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Outline of Material
I Part A: Introduction to BART

I Motivating Example: Growth Charts
I Bayesian Additive Regression Trees (BART)
I Heteroskedastic Bayesian Additive Regression Trees (HBART)
I The BART package and other BART software
I The BART prior
I Friedman’s partial dependence function
I Returning to growth chart example
I Posterior MCMC

I Part B: BART computational considerations
I Installing the BART R package
I The Rcpp R package
I The BART package and other BART software
I A brief overview of multi-processing/-threading
I Multi-threading with the BART R package
I Missing imputation and multiple imputation
I Calling BART R functions and predict
I Creating a BART executable with C++ sans R

I Conclusions
I Q & A
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Motivating Example: Growth Charts
I The US Centers for Disease Control and Prevention (CDC) as

well as the World Health Organization have developed growth
charts for childhood development: height by age,
weight by age, body mass index by age and weight by height

I Here we will focus on height, yt ,
by age in months, t = 24, . . . , 215 (2 to 17 years old)

I The CDC uses the LMS method via natural cubic splines
(Cole and Green 1992 Statistics in Medicine)

I Three parameters estimated by penalized maximum likelihood
the Box-Cox power transformation, Rt ;
the mean, St ; and the coefficient of variation, Yt

zt =

{

−1+(yt/St )
Rt

RtYt
Rt ≠ 0

log(yt/St )

Yt
Rt = 0

}

∼ N(0, 1)

I But, this only uses part of the data: just males or just females
I What if we wanted to use all of the data?
I Or include more information like weight or race/ethnicity?
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What is Machine Learning Regression?

I Machine Learning Regression (MLR) is within the paradigm
of Artificial (or Computational) Intelligence

I MLR is extensible, but for the moment consider the general
regression case of a continuous outcome with Normal errors

yi = - + f (xi) + &i where &i
iid
∼ N

(

0, 22)

I f is an unspecified function whose form is to be learned from
the data and xi is a vector of covariates for i = 1, . . . , T

I A common extension in MLR

yi = - + f (xi) + 2s(xi)&i where &i
iid
∼ L&

I And f and s will both be learned, but how?
I Ideally in a nonparametric manner without resorting to

precarious restrictive assumptions
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What is Bayesian Additive Regression Trees?

I a supervised MLR with nice properties: automated learning of
the functional relationship and interactions without requiring
covariate transformations for continuous, binary, categorical and
time-to-event outcomes

I tree-based ensemble predictive model
I Bayesian nonparametric method with

robust defaults for the prior parameter settings
I computationally efficient posterior inference via MCMC

estimates naturally computed from summaries of the posterior
along with the quantification of their uncertainty

I seamless extension to variable selection in high dimensions
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Selected BART references with URLs
Overview Chipman, George and McCulloch 2010 AOAS

Sparapani, Spanbauer and McCulloch 2021 JSS
Survival Analysis Sparapani, Logan et al. 2016 Statistics in Medicine

Henderson, Louis et al. 2020 Biostatistics
Sparapani, Rein et al. 2020 Biostatistics
Sparapani, Logan et al. 2020 SMMR
Linero, Basak et al. 2021 Bayesian Analysis

Big Data Pratola, Chipman et al. 2014 JCGS
(Big T) Entezari, Craiu et al. 2017 Canadian J of Stat
Variable Selection Linero 2018 JASA
(Big V) Liu, Rockova 2021 JASA
Efficient MCMC Pratola 2016 Bayesian Analysis
Nonparametric Rockova and Saha 2019 PMLR
Theory Rockova and van der Pas 2020 AOS
Heteroskedastic Pratola, Chipman et al. 2020 JCGS
Propensity Scores Hahn, Murray et al. 2020 Bayesian Analysis
Monotonic Chipman, George et al. 2021 Bayesian Analysis

https://dx.doi.org/10.1214/09-AOAS285
https://doi.org/10.18637/jss.v097.i01
https://doi.org/10.1002/sim.6893
https://doi.org/10.1093/biostatistics/kxy028
https://doi.org/10.1093/biostatistics/kxy032
https://doi.org/10.1177/0962280218822140
https://doi.org/10.1214/21-BA1285
https://doi.org/10.1080/10618600.2013.841584
https://doi.org/10.1002/cjs.11343
https://dx.doi.org/10.1080/01621459.2016.1264957
https://doi.org/10.1080/01621459.2021.1928514
https://dx.doi.org/10.1214/16-BA999
https://proceedings.mlr.press/v89/rockova19a.html
https://dx.doi.org/10.1214/19-AOS1879
https://dx.doi.org/10.1080/10618600.2019.1677243
https://doi.org/10.1214/19-BA1195
https://doi.org/10.1214/21-BA1259
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BART software with a predict function
R packages

Debut Language Stable (CRAN) Development Multi-threading
2006 C++ BayesTree None None
2013 Java bartMachine Java
2014 C++ dbarts forking
2014 C++ MPI BART source code MPI
2017 C++ BART 2.9* BART3* OpenMP/forking
2019 C++ rbart 1.0* hbart* OpenMP
2019 C++ None mxBART* OpenMP/forking
2021 C++ None mBART* OpenMP/forking
2021 C++ nftbart 1.2* nftbart* OpenMP

*Descendents of MPI BART
Development on github.com by users rsparapa (me),
cspanbauer (Charley Spanbauer) and remcc (Rob McCulloch)
Special thanks to Rob (BART), Matt Pratola for rbart
Hugh Chipman, Robert Gramacy, the R Core team,
the Rcpp Core team and so many others in the FOSS community!

github.com


8/52

BART software features: descendents of MPI BART
Stable BART nftbart rbart
Development BART3 nftbart hbart mBART
github.com user rsparapa remcc

predict function Yes Yes Yes BART
heteroskedastic No Yes Yes No
monotonic No No No Yes
continuous Yes Yes Yes Yes
binary/categorical Yes No No No
right censoring Yes Yes No No
left censoring No Yes No No
competing risks Yes No No No
recurrent events Yes No No No
sparse prior Yes No No No
marginal effects BART3 Yes No No
missing imputation Yes Yes No No
advanced tree proposals No Yes Yes No
nonparametric error No Yes No No
C++ header-only BART3 No hbart No
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Bayesian Additive Regression Trees (BART)

Chipman, George & McCulloch 2010 Annals of Applied Stat

yi = - + f (xi) + &i &i
iid
∼ N

(

0, w2
i2

2)

f
prior
∼ BART (", #, N, +, -, 3)

f (xi) ≡
N
∑

h=1
g(xi;Th,Mh) N ∈ {50, 200, 500}

-hl |Th
prior
∼ N

(

0,
32

4N+2

)

leaves of Th

∈ Mh

22 prior
∼ ,.6−2 (.)
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Bayesian Additive Regression Trees (BART)
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Heteroskedastic BART (HBART)
Pratola, Chipman, George & McCulloch 2020 JCGS

yi = - + f (xi) + s(xi)&i &i
iid
∼ N

(

0, w2
i2

2)

f
prior
∼ BART (", #, N, +, -, 3)

s2 prior
∼ HBART ("̃, #̃, ˜N, ,̃, .̃)

s2
(xi) ≡

˜N
∏

h=1
g(xi; ˜Th, ˜Mh) ˜N ≈ N/5

22
hl |

˜Th
prior
∼ ,.6−2 (.) leaves of ˜Th , = ,̃1/ ˜N

∈ ˜Mh . = 2
[

1 −
(

1 −
2
.̃

)1/ ˜N ]−1
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BART, ensembles and prediction error

I mean squared error = bias2 + variance

I There is a trade-off between the bias and variance

I Consider the spectrum of trade-offs

Linear regression is on the high bias/low variance end

Single-tree regression is on the low bias/high variance end

I Ensembles are in the middle: medium bias/medium variance

I BART is in the class of ensemble models which both
theoretically, and in practice, have excellent out-of-sample
predictive performance

Krogh & Solich 1997 Physical Review E
Baldi & Brunak 2001 “Bioinformatics: machine learning approach”
Kuhn & Johnson 2013 “Applied Predictive Modeling”
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Binary trees and Bayesian Additive Regression Trees
I BART relies on an ensemble of N binary trees which are a type

of a directed acyclic graph
I We exploit the wooden tree metaphor to its fullest except binary

trees grow downward by tradition
I Each of these trees grows down starting out as a root node
I The root node is generally a branch decision rule, but it doesn’t

have to be; occasionally, there are trees in the ensemble which are
only a root terminal node consisting of a single leaf output value

I If the root is a branch decision rule, then it spawns a left and a
right node which each can be either a branch decision rule or a
terminal leaf value and so on

I In binary tree, T, there are I nodes which are made of H
branches and R leaves: I = H + R

I There is an algebraic relationship between the number of
branches and leaves which we express as H = R − 1.
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The BART R package

I to facilitate the predict function, BART fits can be stored as R
objects to be reloaded later

I the ensemble of trees is encoded in an ASCII string which is
returned in the treedraws$trees list item

I This string can be read by R
I Encoded with C/C++ indexing starting with 0 is used

rather than R object indexing starting with 1
I Since the predict function calls C/C++ code for speed
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The BART R package and trees

Sparapani, Spanbauer and McCulloch 2021
Journal of Statistical Software
R> write(post$treedraws$trees, "trees.txt")

R> tc <- textConnection(post$treedraws$tree)

R> trees <- read.table(file=tc, fill=TRUE, row.names=NULL, header=FALSE,

+ col.names=c("node", "var", "cut", "leaf"))

R> close(tc)

R> head(trees)
node var cut leaf

1 1000 200 1 NA

2 3 NA NA NA

3 1 0 66 -0.001032108

4 2 0 0 0.004806880

5 3 0 0 0.035709372

6 3 NA NA NA

x1

0.005

≤ c1,67

0.036

> c1,67
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The BART R package and trees
I The string is encoded as follows
I The first line is an exception which has the number of MCMC

samples, S, in the field node; the number of trees, N, in the
field var; and the number of variables, V, in the field cut

I For the rest of the file, the field node is used for the number of
nodes in the tree when all other fields are NA; or for a specific
node when the other fields are present

I The nodes are numbered in relation to the tree’s tier level,
t(n) = blog2 nc or t=floor(log2(node))

Tier
0 1
1 2 3
2 4 5 6 7
...
t 2t . . . 2t+1−1
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The BART R package and trees

I The var field is the variable in the branch decision rule which is
encoded 0, . . . , V − 1 as a C/C++ array index (rather than an R
index)

I Similarly, the cut field is the cut-point of the variable in the
branch decision rule which is encoded 0, . . . , c j − 1 for variable
j; note that the cut-points are returned in the
treedraws$cutpoints list item

I The terminal leaf output value is contained in the field leaf
I It is not immediately obvious which nodes are branches vs.

leaves since, at first, it would appear that the leaf field is given
for both branches and leaves

I Leaves are always associated with var=0 and cut=0; however,
note that this is also a valid branch variable/cut-point since these
are C/C++ indices
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The BART R package and trees

I The key to discriminating between branches and leaves is via the
algebraic relationship between a branch, n, at tree tier t(n)
leading to its left, l = 2n, and right, r = 2n + 1, nodes at tier
t(n) + 1

I for each node, besides root, you can determine from which
branch it arose and those nodes that are not a branch (since they
have no leaves) are necessarily leaves
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The BART prior
I The BART prior specifies a flexible class of unknown functions,

f , from which we can gather randomly generated fits to the given
data via the posterior

I We define f as returning a scalar value, but BART extensions
which return multivariate values are conceivable

I Let function g(x;T,M) assign a value based on the input x
I The binary tree T is represented by a collection of I four-tuples
(n, 7n; j, k): n for node number;
7n = 1 for a branch and 0 for a leaf;
and, if a leaf, j for covariate x j with k for the cut-point c jk

I Suppose the collection of branches is denoted by
B = {n : 7n = 1}

I The branch decision rules are of the form x j ≤ c jk which means
branch left and x j > c jk , branch right; or terminal leaves where
it stops. M represents leaves and is a set of ordered pairs,
(n, -n): n ∈ L where L is the set of leaves
(L is the complement of B) and -n for the outcome value
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The BART prior
I The function, f (x), is a sum of N trees:

f (x) =
N
∑

h=1
g(x;Th,Mh)

where N is “large”, let’s say, 50, 200 or 500
I For a continuous outcome, yi , we have the following BART

regression on the vector of covariates, xi:

yi = - + f (xi) + &i where &i
iid
∼ N

(

0, w2
i2

2)

with i indexing subjects i = 1, . . . , T
I The BART priors for the unknown random function, f ,

and the error variance, 22, are as follows

f
prior
∼ BART (", #, N, -, +, 3) 22 prior

∼ .,6−2 (.)

where N is the number of trees, - is a known constant which
centers y and the rest of the parameters will be explained later in
this section (for brevity, we often use f

prior
∼ BART)



21/52

The BART prior

I The wi are known standard deviation weight multiples which you
can supply with the argument w that is only available for
continuous outcomes, hence, the weighted BART name; the unit
weight vector is the default

I The centering parameter, -, can be specified via the fmean
argument where the default is taken to be ȳ

I xi: matrices or data frames can be supplied
I unlike matrices, data frames can contain categorical factors when

x.train is a data frame
I Factors with multiple levels are transformed into dummy

variables with each level as their own binary indicator; factors
with only two levels are a binary indicator with a single dummy
variable
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The BART prior

I BART is a Bayesian nonparametric prior
I we represent the BART prior in terms of the collection of all

trees, T; collection of all leaves,M; and the error variance, 22,
as:

[

T,M, 22] =
[

22] [T,M] =
[

22] [T] [M|T]

I the individual trees themselves are independent:
[T,M] =

∏

h [Th] [Mh |Th] where [Th] is the prior for the hth
tree and [Mh |Th] is the collection of leaves for the hth tree

I the collection of leaves for the hth tree are independent:
[Mh |Th] =

∏

n [-hn |Th] where n indexes the leaf nodes
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The BART prior
I The tree prior: [Th]. There are three prior components of Th

which govern whether the tree branches grow or are pruned
I The first tree prior regularizes the probability of a branch at leaf

node n in tree tier t(n) = blog2 nc as follows.

7n
prior
∼ B( p(t(n))) where p(t(n)) = "(t(n) + 1)−# (1)

7n = 1 represents a branch while 7n = 0 is a leaf
0 < " < 1 and # ≥ 0

I You can specify these prior parameters with arguments, but the
following defaults are recommended: " is set by the parameter
base=0.95 and # by power=2

I The expected number of branches (leaves) is 1 (2) with
probability P[71 = 1, 72 = 73 = 0] = p(0)q(1)2 ≈ 0.55

I Or 2 (3) with 2P[71 = 72 = 1, 73 = 74 = 75 = 0] =
2 p(0) p(1)q(1)q(2)2 ≈ 0.27 (doubled due to symmetry)

I Trees with only 1 or 2 branches (2 or 3 leaves) would dominate
with a probability of about 0.82
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BART and Bayesian nonparametric theory
I frequentist theoretical justification for BART’s performance:

asymptotically consistent with a near optimal learning rate

I the BART posterior distribution concentrates around the truth at
a near optimal minimax rate

I the default BART Branching penalty is near optimal:
7n

prior
∼ B

(

"(1 + t(n))−#
)

where t(n) = 0, . . .
I the optimal BART Branching penalty is now shown to be:

7n
prior
∼ B

(

$t (n)
)

where 0 < $ < 0.5
Branches (Leaves) 0 (1) 1 (2) 2 (3) 3+ (4+)
Prior probability 0.00 (1 − $)2 2$(1 − $)(1 − $2)2 . . .
$ = 0.25 0.00 0.56 0.33 0.11
" = 0.95, # = 2 0.05 0.55 0.27 0.13

Chipman, George & McCulloch 1998 JASA
Rockova & Saha 2018 PMLR
Rockova & van der Pas 2020 Annals of Statistics
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The BART prior
I The leaf prior: [-hn |Th]

I Given a tree, Th, there is a prior on its leaf values, -hn |Th and
we denote the collection of all leaves in Th by
Mh = {(n, -hn) : n ∈ Lh}

I Suppose that y ∈ [ymin, ymax] where
ymin and ymax might be elicited as 0.025 and 0.975 quantiles
otherwise, the observed min and max are used (the default)

I Denote [-̃1, . . . , -̃N ] as the leaf output values from each tree
corresponding to the vector of covariates, x

I If -̃h |Th
iid
∼ N

(

0, 22
-

)

, then the model estimate is
ŷ = E [y |x] = - +

∑

h -̃h where ŷ ∼ N
(

-, N22
-

)

I Solve for 2-: ymin = - − +
√
N2- and ymax = - + +

√
N2-

2- = ymax−ymin
2+
√
N

I Therefore, we arrive at
-hn

prior
∼ N

(

0, 32

4N+2

)

where 3 = ymax − ymin
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The BART prior

I The parameter + calibrates this prior as follows
I The default value, + = 2, corresponds to ŷ falling within the

extrema with approximately 0.95 probability
I Alternative choices of + can be supplied via the k argument
I We have found that values of + ∈ [1, 3] generally yield good

results
I Note that + is a potential candidate parameter for choice via

cross-validation
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The BART prior

I We fix the number of trees at N which corresponds to the
argument ntree

I The default number of trees is 200 for continuous outcomes; but
for computational convenience, 50 is also a reasonable choice
which is the default for all other outcomes

I cross-validation could be considered
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The BART prior

I The number of cut-points is provided by the argument numcut
and the default is 100

I The default number of cut-points is achieved for continuous
covariates

I For continuous covariates, the cut-points are uniformly
distributed by default, or generated via uniform quantiles if the
argument usequants=TRUE is provided

I By default, discrete covariates which have fewer than 100 values
will necessarily have fewer cut-points

I However, if you want a single discrete covariate to be represented
by a group of binary dummy variables, one for each category,
then pass the variable as a factor within a data frame
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The BART prior

I Next, there is a prior dictating the choice of a splitting variable j
conditional on a branch event 7n which defaults to uniform
probability s j = V−1 where V is the number of covariates

I Given a branch event, 7n, and a variable chosen, x j , the last tree
prior selects a cut point, c jk , within the range of observed values
for x j ; this prior is uniform
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The BART error variance prior:
[

22]

I The prior for 22 is the conjugate scaled inverse Chi-square
distribution, i.e., ,.6−2 (.)

I We recommend that the degrees of freedom, ., be from 3 to 10
and the default is 3 (can be over-ridden by the argument sigdf)

I The , parameter can be specified by the lambda argument
(defaults to NA)

I If lambda is unspecified, then we determine a reasonable value
for , based on an estimate, 2̂, (which can be specified by the
argument sigest and defaults to NA)
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The BART error variance prior

I If sigest is unspecified, the default value of sigest is
determined via linear regression or the sample standard
deviation: if V < T, then yi ∼ N

(

x′i
̂#, 2̂2

)

; otherwise, 2̂ = sy

I Now we solve for , such that P
[

22 ≤ 2̂2] = q

I This quantity, q, can be specified by the argument sigquant and
the default is 0.9 whereas we also recommend considering 0.75
and 0.99

I Note that the pair (., q) are potential candidate parameters for
choice via cross-validation.
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Friedman’s partial dependence function and
Marginal Effects of Independent Variables

Friedman 2001 Annals of Statistics

f (x) = f (xY , xI) a complex function like BART where x = [xY , xI]

fY (xY) = ExI [ f (xY , xI)|xY]

≈ T−1
∑

i

f (xY , xiI) partial dependence function

fYm (xY) ≡ T−1
∑

i

fm (xY , xiI)

f̂Y (xY) ≡ S−1
∑

m

fm (xY)
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Friedman’s partial dependence function and
Marginal Effects of Dependent Variables

I Consider our growth chart for height example
I Age and weight obviously co-vary
I t for age, u for sex, v for race/ethnicity and w for weight

ft , u (t, u) = Ev,w [ f (t, u, v, w)| t, u] assuming Independence
I To do this right, first consider the likely strong relationship

between age, gender and weight among children
E [w | t, u] = w̃ = f̃ (t, u)

I So estimate the relationship with a BART model
wi = f̃ (ti , ui) + &̃i where f̃

prior
∼ BART

I A marginal effect more appropriate for dependent variables

ft , u (t, u) = Ev [ f (t, u, v, w̃)| t, u, w̃ = E[w | t, u]] assuming

= Ev
[

f (t, u, v, f̃ (t, u))| t, u
]

Dependence
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Returning to the real data example
I The CDC mainly used the US National Health and Nutrition

Examination Survey (NHANES): waves I-III n = 12677
I For simplicity, I used NHANES 1999-2000 annual/continuous
I The data set is in the BART3 package: bmx

and see the height3.R example in demo
I 2-17 years (fractional age for months)
I each child only measured once
I height (cm) and weight (kg) collected
I Check MCMC convergence with max ̂X < 1.1 for 2:

Vehtari, Gelman et al. 2021 Bayesian Analysis
n %

Total 3435
Males 1768 51.5
Females 1667 48.5
White 800 23.3
Black 1035 30.1
Hispanic 1600 46.6



35/52

MCMC Convergence fit$sigma: max ̂X = 1.08
Burn-in 1000, Thinning 10, Chains 8, Posterior 1000

0 200 400 600 800 1000

4
5

6
7

8
9

10

MCMC sequence: 8 chain(s)

σ
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MCMC Convergence fit$sigma: Auto-correlation
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BART fit: M vs. F
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Marginal effect of age assuming independence
N = 200, numcut = 100
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Marginal effect of age: BART predictions for M and F
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Marginal effect of age: HBART predictions for M
N = 300, ˜N = 60, numcut = 200
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Marginal effect of age: HBART predictions for F
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Marginal effect of age: HBART vs. CDC for M
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Marginal effect of age: HBART vs. CDC for F
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Conclusion

I These slides provide you with an introduction to BART
I BART is a flexible Bayesian nonparametric method for MLR
I Supporting continuous, categorical and time-to-event outcomes
I As an ensemble it has excellent out-of-sample performance
I The tree branching penalty prevents over-fitting
I The BART and HBART priors have convenient default settings
I Using HBART for growth charts is an interesting application
I The BART/BART3 R packages are user-friendly and dependable
I The rbart/hbart R packages are maturing
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Posterior computation for BART

I In order to generate samples from the posterior for f , we sample
the structure of all the trees Th, for h = 1, . . . , N; the values of
all leaves -hn for n ∈ Lh within tree h; and, when appropriate,
the error variance 22

I Additionally, with the sparsity prior, there are samples of the
vector of splitting variable selection probabilities [s1, . . . , sV]
and, when the sparsity parameter is random, samples of )

I The leaf and variance parameters are sampled from the posterior
using Gibbs sampling

I Since the priors on these parameters are conjugate, the Gibbs
conditionals are specified analytically

I For the leaves, each -hn is drawn from a Normal conditional
density

I The error variance, 22, is drawn from a scaled inverse
Chi-square conditional
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Posterior computation for BART

I Drawing a tree from the posterior requires a
Metropolis-within-Gibbs sampling scheme, i.e., a
Metropolis-Hastings (MH) step within Gibbs sampling

I For single-tree models, four different proposal mechanisms are
defined in ChipGeor98

I The complementary BIRTH/DEATH proposals are essential (the
two other proposals are CHANGE and SWAP which are optional)

I For programming simplicity, the BART package only implements
the BIRTH and DEATH proposals each with equal probability

I BIRTH selects a leaf and turns it into a branch, i.e., selects a new
variable and cut-point with two leaves “born” as its descendants

I DEATH selects a branch leading to two terminal leaves and
“kills” the branch by replacing it with a single leaf
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Posterior computation for BART

I we present the acceptance probability for a BIRTH proposal
I (a DEATH proposal is the reversible inverse of a BIRTH

proposal)
I The algorithm assumes a fixed discrete set of possible split

values for each x j

I the leaf values, -hn, are integrated over so that our search in tree
space is over a large, but discrete, set of possibilities

I At the mth MCMC step, let Tm denote the current state for the
hth tree and T∗ denotes the proposed hth tree (subscript h is
suppressed for convenience). T∗ are identical Tm except that one
terminal leaf of Tm is replaced by a branch of T∗ with two
terminal leaves
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Posterior computation for BART

I The proposed tree is accepted with the following probability:

0BIRTH = min
(

1,
[T∗ ]

[Tm]

[Tm |T∗ ]

[T∗ |Tm]

)

where [Tm] and [T∗] are the posterior probabilities of Zm and Z∗
respectively

I These are the targets of this sampling, each consisting of a
likelihood contribution and prior contribution

I Additionally, [Tm |T∗] is the probability of proposing Tm given
current state T∗ (a DEATH) and [T∗ |Tm] is the probability of
proposing T∗ given current state Tm (a BIRTH)
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Posterior computation for BART
I First, we describe the likelihood contribution to the posterior
I Let yn denote the partition of y corresponding to the leaf node n

given the tree T
I Because the leaf values are a priori conditionally independent,

we have [y |T] =
∏

n [yn |T]

I So, for the ratio [T
∗ ]

[Tm]
after cancellation of terms in the numerator

and denominator, we have the likelihood contribution:

[yL, yR |T
∗]

[yLR |Tm]
=
[yL |T

∗] [yR |T
∗]

[yLR |Tm]

where yL is the partition corresponding to the newborn left leaf
node; yR, the partition for the newborn right leaf node; and
yLR =

[

yL
yR

]

I N.B. the terms in the ratio are the predictive densities of a Normal
mean with a known variance and a Normal prior for the mean
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Posterior computation for BART

I Similarly, the terms that the prior contributes to the posterior
ratio often cancel since there is only one “place” where the trees
differ and the prior draws components independently at different
“places” of the tree

I Therefore, the prior contribution to [T
∗ ]

[Tm]
is

P[7n = 1]P[7l = 0]P[7r = 0] s j
P[7n = 0]

=

"(t(n) + 1)−#
[

1 − "(t(n) + 2)−#
]2

s j

1 − "(t(n) + 1)−#

where P[7n] is the branch regularity prior, s j is the splitting
variable selection probability, n is the chosen leaf node in tree
Tm, l = 2n is the newborn left leaf node in tree T∗ and
r = 2n + 1 is the newborn right leaf node in tree T∗
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Posterior computation for BART

I Finally, the ratio [T
m |T∗ ]

[T∗ |Tm]
is

[DEATH|T∗] [n|T∗]
[BIRTH|Tm] [n|Tm] s j

where [n|T] is the probability of choosing node n given tree T
I N.B. s j appears in both the numerator and denominator of the

acceptance probability 0BIRTH, therefore, canceling which is
mathematically convenient
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Posterior computation for BART: uncertainty intervals

I Suppose that we want to estimate f at some value x whether
from the training or testing

I The standard Bayesian estimate is f̂ (x) = S−1 ∑

m fm (x)

I Construct a Bayesian (1 − ") × 100% credible interval from the
"/2 and the 1 − "/2 quantiles of the posterior

I ( f("/2) (x), f(1−"/2) (x))

I Construct a Bayesian (1 − ") × 100% prediction interval
I Generate ỹ from the predictive distribution:

ỹm ∼ N
(

fm (x), 2
2
m

)

I Select the "/2 and the 1 − "/2 quantiles of ỹ
I (ỹ ("/2) , ỹ (1−"/2))


