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Section 1. Recap: No-arbitrage principle

No-Arbitrage and Risk neutral measure

� Random market dynamics are mathematically modelled relative to
some measure P. (Physical measure)

� No Arbitrage (NA) means that one cannot systematically take
advantage of a market.

� FTAP: A market does not allow for arbitrage if there is an equivalent
measure Q that turns all discounted traded assets into
Q-martingales. (Pricing measure)

� (NA) Pricing: (NA) compatible prices are derived via Q-expectation for
some artificial measure.

Note: Traded means here that buy-hold-sell strategies are possible.

Slide 3



Section 2. Introduction: Modelling in electricity markets

Market specifics of electricity markets

� Electricity is a flow commodity, i.e. it is not delivered instantaneously
but with a rate over time.

� Electricity is difficult to store. It’s not traded in the previous
mentioned sense.

� Physical contracts are only open to physical participants.
� Spot prices are observed prices between physical participants.
� Futures prices are observed prices between (possibly non-physical)

participants. However, their ’payoffs’ are linked to aggregated
realised spot prices.
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Section 2. Introduction: Modelling in electricity markets

Spots and futures in electricity markets

Spot:
� ’Spot market for electricity’ refers to a daily auction for energy

delivery on the next day.
� We will (somewhat ignorantly) denote the spot price of one unit of

electricity at time t by St. (Usually, Euro/MWh) (some prices are
reported on epexspot.com)

Futures:
� Electricity futures refer to standardised period (e.g. calender days,

weeks, month, quarters, years) and ’deliver’ the aggregated spot
price equivalence over this period. (some European prices are
reported on EEX.com)

� We denote delivery periods simply as intervals [T1, T2] with T1 < T2
and the price to enter a futures contract at time t with delivery period
[T1, T2] by Ft(T1, T2).

There are other electricity markets, e.g. so-called intra-day market and reserve markets.Slide 5



Section 2. Introduction: Modelling in electricity markets

Fundamental principles for energy spot
prices and futures

� Spot price: Discounted spot prices does not need to be a
Q-martingale or anything related.

� Futures price: Discounted futures prices does need to be a
Q-martingale.

� Price relation if risk free rate is zero and both spots and futures are
present on a market: (see [Benth, Benth, Koekebakker 08])

Ft(T1, T2) =
1

T2 − T1

∫ T2

T1
EQ[S|Ft]d
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Section 2. Introduction: Modelling in electricity markets

Summary of spot models

1. Any model for the spot satisfies the (NA) assumption.
2. ⇒: Any equivalent measure Q is a candidate to be the risk neutral

measure.
3. Unless, Q is chosen as well, futures prices are not determined by

the spot prices S.

Slide 7



Section 2. Introduction: Modelling in electricity markets

Futures models — how to model?

1. For each delivery period [T1, T2] make a price model for Ft(T1, T2).
(Direct model)

2. Make the assumption that there is a random curve  7→ ƒt() for every
point of time t and define (HJM-type model)

Ft(T1, T2) :=
1

T2 − T1

∫ T2

T1
ƒt( − t)d.
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Section 2. Introduction: Modelling in electricity markets

Remarks onDirect andHJM-typemodels:

Direct models:
� Models only those futures that are actually traded.
� No information on the spot price but can be included as well.
� FTAP works as always.
HJM-type model:
� Implicitly models prices for all possible delivery periods.
� ƒt() can be thought of a price of electricity with instantaneous

delivery in  units of time.
� Another view on ƒt is that EQ[St+|Ft] = ƒt() holds.
� In particular, St = ƒt(0) is modelled along the way.
−→ In this talk I will from now on ignore the direct modelling approach.
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Section 3. Dynamic, FDR and affine models

Futures models — continued

Three approaches for HJM-type models.
� Dynamic model: dƒt() = βt()dt + σt()dWt
� Finite dimensional realisation (FDR): ƒt() = h( + t) + g(, Yt) for

deterministic curves g, h and Y a finite dimensional Itô-process
(dYt = btdt + ctdWt).

� Affine models: ƒt() = h( + t) +
∑d
j=1 j()Y

j
t for Y an Itô-process.

Observations:
1. Dynamic models are very flexible. However, they might be infinite

dimensional.
2. FDR models are as flexible as functions g, h are. If g, h are smooth,

then they are dynamic models.
3. Affine models are special types of FDR models where ƒt stays in the

affine space h(· + t) + Spn(1, . . . , d).
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Section 3. Dynamic, FDR and affine models

HJM-drift condition

The following result was derived in a different setting but all the
arguments apply for FDR model as well.

Theorem (Bühler (2006))

(Under some mild technical condition) an FDR model
ƒt() = g(, Yt) + h( + t), t,  ≥ 0 is free of arbitrage1 if and only if

1. ƒt() is continuously differentiable in  and
2. ƒ ′t () is the drift coefficient of ƒt() under Q.

If the FDR model is understood as a dynamic model, then necessarily

βt() = ƒ ′t () + γtσt().

This is ’sort of’ true for any dynamic model with no arbitrage.

1in the sense that a market with all hypothetical futures is free of arbitrageSlide 11



Section 3. Dynamic, FDR and affine models

All dynamic models are approximately
affine models

Theorem (Benth, K. (2017))

Let dƒt() = βt()dt + σt()dWt be an arbitrage-free (Markovian)
dynamic model2. Then there is a sequence ƒ (n) of arbitrage-free
(Markovian) affine models such that

ƒ (n) → ƒ .

Isn’t this obvious by a projection method?

� Recall that Bühler’s result tells us that ƒ (n) can only be arbitrage free if
it is C1 in .

� Non-careful projections might violate this! Apparently, care has to be
taken.

2such that ƒt has values in a Hilbert space of functions where point evaluations are
continuous (RKHS)Slide 12
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Section 3. Dynamic, FDR and affine models

Summary of the last theorem — and next
question

Affine models are as good as any (at the cost of possible high
dimension).

Maybe we can make everything better by using a general FDR model.
1. FDR models should fit ’better’ to data than affine models because

they are more general.
2. Let us pretend from now on that we believe in an FDR model:

ƒt() = g(, Yt) + h( + t)

with g, h already chosen. (and dYt = btdt + ctdWt).
−→ How do I ’get’ Y?.

3. Wait, what kind of data does one expect?
4. There are finitely many time-points and for any of these time-points

we have finitely many futures prices.
5. −→ implicit information on Y.
6. Let’s just assume that we have a method to estimate the diffusion

coefficient ct of Y.
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Section 3. Dynamic, FDR and affine models

’Getting’ Y: An example

1. Let us consider the following explicit choices for g, h; namely h = 0
and

g(, y) = 
�

1 − y
p
1 + 

�

,  ≥ 0, y ∈ R.

2. Also let Y be an Itô-process (dYt = btdt + ctdWt) such that
ƒt() = g(, Yt) satisfies (NA).

3. Then,
ct = 1.

4. Is that a problem? Well, an estimator for the diffusion coefficient will
rarely turn out to be 1.
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Volatility estimator and NA consistency
for FDR models

Theorem (K. Shu, (To appear 22?))

Let g ∈ C(1,2)(R+ × Rd,R) and h : R+ → R continuous such that for any
possible diffusion coefficient c there is an Itô process
dYct = b

c
tdt + ctdWt such that

ƒ ct () := g(, Y
c
t ) + h(t, ), t,  ≥ 0

is an (NA) model.

Then there is A ∈ C2(Rd,Rd) and  : C∞(R+ ,R) such that

g(, y) =
d
∑

j=1

j()Aj(y),  ≥ 0, y ∈ Rd

i.e. the model is affine in the new variable z := A(y).
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Summary

1. (NA) Dynamic model ≈ (NA) Affine model.

2. (NA) FDR model + ’freedom to estimate/choose diffusion coefficient’
⇒ (NA) Affine model.
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The End!

Thank you for your attention!
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