinomial models for ordinal data?

Contribution: Developed model parameterization that blends ordinal
and multinomial regression.
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Examples of common multinomial & ordinal models

Multinomial logistic regression

P(Y = m|X = x) = exp(αm+x⊤βm)

1+
K−1∑
k=1

exp(αk+x⊤βk )

K − 1 sets of coefficients (βk) and intercepts (αk).
Invariant to class label ordering.

Proportional odds model

P(Y ≤ m|X = x) = logit−1(αm + x⊤β)
Single set of coefficients (β) and K − 1 intercepts (αk).
The linear combination x⊤β shifts all cumulative probabilities up or
down. This is the defining characteristic of an ordinal model!

Goal: design a blended model with the large model space of
multinomial logistic that can be penalized toward an ordinal model.
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Proportional odds model: latent variable interpretation

Suppose the outcome has 3 categories. Then for m ∈ {1, 2},

P(Y ≤ m|X = x) = logit−1(αm + x⊤β) = FZ (αm + x⊤β) ,

where FZ is the cdf of a standard logistic distribution.

Y = 1 Y = 2 Y = 3
⇐⇒ ⇐⇒ ⇐⇒

Z < α1 + x⊤β α1 + x⊤β < Z < α2 + x⊤β α2 + x⊤β < Z

x⊤β shifts probability toward higher or lower categories:
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At x = 0, the intercepts determine category cut points:

x⊤β shifts
probability toward higher or lower categories:
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Generalizing the Proportional Odds Model

logit

(
P(Y ≤ m|X = x)

)
= . . .

Proportional odds
= αm + x⊤β

← “Parallel”

Partial proportional odds (Peterson et al., 1990)
= αm + x⊤βm

← “Nonparallel”

Blended model (Wurm et al., 2017b)
= αm + x⊤β + x⊤βm

← “Semi-parallel”
Elastic net penalty can be applied to both β and βm, setting
unimportant coefficients to zero.
If parallel (ordinal) model is a good fit, then β terms will be kept.
βm terms will be kept as necessary to compensate for lack of fit.
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ELMO

The proportional odds model belongs to a broader class of models
that have parallel/nonparallel/semi-parallel parameterizations.

We call this the elementwise link multinomial-ordinal (ELMO).

ELMO is a subset of Vector GLMs used in the VGAM R package
(Yee and Wild, 1996; Yee, 2010, 2015).
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ELMO (continued)

Each ELMO model is defined by a family and an elementwise link
function. Together, they determine a multivariate link function from
class probabilities to linear combinations:

 P(Y = 1|X = x)
...

P(Y = K − 1|X = x)

 family→

 δ1
...

δK−1


︸ ︷︷ ︸
∈(0,1)K−1

link

→
→
→

Can be parallel/nonparallel/semi-parallel︷ ︸︸ ︷ α1 + x⊤β + x⊤β1

...
αK−1 + x⊤β + x⊤βK−1


︸ ︷︷ ︸

∈RK−1

For example, the proportional odds model:

The family specifies δk = P(Y ≤ k|X = x).
The link is logit.
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ELMO (continued)

Family δk
Cumulative Probability P(Y ≤ k |X = x)

Stopping Ratio P(Y = k | Y ≥ k ,X = x)
Continuation Ratio P(Y > k | Y ≥ k ,X = x)
Adjacent Category P(Y = k + 1 | k ≤ Y ≤ k + 1,X = x)

The link function can be any binary regression link (e.g. logit, probit,
complementary log-log).

Fun fact: The unpenalized adjacent category logit model is equivalent to
multinomial logistic regression. Only the adjacent category
parameterization has parallel/nonparallel/semi-parallel forms.

12/23



ELMO (continued)

Family δk
Cumulative Probability P(Y ≤ k |X = x)

Stopping Ratio P(Y = k | Y ≥ k ,X = x)
Continuation Ratio P(Y > k | Y ≥ k ,X = x)
Adjacent Category P(Y = k + 1 | k ≤ Y ≤ k + 1,X = x)

The link function can be any binary regression link (e.g. logit, probit,
complementary log-log).

Fun fact: The unpenalized adjacent category logit model is equivalent to
multinomial logistic regression. Only the adjacent category
parameterization has parallel/nonparallel/semi-parallel forms.

12/23



Elastic net penalty for semi-parallel model

Penalized objective function is − 1
n × loglik + penalty

Lasso penalty = λ

(
ρ∥β∥1 +

K−1∑
k=1

∥βk∥1
)

λ ≥ 0 determines overall penalty strength.
ρ ≥ 0 determines penalty strength on ordinal coefficients.

Can be tuned, but ρ = 1 works well in practice.

Ridge penalty = λ
2

(
ρ∥β∥22 +

K−1∑
k=1

∥βk∥22
)

Elastic net penalty = α× Lasso penalty + (1− α)× Ridge penalty

α ∈ [0, 1] determines weighting between lasso (L1) and ridge (L2)
penalty.
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Optimization algorithm

Cyclic coordinate descent (Friedman et al., 2010, 2007).

Algorithm applies whenever Fisher scoring algorithm for unpenalized
model can be formulated as iteratively reweighted least squares
(IRLS).

ELMO models fit this framework (Wilhelm et al., 1998).

Procedure:

Replace log-likelihood by its quadratic approximation of the form

− 1
2

N∑
i=1

∥W 1/2
i (zi − Xiβ)∥2

Optimize approximated objective function marginally, one coefficient
at a time. Cycle over coefficients until convergence.
Update quadratic approximation at new β̂ estimate.
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R Software

Software for lasso/elastic net penalty (no ordinal models)

glmnet (Friedman et al., 2010)

penalized (Goeman et al., 2017)

Software for ordinal logistic regression (no lasso/elastic net penalty)

MASS::polr (Venables and Ripley, 2002)

rms::lrm (Harrell, 2015)

ordinalgmifs (Archer et al., 2014)
GMIFS = Generalized Monotone Incremental Forward Stagewise regression

Our contribution

ordinalNet: fits parallel/nonparallel/semi-parallel ELMO models with
elastic net penalty
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Method comparison: TCGA liver tissue data

Compared methods for out-of-sample prediction accuracy.

100 cross validation replicates. Each replicate randomly split data
into 46 training and 10 test observations.

Compared 6 methods:
Adjacent category elastic net

Parallel
Nonparallel
Semi-parallel

Multinomial logistic regression elastic net (fit by glmnet)
Standard penalty
Grouped penalty

Adjacent category generalized monotone incremental forward
stagewise algorithm (fit by ordinalgmifs)

All elastic net models used α = 0.5.

All methods were tuned by 10-fold cross validation on each training
fold to optimize out-of-sample log-likelihood.
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Method comparison: Misclassification rate

Avg. misclassification rate
ACAT-Parallel 0.082
ACAT-Nonparallel 0.093
ACAT-Semiparallel 0.093
Multinomial Logistic 0.116
Multinomial Logistic-Grouped 0.114
GMIFS 0.089
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Method comparison: Brier score

Note: Brier score is like mean squared error for categorical data (lower is better)

Avg. Brier score

ACAT-Parallel 0.122
ACAT-Nonparallel 0.128
ACAT-Semiparallel 0.123
Multinomial Logistic 0.155
Multinomial Logistic-Grouped 0.153
GMIFS 0.132

Brier score =
1

N

N∑
i=1

K∑
k=1

(
P̂(Yi = k|Xi = xi )− I (yi = k)

)2
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Applications

ordinalNet has been cited in papers in a variety of applied fields:

Respiratory disease (Albu, 2019)

Major depressive disorder (Harati et al., 2019)

Corporate bond rating (Park et al., 2018)

Education (Crues et al., 2018)
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Summary

ELMO is a class of categorical response models that have parallel,
nonparallel, and semi-parallel forms.

Semi-parallel models have the flexibility of an unordered multinomial
model, but can be penalized toward an ordinal model.

Optimization done by coordinate descent.

Implemented in ordinalNet package on CRAN.
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Some related work

(high-dimensional) variable selection for ordinal models

flexible models for ordinal response data (e.g. non-proportional
odds, multivariate ordinal data data, ...)

Jan Gertheiss and co-authors, Helmut Schmidt University

Tutz, Gerhard, and Jan Gertheiss. ”Regularized regression for
categorical data.” Statistical Modelling 16.3 (2016): 161-200.

Ugba ER. serp: An R package for smoothing in ordinal regression.
Journal of Open Source Software. 2021 Oct 27;6(66):3705.
“functions for regularization across response categories in the
non-proportional cumulative ordinal regression model.”

Hirk, Hornik, and Vana, Vienna University of Economics and
Business (hello!)

Hirk R, Hornik K, Vana L. Multivariate ordinal regression models:
an analysis of corporate credit ratings. Statistical Methods &
Applications. 2019 Sep;28(3):507-39.

Hirk R, Hornik K, Vana L. mvord: an R package for fitting
multivariate ordinal regression models. Journal of Statistical
Software. 2020 Apr 18;93:1-41.
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Some related work (continued)

Paul Rathouz (ordinal outcomes, not regularization).
Semi-parametric generalized linear model (SPGLM).

Wurm MJ, Rathouz PJ. Semi-parametric generalized linear models
with the gldrm package. The R journal. 2018 Jul;10(1):288.

ENAR March 2022. “Comparative Performance of a
Semi-parametric Generalized Linear Model in Selected Analysis
Settings.” (session: Regression models for ordinal response data).

Kellie Archer, Ohio State University.

Zhang, Y.; Archer, K.J. Bayesian penalized cumulative logit model
for high-dimensional data with an ordinal response. Statistics in
Medicine 2021, 40, 1453–1481.

Archer, Kellie J., et al. ”Ordinalbayes: Fitting Ordinal Bayesian
Regression Models to High-Dimensional Data Using R.” (2022).
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