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Forecasting Competitions

Kaggle, Good Judgement Project, Hybrid Forecasting Competition, ...
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Strategic Forecasters

Toy example: n = 3, m = 1, truth is10% 50% 90%. Who wins?

10% 50% 90%

Optimal strategy: deviate to 0 or 1.

Real life: Kaggle

March Mania 2017

Andrew Landgraf, Kaggle [2017]
What’s the problem?

1. Accuracy: Picking the best forecaster? beliefs ≈ true probabilities

2. Wasted effort: Forecasting vs. strategizing
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Event Lotteries Forecaster (ELF) [Witkowski et al., 2018]

Truthful: impossible to game.

Accurate: picks best forecaster w.h.p. when m = O(n2 log n).

Recall: n forecasters, m events

Is O(n2 log n) events practical?

Kaggle 2017 March Mania: n = 442, but only m = 2278 events!

Central Question

Can we pick the best forecaster using fewer events?

Best possible: Ω(log n) PAC learning lower bounds
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Overview

Central Question

Can we pick the best forecaster using fewer than O(n2 log n) events?

1. A tight analysis of ELF

ELF only needs Θ(n log n) events

2. A new competition mechanism

Even fewer events...

3. Application to online learning

No-regret even with strategic experts
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1. A tight analysis of ELF



Notation, Accuracy

For each event t = 1, . . . ,m:

pit ∈ [0, 1] forecaster i ’s belief

rit ∈ [0, 1] forecaster i ’s report

θt ∈ [0, 1] ground truth probability

yt ∈ {0, 1} actual outcome

S(r , y) ∈ [0, 1] scoring rule, e.g. S(r , y) = 1− (r − y)2

A forecaster’s accuracy: the true expected score of their beliefs,

ai = 1
m

m∑
t=1

E
yt∼θt

S(pit , yt) .

Goal: pick a forecaster whose accuracy is within ε of the best (w.h.p).

BTW: dependence on ε is always 1/ε2
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A Tighter ELF Analysis: Θ(n log n)

Event Lotteries Forecaster (ELF) [Witkowski et al., 2018]

For each event t, assign a point with a lottery:

Pr[i wins point t] =
1

n
+

1

n

(
S(rit , yt)−

∑
j 6=i S(rjt , yt)

n − 1

)

Forecaster with highest point total wins.

Truthful: Optimal strategy is rit = pit . max Pr[point] ≡ max E[score]

Accurate: Picks best forecaster with m = O(n2 log n) events.

Proof: m large enough so point totals ≈ true accuracies via Hoeffding

Observation: Pr[i wins point t] ≤ 2
n

=⇒ Low variance

Best case scenario for ELF:

Forecaster i is perfect. Pr[i wins point t] = 2
n

Forecaster j 6= i is terrible. Pr[j wins point t] ≈ 1
n

Balls and bins: if m < 1
8
n log n, a bad forecaster wins w.h.p.
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So, ELF needs Θ(n log n) events.

Can we do better?
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2. A New (Old) Mechanism



Follow The Regularized Leader

Why didn’t Simple Max work?

One answer: sensitivity.

Small change in input (report) =⇒ big change in output (winner)

In machine learning, we address sensitivity with regularization.

FTRL: Choose a distribution π over the forecasters which maximizes the

expected forecaster score (under π) minus a regularization term R(π).

arg max
π

∑
i

πi

m∑
t=1

S(rit , yt)−R(π)

Simple Max: R = 0, and π puts all weight on one forecaster.

Multiplicative Weights: R is negative entropy R(π) =
∑

i πi log πi .

Can we use FTRL as a batch algorithm for forecasting competitions?
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Multiplicative Weights

Choose forecasters using the distribution:

πi =
exp

(
η
∑m

t=1 S(rit , yt)
)∑n

j=1 exp
(
η
∑m

t=1 S(rjt , yt)
)

Is Multiplicative Weights truthful? Not quite...

Game theory: dominated strategies

Let A,B be strategies for player i . We say A dominates B if, no matter

what other players do, A is better for player i than B.

Truthful: reporting rit = pit for all t is a dominant strategy.

γ-Approximately Truthful: reports with |rit − pit | > γ are dominated.

Theorem

Multiplicative Weights is 4η-approximately truthful.

For small η, reports ≈ beliefs!

12
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)∑n

j=1 exp
(
η
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t=1 S(rjt , yt)
)

Is Multiplicative Weights truthful? Not quite...
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Multiplicative Weights is Accurate

Theorem

Multiplicative Weights chooses an ε-accurate forecaster with high

probability if m = O(log n/ε2).

Matches the best possible bound!

13



Proof

Take η = O(ε), m = O
(

log n
ε2

)
.

Define:

Ŝi = 1
m

∑
t S(rit , yt) i ’s empirical score

Si = E~θ[ 1
m

∑
t S(rit , yt) ] i ’s expected score

ai = E~θ[ 1
m

∑
t S(pit , yt) ] i ’s accuracy

Let i be the best forecaster, and j be any ε-bad one. So ai − aj > ε.

aj ai

> ε

< ε/5 < ε/5< ε/5 < ε/5

> ε/5
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aj Sj Ŝj Ŝi Si ai

> ε

< ε/5 < ε/5

Hoeffding

< ε/5 < ε/5

> ε/5



Proof

Take η = O(ε), m = O
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log n
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)
. Define:

Ŝi = 1
m

∑
t S(rit , yt) i ’s empirical score
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Proof

So w.h.p Ŝi − Ŝj > ε/5.

Multiplicative Weights chooses the winner according to

πi =
exp
(
ηmŜi

)
∑n

k=1 exp
(
ηmŜk

)
How much more likely is i to win than j?

πi/πj = exp
(
ηm(Ŝi − Ŝj)

)
> exp(ηm ε/5) = exp(log(n/δ)) = n/δ .

Recall η = O(ε). Take m = O( log(n/δ)

ε2 ) for small constant δ.

Finally, since πi ≤ 1, we have

πj ≤ πj/πi < δ/n ,

so

Pr[ε-bad forecaster wins] ≤
∑

j is ε-bad

πj < n(δ/n) = δ .
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ηmŜk

)

How much more likely is i to win than j?

πi/πj = exp
(
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ηmŜk

)
How much more likely is i to win than j?

πi/πj = exp
(
ηm(Ŝi − Ŝj)

)

> exp(ηm ε/5) = exp(log(n/δ)) = n/δ .

Recall η = O(ε). Take m = O( log(n/δ)

ε2 ) for small constant δ.

Finally, since πi ≤ 1, we have

πj ≤ πj/πi < δ/n ,

so

Pr[ε-bad forecaster wins] ≤
∑

j is ε-bad

πj < n(δ/n) = δ .

15



Proof
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3. Online Learning from

Strategic Experts



When you can’t trust your experts...

Classic online learning from expert advice:

� Experts give advice pit on each round t = 1, . . . ,T

� Algorithm chooses some expert i and predicts their pit
� Algorithm’s goal: perform not much worse than the best expert

Strategic experts:

� Now experts report some rit , potentially 6= pit
� Experts’ goal: maximize chance of being chosen!

� Algorithm’s goal: perform not much worse than the best expert

Best: still according to their pit ’s

Open: find such an algorithm for strategic experts

Myopic case: [Roughgarden and Schrijvers, 2017, Freeman et al., 2020]

Theorem

Mult. Weights achieves O(
√
T ) regret even with strategic experts.
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Proof Sketch

FTRL with η = O(1/
√
T ) has O(

√
T ) regret w.r.t. expert reports.

Approx. truthfulness: reports are within O(η) = O(1/
√
T ) of beliefs.

So we pick up at most T · O(1/
√
T ) = O(

√
T ) extra regret.
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Recap and Future Directions

Thanks for listening!

What We Showed

1. Competitions: better event complexity

ELF needs Θ(n log n) events, FTRL achieves optimal Θ(log n)

2. Online learning: O(
√
T ) regret with strategic experts

Takeaways

1. Forecasting competitions: Kaggle should add regularization!

2. Algorithmic economics: what is the cost of strategic behavior?

Price of anarchy: social welfare of Nash vs optimal; sometimes large

Forecasting competitions and online learning: no cost!

Extensions and Open Questions

X Beyond binary outcomes, other scoring rules & regularizers

X More realistic beliefs Can correlate with truth

?? Exactly truthful mechanism

?? Correlated events

18
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