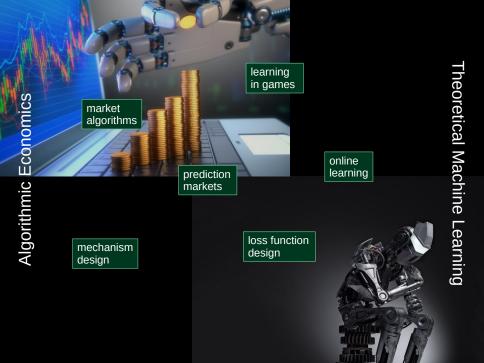
How (Not) to Run a Forecasting Competition: Incentives and Efficiency

Rafael Frongillo, Robert Gomez, Anish Thilagar, Bo Waggoner University of Colorado Boulder

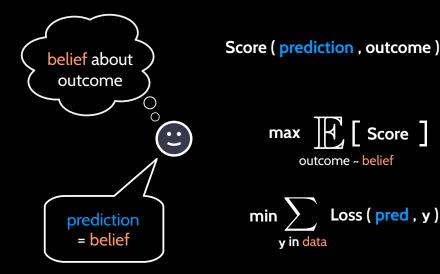
March 9, 2022 WU Vienna Institute for Statistics and Mathematics



Score (prediction, outcome)

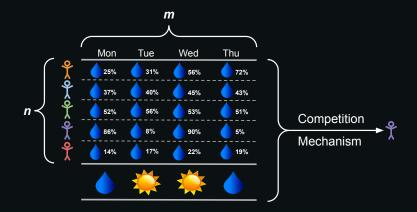
Score (prediction, outcome)

Score (prediction, outcome)



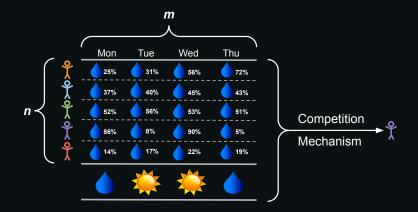
Forecasting Competitions

Kaggle, Good Judgement Project, Hybrid Forecasting Competition, ...



Forecasting Competitions

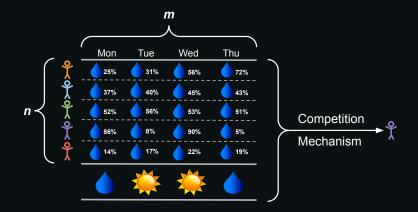
Kaggle, Good Judgement Project, Hybrid Forecasting Competition, ...



How to pick the winner?

Forecasting Competitions

Kaggle, Good Judgement Project, Hybrid Forecasting Competition, ...



How to pick the winner? Usually with Simple Max.

Toy example: n = 3, m = 1, truth is **6**50%. Who wins?

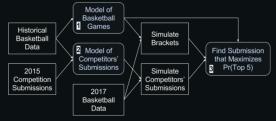
Toy example: n = 3, m = 1, truth is 650%. Who wins? 760% 10% 76% 50% 76% 90%

Optimal strategy: deviate to 0 or 1.

Toy example: n = 3, m = 1, truth is 50%. Who wins? 9% 10% 9% 50% 90%

Optimal strategy: deviate to 0 or 1.

Real life: Kaggle March Mania 2017



Andrew Landgraf, Kaggle [2017]

Toy example: n = 3, m = 1, truth is 650%. Who wins? 760% 10% 76% 50% 76% 90%

Optimal strategy: deviate to 0 or 1.

Real life: Kaggle March Mania 2017

Andrew Landgraf, Kaggle [2017]

What's the problem?

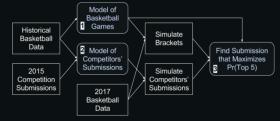
1. Accuracy: Picking the best forecaster?

beliefs \approx true probabilities

Toy example: n = 3, m = 1, truth is 650%. Who wins? 760% 10% 76% 50% 76% 90%

Optimal strategy: deviate to 0 or 1.

Real life: Kaggle March Mania 2017



Andrew Landgraf, Kaggle [2017]

What's the problem?

1. Accuracy: Picking the *best forecaster*?

 ${\sf beliefs} \approx {\sf true} \ {\sf probabilities}$

2. Wasted effort: Forecasting vs. strategizing

Accurate: picks best forecaster w.h.p. when $m = O(n^2 \log n)$.

Recall: *n* forecasters, *m* events

Accurate: picks best forecaster w.h.p. when $m = O(n^2 \log n)$.

Recall: *n* forecasters, *m* events

Is $O(n^2 \log n)$ events practical?

Accurate: picks best forecaster w.h.p. when $m = O(n^2 \log n)$.

Recall: *n* forecasters, *m* events

Is $O(n^2 \log n)$ events practical? Kaggle 2017 March Mania: n = 442, but only m = 2278 events!

Accurate: picks best forecaster w.h.p. when $m = O(n^2 \log n)$.

Recall: *n* forecasters, *m* events

Is $O(n^2 \log n)$ events practical? Kaggle 2017 March Mania: n = 442, but only m = 2278 events!

Central Question

Can we pick the best forecaster using fewer events?

Accurate: picks best forecaster w.h.p. when $m = O(n^2 \log n)$.

Recall: n forecasters, m events

Is $O(n^2 \log n)$ events practical? Kaggle 2017 March Mania: n = 442, but only m = 2278 events!

Central Question

Can we pick the best forecaster using fewer events?

Best possible: $\Omega(\log n)$

PAC learning lower bounds

Can we pick the best forecaster using fewer than $O(n^2 \log n)$ events?

Can we pick the best forecaster using fewer than $O(n^2 \log n)$ events?

1. A tight analysis of ELF ELF only needs $\Theta(n \log n)$ events

Can we pick the best forecaster using fewer than $O(n^2 \log n)$ events?

- 1. A tight analysis of ELF ELF only needs $\Theta(n \log n)$ events
- 2. A new competition mechanism Even fewer events...

Can we pick the best forecaster using fewer than $O(n^2 \log n)$ events?

- 1. A tight analysis of ELF ELF only needs $\Theta(n \log n)$ events
- 2. A new competition mechanism Even fewer events...
- 3. Application to online learning No-regret even with strategic experts

1. A tight analysis of ELF

For each event $t = 1, \ldots, m$:

- $p_{it} \in [0, 1]$ forecaster *i*'s belief
- $r_{it} \in [0, 1]$ forecaster *i*'s report
- $\theta_t \in [0, 1]$ ground truth probability
- $y_t \in \{0,1\}$ actual outcome

 $S(r, y) \in [0, 1]$ scoring rule, e.g. $S(r, y) = 1 - (r - y)^2$

For each event $t = 1, \ldots, m$:

 $\begin{array}{ll} p_{it} \in [0,1] & \text{forecaster } i\text{'s belief} \\ r_{it} \in [0,1] & \text{forecaster } i\text{'s report} \\ \theta_t \in [0,1] & \text{ground truth probability} \\ y_t \in \{0,1\} & \text{actual outcome} \\ S(r,y) \in [0,1] & \text{scoring rule, e.g. } S(r,y) = 1 - (r-y)^2 \end{array}$

A forecaster's accuracy: the true expected score of their beliefs,

$$a_i = rac{1}{m} \sum\limits_{t=1}^m \sum\limits_{y_t \sim heta_t}^m S(p_{it}, y_t) \; .$$

Goal: pick a forecaster whose accuracy is within ϵ of the best (w.h.p). BTW: dependence on ϵ is always $1/\epsilon^2$

Event Lotteries Forecaster (ELF) [Witkowski et al., 2018]

For each event t, assign a point with a lottery:

$$\Pr[i \text{ wins point } t] = \frac{1}{n} + \frac{1}{n} \left(S(r_{it}, y_t) - \frac{\sum_{j \neq i} S(r_{jt}, y_t)}{n - 1} \right)$$

Forecaster with highest point total wins.

Event Lotteries Forecaster (ELF) [Witkowski et al., 2018] For each event *t*, assign a point with a lottery:

$$\Pr[i \text{ wins point } t] = \frac{1}{n} + \frac{1}{n} \left(S(r_{it}, y_t) - \frac{\sum_{j \neq i} S(r_{jt}, y_t)}{n-1} \right)$$

Forecaster with highest point total wins.

Truthful: Optimal strategy is $r_{it} = p_{it}$. max $Pr[point] \equiv max \mathbb{E}[score]$

Event Lotteries Forecaster (ELF) [Witkowski et al., 2018] For each event *t*, assign a point with a lottery:

$$\Pr[i \text{ wins point } t] = \frac{1}{n} + \frac{1}{n} \left(S(r_{it}, y_t) - \frac{\sum_{j \neq i} S(r_{jt}, y_t)}{n-1} \right)$$

Forecaster with highest point total wins.

Truthful: Optimal strategy is $r_{it} = p_{it}$. max $Pr[point] \equiv max \mathbb{E}[score]$ Accurate: Picks best forecaster with $m = O(n^2 \log n)$ events.

Proof: *m* large enough so point totals \approx true accuracies via Hoeffding

Event Lotteries Forecaster (ELF) [Witkowski et al., 2018] For each event *t*, assign a point with a lottery:

$$\Pr[i \text{ wins point } t] = \frac{1}{n} + \frac{1}{n} \left(S(r_{it}, y_t) - \frac{\sum_{j \neq i} S(r_{jt}, y_t)}{n-1} \right)$$

Forecaster with highest point total wins.

Truthful: Optimal strategy is $r_{it} = p_{it}$. max $Pr[point] \equiv max \mathbb{E}[score]$ Accurate: Picks best forecaster with $m = O(n^2 \log n)$ events.

Proof: *m* large enough so point totals \approx true accuracies via Hoeffding

Observation: $\Pr[i \text{ wins point } t] \leq \frac{2}{n}$

Event Lotteries Forecaster (ELF) [Witkowski et al., 2018] For each event *t*, assign a point with a lottery:

$$\Pr[i \text{ wins point } t] = \frac{1}{n} + \frac{1}{n} \left(S(r_{it}, y_t) - \frac{\sum_{j \neq i} S(r_{jt}, y_t)}{n-1} \right)$$

Forecaster with highest point total wins.

Truthful: Optimal strategy is $r_{it} = p_{it}$. max $Pr[point] \equiv max \mathbb{E}[score]$ Accurate: Picks best forecaster with $m = O(n^2 \log n)$ events.

Proof: *m* large enough so point totals \approx true accuracies via Hoeffding

Observation: $\Pr[i \text{ wins point } t] \leq \frac{2}{n} \implies$ Low variance

Event Lotteries Forecaster (ELF) [Witkowski et al., 2018] For each event *t*, assign a point with a lottery:

$$\Pr[i \text{ wins point } t] = \frac{1}{n} + \frac{1}{n} \left(S(r_{it}, y_t) - \frac{\sum_{j \neq i} S(r_{jt}, y_t)}{n-1} \right)$$

Forecaster with highest point total wins.

Truthful: Optimal strategy is $r_{it} = p_{it}$. max $Pr[point] \equiv max \mathbb{E}[score]$ Accurate: Picks best forecaster with $m = O(n \log n)$ events.

Proof: *m* large enough so point totals \approx true accuracies via Bernstein

Observation: $\Pr[i \text{ wins point } t] \leq \frac{2}{n} \implies$ Low variance \implies Upper bound!

Event Lotteries Forecaster (ELF) [Witkowski et al., 2018] For each event *t*, assign a point with a lottery:

$$\Pr[i \text{ wins point } t] = \frac{1}{n} + \frac{1}{n} \left(S(r_{it}, y_t) - \frac{\sum_{j \neq i} S(r_{jt}, y_t)}{n-1} \right)$$

Forecaster with highest point total wins.

Truthful: Optimal strategy is $r_{it} = p_{it}$. max $Pr[point] \equiv max \mathbb{E}[score]$ Accurate: Picks best forecaster with $m = O(n \log n)$ events.

Proof: *m* large enough so point totals \approx true accuracies via Bernstein

Observation: $\Pr[i \text{ wins point } t] \leq \frac{2}{n} \implies \text{Almost uniform}$

Event Lotteries Forecaster (ELF) [Witkowski et al., 2018] For each event *t*, assign a point with a lottery:

$$\Pr[i \text{ wins point } t] = \frac{1}{n} + \frac{1}{n} \left(S(r_{it}, y_t) - \frac{\sum_{j \neq i} S(r_{jt}, y_t)}{n-1} \right)$$

Forecaster with highest point total wins.

Truthful: Optimal strategy is $r_{it} = p_{it}$. max $Pr[point] \equiv max \mathbb{E}[score]$ Accurate: Picks best forecaster with $m = O(n \log n)$ events.

Proof: *m* large enough so point totals \approx true accuracies via Bernstein

Observation: $\Pr[i \text{ wins point } t] \leq \frac{2}{n} \implies \text{Almost uniform } \implies \text{Lower bound!}$

Best case scenario for ELF:

Forecaster *i* is perfect. $Pr[i \text{ wins point } t] = \frac{2}{n}$ Forecaster $j \neq i$ is terrible. $Pr[j \text{ wins point } t] \approx \frac{1}{n}$

A Tighter ELF Analysis: $\Theta(n \log n)$

Event Lotteries Forecaster (ELF) [Witkowski et al., 2018] For each event *t*, assign a point with a lottery:

$$\Pr[i \text{ wins point } t] = \frac{1}{n} + \frac{1}{n} \left(S(r_{it}, y_t) - \frac{\sum_{j \neq i} S(r_{jt}, y_t)}{n-1} \right)$$

Forecaster with highest point total wins.

Truthful: Optimal strategy is $r_{it} = p_{it}$. max $Pr[point] \equiv max \mathbb{E}[score]$ Accurate: Picks best forecaster with $m = \Theta(n \log n)$ events.

Proof: *m* large enough so point totals \approx true accuracies via Bernstein

Observation: $\Pr[i \text{ wins point } t] \leq \frac{2}{n} \implies \text{Almost uniform } \implies \text{Lower bound!}$

Best case scenario for ELF:

Forecaster *i* is perfect. $\Pr[i \text{ wins point } t] = \frac{2}{n}$ Forecaster $j \neq i$ is terrible. $\Pr[j \text{ wins point } t] \approx \frac{1}{n}$

Balls and bins: if $m < \frac{1}{8}n \log n$, a bad forecaster wins w.h.p.

So, ELF needs $\Theta(n \log n)$ events.

So, ELF needs $\Theta(n \log n)$ events. Can we do better?

2. A New (Old) Mechanism

Follow The Regularized Leader

Why didn't Simple Max work?

Why didn't Simple Max work? One answer: sensitivity.

Small change in input (report) \implies big change in output (winner)

In machine learning, we address sensitivity with regularization.

In machine learning, we address sensitivity with regularization.

FTRL: Choose a distribution π over the forecasters which maximizes the expected forecaster score (under π) minus a regularization term $\mathcal{R}(\pi)$.

$$rgmax_{\pi} \sum_{i} \pi_{i} \sum_{t=1}^{m} S(r_{it}, y_{t}) - \mathcal{R}(\pi)$$

In machine learning, we address sensitivity with regularization.

FTRL: Choose a distribution π over the forecasters which maximizes the expected forecaster score (under π) minus a regularization term $\mathcal{R}(\pi)$.

$$\arg\max_{\pi} \sum_{i} \pi_{i} \sum_{t=1}^{m} S(r_{it}, y_{t}) - \mathcal{R}(\pi)$$

Simple Max: $\mathcal{R} = 0$, and π puts all weight on one forecaster.

In machine learning, we address sensitivity with regularization.

FTRL: Choose a distribution π over the forecasters which maximizes the expected forecaster score (under π) minus a regularization term $\mathcal{R}(\pi)$.

$$rgmax_{\pi} \sum_{i} \pi_{i} \sum_{t=1}^{m} S(r_{it}, y_{t}) - \mathcal{R}(\pi)$$

Simple Max: $\mathcal{R} = 0$, and π puts all weight on one forecaster. Multiplicative Weights: \mathcal{R} is negative entropy $\mathcal{R}(\pi) = \sum_{i} \pi_{i} \log \pi_{i}$.

In machine learning, we address sensitivity with regularization.

FTRL: Choose a distribution π over the forecasters which maximizes the expected forecaster score (under π) minus a regularization term $\mathcal{R}(\pi)$.

$$\arg\max_{\pi} \sum_{i} \pi_{i} \sum_{t=1}^{m} S(r_{it}, y_{t}) - \mathcal{R}(\pi)$$

Simple Max: $\mathcal{R} = 0$, and π puts all weight on one forecaster. Multiplicative Weights: \mathcal{R} is negative entropy $\mathcal{R}(\pi) = \sum_{i} \pi_{i} \log \pi_{i}$.

Can we use FTRL as a *batch* algorithm for forecasting competitions?

Choose forecasters using the distribution:

$$\pi_i = \frac{\exp\left(\eta \sum_{t=1}^m S(r_{it}, y_t)\right)}{\sum_{j=1}^n \exp\left(\eta \sum_{t=1}^m S(r_{jt}, y_t)\right)}$$

Choose forecasters using the distribution:

$$\pi_i = \frac{\exp\left(\eta \sum_{t=1}^m S(r_{it}, y_t)\right)}{\sum_{j=1}^n \exp\left(\eta \sum_{t=1}^m S(r_{jt}, y_t)\right)}$$

Is Multiplicative Weights truthful? Not quite...

Choose forecasters using the distribution:

$$\pi_i = \frac{\exp\left(\eta \sum_{t=1}^m S(r_{it}, y_t)\right)}{\sum_{j=1}^n \exp\left(\eta \sum_{t=1}^m S(r_{jt}, y_t)\right)}$$

Is Multiplicative Weights truthful? Not quite...

Game theory: dominated strategies Let A, B be strategies for player i. We say A dominates B if, no matter what other players do, A is better for player i than B.

Choose forecasters using the distribution:

$$\pi_i = \frac{\exp\left(\eta \sum_{t=1}^m S(r_{it}, y_t)\right)}{\sum_{j=1}^n \exp\left(\eta \sum_{t=1}^m S(r_{jt}, y_t)\right)}$$

Is Multiplicative Weights truthful? Not quite...

Game theory: dominated strategies Let A, B be strategies for player i. We say A dominates B if, no matter what other players do, A is better for player i than B.

Truthful: reporting $r_{it} = p_{it}$ for all t is a dominant strategy.

Choose forecasters using the distribution:

$$\pi_i = \frac{\exp\left(\eta \sum_{t=1}^m S(r_{it}, y_t)\right)}{\sum_{j=1}^n \exp\left(\eta \sum_{t=1}^m S(r_{jt}, y_t)\right)}$$

Is Multiplicative Weights truthful? Not quite...

Game theory: dominated strategies Let A, B be strategies for player i. We say A dominates B if, no matter what other players do, A is better for player i than B.

Truthful: reporting $r_{it} = p_{it}$ for all t is a dominant strategy. γ -Approximately Truthful: reports with $|r_{it} - p_{it}| > \gamma$ are dominated.

Choose forecasters using the distribution:

$$\pi_i = \frac{\exp\left(\eta \sum_{t=1}^m S(r_{it}, y_t)\right)}{\sum_{j=1}^n \exp\left(\eta \sum_{t=1}^m S(r_{jt}, y_t)\right)}$$

Is Multiplicative Weights truthful? Not quite...

Game theory: dominated strategies Let A, B be strategies for player i. We say A dominates B if, no matter what other players do, A is better for player i than B.

Truthful: reporting $r_{it} = p_{it}$ for all t is a dominant strategy. γ -Approximately Truthful: reports with $|r_{it} - p_{it}| > \gamma$ are dominated.

Theorem

Multiplicative Weights is 4η -approximately truthful.

For small η , reports pprox beliefs!

Theorem

Multiplicative Weights chooses an ϵ -accurate forecaster with high probability if $m = O(\log n/\epsilon^2)$.

Matches the best possible bound!

Take
$$\eta = O(\epsilon)$$
, $m = O\left(rac{\log n}{\epsilon^2}
ight)$.

Take
$$\eta = O(\epsilon)$$
, $m = O\left(\frac{\log n}{\epsilon^2}\right)$. Define:

$$\begin{split} \hat{S}_{i} &= \frac{1}{m} \sum_{t} S(r_{it}, y_{t}) \\ S_{i} &= \mathbb{E}_{\vec{\theta}} \left[\frac{1}{m} \sum_{t} S(r_{it}, y_{t}) \right] \\ a_{i} &= \mathbb{E}_{\vec{\theta}} \left[\frac{1}{m} \sum_{t} S(p_{it}, y_{t}) \right] \end{split}$$

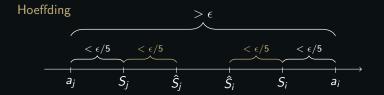
i's empirical score *i*'s expected score *i*'s accuracy

Take
$$\eta = O(\epsilon)$$
, $m = O\left(\frac{\log n}{\epsilon^2}\right)$. Define:
 $\hat{S}_i = \frac{1}{m} \sum_t S(r_{it}, y_t)$ i's empirical score
 $S_i = \mathbb{E}_{\vec{\theta}} [\frac{1}{m} \sum_t S(r_{it}, y_t)]$ i's expected score
 $a_i = \mathbb{E}_{\vec{\theta}} [\frac{1}{m} \sum_t S(p_{it}, y_t)]$ i's accuracy

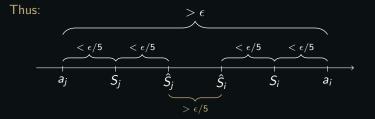
Take
$$\eta = O(\epsilon)$$
, $m = O\left(\frac{\log n}{\epsilon^2}\right)$. Define:
 $\hat{S}_i = \frac{1}{m} \sum_t S(r_{it}, y_t)$ i's empirical score
 $S_i = \mathbb{E}_{\vec{\theta}} [\frac{1}{m} \sum_t S(r_{it}, y_t)]$ i's expected score
 $a_i = \mathbb{E}_{\vec{\theta}} [\frac{1}{m} \sum_t S(p_{it}, y_t)]$ i's accuracy

Take
$$\eta = O(\epsilon)$$
, $m = O\left(\frac{\log n}{\epsilon^2}\right)$. Define:
 $\hat{S}_i = \frac{1}{m} \sum_t S(r_{it}, y_t)$ i's empirical score
 $S_i = \mathbb{E}_{\vec{\theta}} [\frac{1}{m} \sum_t S(r_{it}, y_t)]$ i's expected score
 $a_i = \mathbb{E}_{\vec{\theta}} [\frac{1}{m} \sum_t S(p_{it}, y_t)]$ i's accuracy

Take
$$\eta = O(\epsilon)$$
, $m = O\left(\frac{\log n}{\epsilon^2}\right)$. Define:
 $\hat{S}_i = \frac{1}{m} \sum_t S(r_{it}, y_t)$ i's empirical score
 $S_i = \mathbb{E}_{\vec{\theta}} [\frac{1}{m} \sum_t S(r_{it}, y_t)]$ i's expected score
 $a_i = \mathbb{E}_{\vec{\theta}} [\frac{1}{m} \sum_t S(p_{it}, y_t)]$ i's accuracy



Take
$$\eta = O(\epsilon)$$
, $m = O\left(\frac{\log n}{\epsilon^2}\right)$. Define:
 $\hat{S}_i = \frac{1}{m} \sum_t S(r_{it}, y_t)$ i's empirical score
 $S_i = \mathbb{E}_{\vec{\theta}} [\frac{1}{m} \sum_t S(r_{it}, y_t)]$ i's expected score
 $a_i = \mathbb{E}_{\vec{\theta}} [\frac{1}{m} \sum_t S(p_{it}, y_t)]$ i's accuracy



So w.h.p
$$\hat{S}_i - \hat{S}_j > \epsilon/5$$
.

So w.h.p
$$\hat{S}_i - \hat{S}_j > \epsilon/5$$
.

Multiplicative Weights chooses the winner according to

$$\pi_i = \frac{\exp\left(\eta \, m \, \hat{S}_i\right)}{\sum_{k=1}^n \exp\left(\eta \, m \, \hat{S}_k\right)}$$

So w.h.p
$$\hat{S}_i - \hat{S}_j > \epsilon/5$$
.

Multiplicative Weights chooses the winner according to

$$\pi_i = \frac{\exp\left(\eta \, m \, \hat{S}_i\right)}{\sum_{k=1}^n \exp\left(\eta \, m \, \hat{S}_k\right)}$$

How much more likely is i to win than j?

So w.h.p
$$\hat{S}_i - \hat{S}_j > \epsilon/5$$
.

Multiplicative Weights chooses the winner according to

$$\pi_i = \frac{\exp\left(\eta \, m \, \hat{S}_i\right)}{\sum_{k=1}^n \exp\left(\eta \, m \, \hat{S}_k\right)}$$

How much more likely is i to win than j?

$$\pi_i/\pi_j = \exp\left(\eta m(\hat{S}_i - \hat{S}_j)\right)$$

So w.h.p
$$\hat{S}_i - \hat{S}_j > \epsilon/5$$
.

Multiplicative Weights chooses the winner according to

$$\pi_i = \frac{\exp\left(\eta \, m \, \hat{S}_i\right)}{\sum_{k=1}^n \exp\left(\eta \, m \, \hat{S}_k\right)}$$

How much more likely is i to win than j?

$$\pi_i/\pi_j = \exp\left(\eta m(\hat{S}_i - \hat{S}_j)\right) > \exp(\eta m \epsilon/5) = \exp(\log(n/\delta)) = n/\delta .$$

Recall $\eta = O(\epsilon)$. Take $m = O(\frac{\log(n/\delta)}{\epsilon^2})$ for small constant δ .

So w.h.p
$$\hat{S}_i - \hat{S}_j > \epsilon/5$$
.

Multiplicative Weights chooses the winner according to

$$\pi_i = \frac{\exp\left(\eta \, m \, \hat{S}_i\right)}{\sum_{k=1}^n \exp\left(\eta \, m \, \hat{S}_k\right)}$$

How much more likely is i to win than j?

$$\pi_i/\pi_j = \exp\left(\eta m(\hat{S}_i - \hat{S}_j)\right) > \exp(\eta m \epsilon/5) = \exp(\log(n/\delta)) = n/\delta$$
.
Recall $\eta = O(\epsilon)$. Take $m = O(\frac{\log(n/\delta)}{\epsilon^2})$ for small constant δ .

Finally, since $\pi_i \leq 1$, we have

$$\pi_j \leq \pi_j/\pi_i < \delta/n$$
,

so

$$\Pr[\epsilon ext{-bad} ext{ forecaster wins}] \leq \sum\limits_{j ext{ is } \epsilon ext{-bad}} \pi_j < n(\delta/n) = \delta \; . ~~~ \square$$

3. Online Learning from Strategic Experts

Classic online learning from expert advice:

- Experts give advice p_{it} on each round $t = 1, \ldots, T$
- Algorithm chooses some expert *i* and predicts their *p_{it}*
- Algorithm's goal: perform not much worse than the best expert

Classic online learning from expert advice:

- Experts give advice p_{it} on each round $t = 1, \ldots, T$
- Algorithm chooses some expert *i* and predicts their *p_{it}*
- Algorithm's goal: perform not much worse than the best expert

Strategic experts:

- Now experts report some r_{it} , potentially $\neq p_{it}$
- Experts' goal: maximize chance of being chosen!
- Algorithm's goal: perform not much worse than the best expert Best: still according to their p_{it}'s

Classic online learning from expert advice:

- Experts give advice p_{it} on each round $t = 1, \ldots, T$
- Algorithm chooses some expert *i* and predicts their *p_{it}*
- Algorithm's goal: perform not much worse than the best expert

Strategic experts:

- Now experts report some r_{it} , potentially $\neq p_{it}$
- Experts' goal: maximize chance of being chosen!
- Algorithm's goal: perform not much worse than the best expert Best: still according to their p_{it}'s

Open: find such an algorithm for strategic experts

Myopic case: [Roughgarden and Schrijvers, 2017, Freeman et al., 2020]

Classic online learning from expert advice:

- Experts give advice p_{it} on each round $t = 1, \ldots, T$
- Algorithm chooses some expert *i* and predicts their *p_{it}*
- Algorithm's goal: perform not much worse than the best expert

Strategic experts:

- Now experts report some r_{it} , potentially $\neq p_{it}$
- Experts' goal: maximize chance of being chosen!
- Algorithm's goal: perform not much worse than the best expert Best: still according to their p_{it}'s

Open: find such an algorithm for strategic experts

Myopic case: [Roughgarden and Schrijvers, 2017, Freeman et al., 2020]

Theorem

Mult. Weights achieves $O(\sqrt{T})$ regret even with strategic experts.

FTRL with $\eta = O(1/\sqrt{T})$ has $O(\sqrt{T})$ regret w.r.t. expert reports. Approx. truthfulness: reports are within $O(\eta) = O(1/\sqrt{T})$ of beliefs. So we pick up at most $T \cdot O(1/\sqrt{T}) = O(\sqrt{T})$ extra regret.

1. Competitions: better event complexity

ELF needs $\Theta(n \log n)$ events, FTRL achieves *optimal* $\Theta(\log n)$

2. Online learning: $O(\sqrt{T})$ regret with strategic experts

- 1. Competitions: better event complexity
 - ELF needs $\Theta(n \log n)$ events, FTRL achieves optimal $\Theta(\log n)$
- 2. Online learning: $O(\sqrt{T})$ regret with strategic experts

Takeaways

1. Forecasting competitions: Kaggle should add regularization!

- 1. Competitions: better event complexity
 - ELF needs $\Theta(n \log n)$ events, FTRL achieves optimal $\Theta(\log n)$
- 2. Online learning: $O(\sqrt{T})$ regret with strategic experts

Takeaways

- 1. Forecasting competitions: Kaggle should add regularization!
- 2. Algorithmic economics: *what is the cost of strategic behavior?* Price of anarchy: social welfare of Nash vs optimal; sometimes large

- 1. Competitions: better event complexity
 - ELF needs $\Theta(n \log n)$ events, FTRL achieves *optimal* $\Theta(\log n)$
- 2. Online learning: $O(\sqrt{T})$ regret with strategic experts

Takeaways

- 1. Forecasting competitions: Kaggle should add regularization!
- 2. Algorithmic economics: *what is the cost of strategic behavior?* Price of anarchy: social welfare of Nash vs optimal; sometimes large Forecasting competitions and online learning: no cost!

- 1. Competitions: better event complexity
 - ELF needs $\Theta(n \log n)$ events, FTRL achieves optimal $\Theta(\log n)$
- 2. Online learning: $O(\sqrt{T})$ regret with strategic experts

Takeaways

- 1. Forecasting competitions: Kaggle should add regularization!
- 2. Algorithmic economics: *what is the cost of strategic behavior*? Price of anarchy: social welfare of Nash vs optimal; sometimes large Forecasting competitions and online learning: no cost!

Extensions and Open Questions

- $\checkmark\,$ Beyond binary outcomes, other scoring rules & regularizers
- $\checkmark\,$ More realistic beliefs
- ?? Exactly truthful mechanism
- ?? Correlated events

Can correlate with truth

- 1. Competitions: better event complexity
 - ELF needs $\Theta(n \log n)$ events, FTRL achieves *optimal* $\Theta(\log n)$
- 2. Online learning: $O(\sqrt{T})$ regret with strategic experts

Takeaways

- 1. Forecasting competitions: Kaggle should add regularization!
- 2. Algorithmic economics: *what is the cost of strategic behavior?* Price of anarchy: social welfare of Nash vs optimal; sometimes large Forecasting competitions and online learning: no cost!

Extensions and Open Questions

- $\checkmark\,$ Beyond binary outcomes, other scoring rules & regularizers
- $\checkmark\,$ More realistic beliefs
- ?? Exactly truthful mechanism
- ?? Correlated events

Can correlate with truth

References

- Rupert Freeman, David Pennock, Chara Podimata, and Jennifer Wortman Vaughan. No-regret and incentive-compatible online learning. In Hal Daumé III and Aarti Singh, editors, *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pages 3270–3279. PMLR, 13–18 Jul 2020. URL http://proceedings.mlr.press/v119/freeman20a.html.
- Kaggle. March machine learning mania, 1st place winner's interview: Andrew landgraf. http://blog.kaggle.com/2017/05/19/

march-machine-learning-mania-1st-place-winners-interview-andrew-landgraf/, May 2017. Accessed: 6/29/2019.

- Tim Roughgarden and Okke Schrijvers. Online prediction with selfish experts. arXiv preprint arXiv:1702.03615, 2017.
- Jens Witkowski, Rupert Freeman, Jennifer Wortman Vaughan, David M. Pennock, and Andreas Krause. Incentive-compatible forecasting competitions. In *Proceedings of the 32nd AAAI Conference on Artificial Intelligence*, AAAI 2018, 2018.