
1/21

Installing stable BART R package from source
I Our BART R package (current version 2.9) is on

the Comprehensive R Archive Network (CRAN)
I https://cran.r-project.org/package=BART
I Install into your personal vs. global R library
I ∼/.Rprofile
I # my .Rprofile contains this personal library
I .libPaths("∼/.R/library")
I Installing BART (which depends on the Rcpp package)
I From source with the Unix command line

(from here on Unix means UNIX/Linux/macOS)
I Requires a full C++ toolchain like GNU GCC or Apple Xcode
I C++11 required: GCC 9/Xcode 9 or higher recommended
I $ R CMD INSTALL BART_2.9.tar.gz
I From the R prompt for Windows and Unix
> options(repos=c(CRAN="https://cran.r-project.org"))
> install.packages("BART", dependencies=TRUE)

https://cran.r-project.org/package=BART

2/21

Installing development BART3 R package from source

I Our BART3 R package (current version 4.4)
I https://github.com/rsparapa/bnptools

I Installing BART3 (which depends on the Rcpp package)
I From source with the Unix command line
I $ R CMD INSTALL BART3_4.4.tar.gz

I From the R prompt for Windows and Unix
> options(repos=c(CRAN="https://cran.r-project.org"))
> install.packages("Rcpp", dependencies=TRUE)
> library(remotes)
> install_github("rsparapa/bnptools", subdir="BART3")

https://github.com/rsparapa/bnptools

3/21

Rcpp for seamless R and C++ integration
I Eddelbuettel and Francois 2011 JSS
I https://cran.r-project.org/package=Rcpp
I Circa 02/2022: dependency for 2500 (13%) CRAN packages
I Seamless passing of objects from R to C++ and vice versa

including R objects such as vectors, matrices and lists
I Facilitates passing by pointer for optimal performance
I Convenient constructors/destructors for R objects for

automated creation and garbage collection
I Integration with the R pseudo-random number generator

including the standard distributions
I C++ namespace for the standalone Rmath library C functions
I A portable C++ header-only library

i.e., no compiled binaries are needed
I Side effect: installation/compilation is typically faster

but there may be outliers/edge-cases
I See Package Dependencies at http://cran.r-project.
org/doc/manuals/r-release/R-exts.html

https://doi.org/10.18637/jss.v040.i08
https://cran.r-project.org/package=Rcpp
http://cran.r-project.org/doc/manuals/r-release/R-exts.html
http://cran.r-project.org/doc/manuals/r-release/R-exts.html

4/21

BART software with a predict function
R packages

Debut Language Stable (CRAN) Development Multi-threading
2006 C++ BayesTree None None
2013 Java bartMachine Java
2014 C++ dbarts forking
2014 C++ MPI BART source code MPI
2017 C++ BART 2.9* BART3* OpenMP/forking
2019 C++ rbart 1.0* hbart* OpenMP
2019 C++ None mxBART* OpenMP/forking
2021 C++ None mBART* OpenMP/forking
2021 C++ nftbart 1.2* nftbart* OpenMP

*Descendents of MPI BART
Development on github.com by users rsparapa (me),
cspanbauer (Charley Spanbauer) and remcc (Rob McCulloch)
Special thanks to Rob (BART), Matt Pratola for rbart
Hugh Chipman, Robert Gramacy, the R Core team,
the Rcpp Core team and so many others in the FOSS community

github.com

5/21

BART software features: descendents of MPI BART
Stable BART nftbart rbart
Development BART3 nftbart hbart mBART
github.com user rsparapa remcc

predict function Yes Yes Yes BART
heteroskedastic No Yes Yes No
monotonic No No No Yes
continuous Yes Yes Yes Yes
binary/categorical Yes No No No
right censoring Yes Yes No No
left censoring No Yes No No
competing risks Yes No No No
recurrent events Yes No No No
sparse prior Yes No No No
marginal effects BART3 Yes No No
missing imputation Yes Yes No No
advanced tree proposals No Yes Yes No
nonparametric error No Yes No No
C++ header-only BART3 No hbart No

6/21

A brief history of multi-processing/-threading
I 1961: Burroughs B5000 asymmetric multi-processing
I 1962: Burroughs D825 symmetric multi-processing (SMP)
I 1967: Amdahl’s law: ((1− b)/C + b)−1

I 1970: Fork system call appears in UNIX
I Early 1990’s: Message Passing Interface for shared nothing

distributed processing across multiple computers
I Late 1990’s: paradigm shift towards multi-threading where

multiple CPU cores can process a thread simultaneously
I 1997-8: OpenMP for shared memory/storage multi-processing

within a single computer
I 2000: AMD64 architecure debuts: native execution of

32-bit x86 legacy code as well as new 64-bit x86 instructions
I 2003: Linux kernel 2.6 unleashes SMP support
I 2010-11: affordable, mass-produced, multi-core CPUs released

as Intel Xeon and AMD Opteron supporting 16 threads
I 2014: parallel package included in R supporting shared memory

multi-threading via forking on UNIX/Linux/macOS

7/21

Modern multi-threading software frameworks
I Message Passing Interface (MPI) for multiple nodes
I Pratola, Chipman, Gattiker, Higdon, McCulloch, Rust. Parallel

Bayesian Additive Regression Trees. JCGS 2014;23:830-852
https://arxiv.org/abs/1309.1906

I OpenMP for single nodes: used by BART for predict
I detected by the GNU autotools when BART installed
I defines a C pre-processor macro (or not): _OPENMP
I macOS: see https://mac.r-project.org/openmp
I Windows: OpenMP/GNU autotools generally unavailable
I Forking for single nodes: parallel R package
I Forking not supported on Windows
I see the help page: ?mcparallel
I Forking used by BART for posterior sampling
I mc.gbart, mc.surv.bart, mc.recur.bart, etc.
I can be used by the predict function instead of OpenMP

(when OpenMP is unavailable)

https://arxiv.org/abs/1309.1906
https://mac.r-project.org/openmp

8/21

Multi-threading: can I run multiple threads?

I Windows: not currently supported by R or CRAN
I Unix only at this point including Linux and macOS
I OpenMP
> library(BART)
> mc.cores.openmp()

I Returns 0 if OpenMP not available; 1 if it is
I Forking
> library(parallel)
> detectCores()

I Returns 1 or more (and occasionally NA)

9/21

MCMC is “embarrassingly” parallel

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Chains

P
ro

po
rt

io
na

te
 le

ng
th

 o
f c

ha
in

 p
ro

ce
ss

in
g

tim
e

b

10/21

Amdahl’s Law and the MCMC Corollary
I Gain = (1−b)+b

(1−b)/C+b = 1
(1−b)/C+b and b is the burn-in fraction

1 2 5 10 20

1
2

3
4

5
6

7

C: number of threads

G
ai

n

b=0.1

b=0.2

b=0.5

11/21

Amdahl’s Law and Run-time
I Run-time = 1/Gain = {(1− b)/C + b}

1 2 5 10 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C: number of threads

R
un

−
tim

e

b=0.1

b=0.2

b=0.5

12/21

Multi-threading: random access memory (RAM) I

I IEEE 754 specifies that every double-precision number
consumes 8 bytes (64 bits) so you can estimate your needs

I If A is m× n, then RAM(A) = 8× m× n bytes
I If you consume all of the physical RAM, the system will swap

segments out to virtual RAM which are disk files:
this will degrade performance and possibly crash the system

I On Unix, you can monitor memory and swap usage with top
I Within R, you can determine the size of an object with the
object.size function

13/21

Multi-threading: random access memory (RAM) II

A =

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn

I R matrices are column-major: [a11, a21, . . . , a12, a22, . . .]

I C++ matrices are row-major: [a11, a12, . . . , a21, a22, . . .]

I This is easily addressed with a transpose
instead of passing A from R to C++, we pass At

I R passes objects by pointer, but it is copy-on-write
I All objects in the parent thread can be read by the child thread

from the pointer without a copy, but when an object is
altered/written by the child, then a new copy is created

I RAM(A) = 8× m× n× C and C is the no. of children
I If the parent transposes, we avoid the copy: A <- t(A)

14/21

Multi-threading: interactive vs. batch processing

I Interactive jobs must take precedence over batch jobs to prevent
the user experience from suffering high latency

I Examples of interactive activity: typing at the command line,
editing files with Emacs, reading email, browsing the web

I In the tools R package, there is the psnice function
I Paraphrased from the ?psnice help page

Unix has a concept of process priority. Priority is assigned
values from 0 to 39 with 20 being the normal priority and
(counter-intuitively) larger numeric values denoting lower pri-
ority. Adding to the complexity, there is a “nice” value, the
amount by which the priority exceeds 20. Processes with
higher nice values will receive less CPU time than those with
normal priority. Generally, processes with nice 19 are only run
when the system would otherwise be idle.

I by default, the BART package children have nice set to 19

15/21

Hot/Cold-decking missing imputation
I Mainframe era legend: the US Census was on punch cards
I Often items were either mistakenly or intentionally left blank
I If the collected data is (NOT) Missing Completely at Random, you

can (NOT) drop missing records from statistical analysis
I Hot-decking is the substitution of a nearby neighbor’s value to

replace a missing value on the resident’s form
I For regression, compute the distance between two records via y’s
I But, what does “nearby” mean?

What about dichotomous or censored time-to-event outcomes?
I For one or more missing covariates, record-level cold-decking

imputation can be employed that is biased towards the null
I Non-missing values from another record are randomly selected

regardless of the y’s (effectively, simple random sampling)
I This missing data imputation method is sufficient for data sets

with relatively few missing values
I More pervasive missing data require advanced techniques such

as Sequential BART (Xu, Daniels et al. 2016 Biostatistics) https:
//cran.r-project.org/src/contrib/Archive/sbart

https://cran.r-project.org/src/contrib/Archive/sbart
https://cran.r-project.org/src/contrib/Archive/sbart

16/21

Cold-decking missing imputation and multiple imputation
I Suppose we have the following 5 variables for childhood growth:

age, gender, race/ethnicity, waist circumference, weight
I It is reasonable to assume that these variables have a

relationship between them
I Suppose record i has the observed/missingness pattern
Ai Bi NA NA NA

I And we randomly draw record j to replace its values
Cj Dj NA Ej Fj

I Now, record i looks like this
Ai Bi NA Ej Fj

I So, we randomly draw again: record k
Gk NA Hk Ik NA

I So, record i looks like this
Ai Bi Hk Ej Fj

I Each MCMC chain can have its own imputation
providing multiple imputation rather than single imputation

17/21

Continuous outcomes with gbart and mc.gbart
set.seed(99); post <- gbart(x.train, y.train, ...,

ndpost=M, keepevery=1)
or multi-threaded: BART3 options(mc.cores=2)
post <- mc.gbart(x.train, y.train, ...,

ndpost=M, keepevery=1, mc.cores=2, seed=99)

Matrices/data.frames: x.train and, optionally, x.test: xi
x1
x2
...

xN

Output object, post, of type wbart which is essentially a list

Matrices: post$yhat.train and post$yhat.test: ŷim = fm(xi) ŷ11 . . . ŷN1
... . . .

...
ŷ1M . . . ŷNM

18/21

predict input and output
BART3: options(mc.cores=2)
pred <- predict(post, x.test, mc.cores=1, ...)
post object of type wbart (continuous), pbart (binary probit),
lbart (binary logistic), survbart (survival analysis),
criskbart (competing risks) or recurbart (recurrent events)

Input matrices: x.test: xi
x1
x2
...

xQ

Output matrix for wbart: ŷim = fm(xi) ŷ11 . . . ŷQ1

... . . .
...

ŷ1M . . . ŷQM

19/21

Pseudo-code: parallel R package and mc.gbart
mc.gbart <- function(..., nice=19, transposed=FALSE) {
RNGkind("L’Ecuyer-CMRG")
set.seed(seed)
parallel::mc.reset.stream()
if(!transposed) {

x.train <- t(x.train)
x.test <- t(x.test)

}
mc.cores <- min(c(mc.cores, parallel::detectCores()))
...
for(i in 1:mc.cores)

parallel::mcparallel({psnice(value=nice);
gbart(..., transposed=TRUE)},
silent=(i!=1))
to avoid duplication of output
capture from first child only

post.list <- parallel::mccollect()

20/21

Multi-threading demos

I With the system.file function, you can find where R installed
the BART package as well as files and sub-directories

I system.file(package=’BART’)

I system.file(’demo’, package=’BART’)

I system.file(’demo/friedman.wbart.R’,
package=’BART’)

I For the demos, you can use the demo function
I demo(package=’BART’)

I demo(’friedman.wbart’, package=’BART’)

I But then you have to press Return after each plot

21/21

Creating a BART executable with C++ sans R

I Rcpp allows C++ code to rely on the R PRNG
I In our package, you can build C++ BART without R/Rcpp
I C++ BART is built with the standalone Rmath library which is part

of the R project and contained in the R source code
I Rmath provides an R compliant PRNG and all of the useful R

functions like pnorm
I You can optionally build with the PRNG provided by the C++
random class from the Standard Template Library (STL)

I system.file(’cxx-ex’, package=’BART’)

I system.file(’cxx-ex/Makefile’, package=’BART’)

