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Abstract. The EU-SILC database contains annually gathered rotating-panel data on
a household level covering indicators of monetary poverty, severe material deprivation
or low work household intensity. Data are obtained via questionnaires leading to
outcome variables of diverse nature: numeric, binary, ordinal or general categorical.
In our previous contribution to MME 2020 we presented a clustering method for such
a type of data. The used thresholding approach of latent numeric counterparts of binary
and ordinal outcomes suffered from slow convergence and unclear interpretation of
resulting estimates. Hence we propose an alternative approach which again exploits
a Bayesian variant of theModel Based Clustering (MBC). Nevertheless, the underlying
models are all of a Generalized Linear Mixed Model (GLMM) nature: (proportional
odds) logit model for (ordinal) or binary indicators, multinomial logit model for
general categorical outcomes and a standard linear mixed model for numeric outcome.
Czech households interviewed within the EU-SILC project between 2005 and 2018
are then divided into several groups of similar evolution of income, housing costs,
self-evaluations and other indicators.
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1 Introduction
Throughout the EU states the poverty and social exclusion is measured using indicators of monetary poverty, severe
material deprivation and very lowwork household intensity. Relevant data are gathered within The European Union
Statistics on Income and Living Conditionsproject (EU-SILC,https://ec.europa.eu/eurostat/web/microdata/european-
union-statistics-on-income-and-living-conditions. This is an instrument with the goal to collect timely and compa-
rable cross-sectional and longitudinal multidimensional microdata on income, poverty, social exclusion and living
conditions. Data are obtained via questionnaires leading to outcome variables of diverse nature: numeric (e.g.,
income), binary (e.g., affordability of paying unexpected expenses), ordinal (e.g., level of ability to make ends
meet) or categorical (e.g., ownership of a car/computer). It is our primary aim to use such longitudinally gathered
outcomes towards segmentation of households according to typical patterns of their temporal evolution.

In our previous contribution [6] to MME 2020 we proposed a statistical model capable of joint modelling of
longitudinal outcomes of diverse nature (numeric, binary, ordinal). We improve it by replacing thresholding
of latent numeric outcomes with generalized linear mixed models (GLMM, [4]) appropriate to the type of the
modelled outcomes. This change also allows us to extend the model for completely general categorical outcomes
using multinomial logistic regression with random effects. This is a topic of Section 2. Consequently, we apply
model based clustering (MBC, [3]) procedure to perform unsupervised classification of study units (households)
into groups whose characteristics are not known in advance. This part of methodology is described in Section 3.
We also dedicate one additional Section 4 to explain in more details, how do we use Markov chain Monte Carlo
(MCMC, [2]) methods to estimate the model in Bayesian setting. The final Section 5 describes the use of this
methodology on the Czech subset of the EU-SILC dataset. The paper is finalized by conclusions in Section 6.

2 Joint model for mixed type panel data
In general, we have data on n units/panelmembers (e.g., households) at our disposal containing R ≥ 1 longitudinally
gathered outcomes (e.g., income, affordability of week holiday and level of a financial burden of housing). Let
Yi =

(
Y>
i,1, . . . , Y>i,R

)> stand for a vector consisting of all the valuesYi,r = (Yi,r ,1, . . . , Yi,r ,ni )
> of the rth outcome

(r = 1, . . . , R) of the ith unit (i = 1, . . . , n) obtained at ni occasions. Let Ci stand for available covariates (the
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times of measurements, possibly other explanatory variables) of i-th unit. Finally, let h(yi; Ci, ζ ) represent the
assumed distribution of the outcome vector Yi which possibly depends on the covariates Ci and also on a vector ζ
of unknown parameters.

This setting corresponds to the one considered in [6], however the assumed distribution h will be different. Previ-
ously, we assumed linear mixed model (LMM, [5]) for numeric outcomes and for latent numeric counterparts of
binary or ordinal outcomes. The observed categorical outcomes were then considered to be result of segmentation
into intervals by unknown set of thresholds. However, the estimation of these parameters exhibited very slow
convergence to posterior distribution (see Section 4). Moreover, estimated coefficients were tied to the dimen-
sionless latent outcome and not directly to the observed ordered categories. For this reasons we decided to leave
thresholding approach in favour of generalized linear mixed models (GLMM, [4]), which still allows us to join
models for different outcomes through general combined distribution of random effects.

For each outcome r we consider a predictor ηi,r , j = ηFi,r , j + η
R
i,r , j for jth observation of ith unit that consists of

• fixed part ηFi,r , j = X>i,r , jβr , where βr are unknown fixed effects of regressors Xi,r , j created from covariates
Ci, j .

• random part ηRi,r , j = X>i,r , jBi,r , where Bi,r are unit-specific unknown random effects of regressors Zi,r , j

created from covariates Ci, j .

The distribution of observed outcomes Yi,r , j is then supposed to depend on this predictor ηi,r , j depending on what
nature the outcome is. Let us for the moment drop the indices i,r, j.
• Numeric outcome Y is assumed to follow normal distribution with mean value η and precision parameter τ,

which is a reciprocal value to standard variance parameter. This distribution can be summarized via logarithm
of probability density function (log-pdf) `N(Y |η, τ) = − 1

2 log (2π) + 1
2 log τ − 1

2τ (Y − η)
2 .

• Binary outcome Y ∈ {0,1} is assumed to follow logistic regression model, which parametrizes probability of
Y = 1 by inverse of logit function: P [Y = 1|η] = logit−1(η) = eη/(1+ eη). The corresponding log-pdf is then
of form `B(Y |η) = Y · η − log (1 + eη) .

• Ordinal outcome Y ∈ {1, . . . ,K} of K ordered levels is assumed to follow ordinal logistic regression (ORL),
where the probability of attaining level greater than k ∈ {1, . . . ,K} is parametrized by pk := P [Y > k |η,c] =
logit−1 (η − ck) ,where c = (c1, . . . , cK−1) is a set of ordered thresholds−∞ = c0 < c1 < · · · < cK−1 < cK = ∞
that play a role of intercept. For identifiability purposes, the predictor ηmust not contain a fixed intercept term
(or fix corresponding β parameter to zero). We extend our notation to p0 = 1 and pK = 0. The probability qk
of attaining level k can then be expressed as qk = pk−1 − pk , which finally yields the corresponding log-pdf
`O(Y |η,c) = log qY = log(pY−1 − pY ) = logit−1(η − cY−1) − logit−1(η − cY ).

• General categorical outcome Y ∈ {1, . . . ,K} of K unordered levels is the newest addition to the model,
for which we decided to use multinomial logistic regression (MLR) model that parametrizes probability of
attaining level k ∈ {1, . . . ,K} by K different predictors ηk that share the same structure, however, they use
different set of fixed effects βr ,k . For simplicity of the model we use only one set of random effects Bi,r

creating only one ηR for all predictors ηk . In order to identify these effects, it is necessary to fix them to
zero for one k, let us use ηK = 0. Then the probability that Y falls into category k ∈ {1, . . . ,K} is kth
element of so called softmax function P [Y = k |η1, . . . , ηK−1] = softmaxk(η) = eηk

/ (
1 +

∑K−1
k′=1 eηk′

)
,where

η = (η1, . . . , ηK ) is vector of all predictors corresponding to categorical outcome Y . The resulting log-pdf is
then of the form `C(Y |η) = ηY − log

(
1 +

∑K−1
k=1 eηk

)
.

Note that under K = 2 both ordinal and categorical setting reduce to the logistic regression assumed for binary
outcomes. Such an ordinal outcome would require lone threshold c1 that would correspond to negative intercept
term in logistic regression since q1 = 1 − p1 and q2 = p1. On the other hand, a categorical outcome would then
have one actual predictor η = η1 and η2 = 0 which trivially means that the first element of softmax coincides with
logit−1 in logistic regression. To avoid such special cases we limit ourselves to K ≥ 3 when using ORL or MLR,
and hence any categorical outcome of K = 2 levels will be treated by logistic regression directly.

Now, when supposed distributions for observed outcomes are set, we discuss the other object of randomness -
random effects. Let us for ith unit denote Bi a vector of all random effects Bi,r . For clarity, we will always
consider outcomes to be ordered by their type - first numeric, then binary, ordinal and categorical as last and in
this way we also order elements of vector of random effects Bi . By the assumption that Bi

iid
∼ N (0,Σ), where

Σ > 0 is unknown completely general covariance matrix, we incorporate possible dependencies among outcomes
into our model. Because even when the conditional distributions of different outcomes given random effects are
independent, the unconditional distributions become dependent. Such distribution is possible to derive when only
numeric outcomes are considered, however, once we add any categorical outcome modelled by GLMM it becomes
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much more challenging task. In fact, the overall pdf h for Yi in general takes the form of

h(yi; Ci, ζ ) =
∫ R∏

r=1

ni∏
j=1

exp
{
`type(r) (Yi,r , j |Ci, j,Bi,r , ζ r

)}
· (2π)−

dim Bi
2 |Σ |−1 exp

{
−

1
2

B>i Σ
−1Bi

}
dBi, (1)

where type(r) ∈ {N,B,O,C} denotes the type of rth outcome and ζ consists of all ζ r that cover all unknown
parameters tied with rth outcome. We propose to solve this integration by multivariate version of adaptive
Gauss-Hermite quadrature using Laplace approximation (Breslow and Clayton, [1]). Our MCMC based estimation
completely avoids the necessity of performing this integration. However, it is still needed for detailed exploration
of posterior distribution of several useful characteristics.

3 Model based clustering
In this section we discuss the way we can distinguish different patterns in joint model for mixed type panel data.
We are given with the number of groups G into which we intend to classify the units in advance and G ≥ 2.
The classification proceeds by using the model outlined in Section 2 within the Bayesian model based clustering
procedure (MBC, [3]). It is assumed that the overall model, f , is given as a finite mixture of certain group-specific
models fg, g = 1, . . . , G. That is, f (yi; Ci, θ) =

∑G
g=1 wg fg(yi; Ci, ψ, ψg), where w =

(
w1, . . . , wG

)> are the
mixture weights (proportions of the groups in the population), ψ is a vector of unknown parameters common to
all groups and ψg, g = 1, . . . , G, are vectors of group-specific unknown parameters. Hence the vector θ of all
unknown parameters is θ ≡

{
w, ψ, ψ1, . . . , ψG

}
.

Using the notation from previous section we set the group-specific density fg to be the density h, however,
depending on parameter ζg elements of which (βgr , τ

g
r , cgr , Σg) may (or may not) be group-specific, i.e. different

value of the parameter is considered to be in different groups. For example, if we suppose that the groups differ
only in the covariate effects, then ψ = {τ, c, Σ} and ψg = βg.

Further, let Ui ∈
{
1, . . . , G

}
denote the unobserved allocation of the ith unit into one of the G groups. As it is

usual with the mixture models, the group-specific distribution fg(yi; Ci, ψ, ψg), g = 1, . . . , G, can be viewed as
a conditional distribution of the outcome Yi given Ui = g while the mixture weights w determine the marginal
distribution of the allocations, i.e., P(Ui = g) = wg, g = 1, . . . , G. Classification of the ith unit is then based on
suitable estimates of the conditional individual allocation probabilities pi,g(θ), g = 1, . . . , G, calculated by the
Bayes rule:

pi,g(θ) = P
(
Ui = g

�� Yi = yi; Ci, θ
)
=

wg h (yi; Ci, ψ, ψg)

f (yi; Ci, θ)
, (2)

where θ = {ψ,wg,ψ
g,g = 1, . . . ,G} is the set of all unknown parameters. Unfortunately, calculation of such

probabilities would require immense amount of calculation of the integral (1). However, we can still bypass this
issue by taking advantages of Bayesian approach and MCMC estimation, see the end of Section 4.

4 Estimation by MCMC
A Bayesian approach that treats unknown parameters to be random by assigning an uninformative prior is a natural
choice for our model. It allows us to consider all random effects Bi and group allocation indicators Ui as additional
unknown parameters of the model. Markov chain with states consisting of all unknown parameters θ, latent Bi and
Ui needs to be constructed in such a way that its limiting distribution corresponds to their posterior distribution, i.e.
the distribution of θ,Bi,Ui, i = 1, . . . ,n given all available data. Once the chain reaches its stationary distribution
(equal to the limiting one) we follow Monte Carlo principles and continue in sampling to obtain a sample of state
values on which an estimation of posterior distribution is based.

The question is, how do we construct such a Markov chain. The most straightforward way (taken in [6]) using
Gibbs sampling cannot be applied directly, since needed full-conditional distributions of fixed effects βgr , random
effects Bi and ordered intercepts cgr do not fall into known distributional families. Nevertheless, we still keep the
main idea of sampling from full-conditional distributions but in cases where the full-conditional distribution is
unclear we rather replace it with aMetropolis step that accepts a new sampled value from proposal distribution with
a corresponding acceptance probability. This so-called Metropolis-within-Gibbs approach satisfies all conditions
necessary for MCMC to work [2].

However, there still remains the problem of selecting the proposal distributions in Metropolis steps. A vague
choice could lead to poor acceptance probability and inefficient Markov chain. In this regard we adapt the
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proposal distribution to reflect the true full-conditional distribution behind. By Newton-Raphson method we find
the parameter value maximizing full-conditional distribution and evaluate the second order derivatives at this
parameter value to obtain a variance matrix for proposal distribution. To be more specific, we transition from
current value to the new one where the direction is sampled from centered multivariate normal distribution with
such variance matrix possibly modified by a constant to reach better acceptance rate. To reduce autocorrelation
(and speed up convergence) we can perform a walk consisting of more than one step. The frequent update of
variance matrices of proposal distributions is crucial at the burn-in period of the Markov chain, however, once the
stationary distribution is reached it could be updated at lower rate to speed up the sampling.

Finding proposal distributions for fixed effects βgr is analogous to finding maximum likelihood estimates in GLM
models on subset of units in gth cluster. However, under the Bayesian setting we do not maximize only log-pdf,
but we also add a logarithm of prior distribution. During Newton-Raphson only fixed part of predictor ηF changes
while the random part ηR is kept the same since we condition by the random effects in this step. The process is
very analogous for random effects Bi , however, this time ηF remains the same while the random part ηR changes.
Unlike with the fixed effects βgr , where each was done separately for all r = 1, . . . ,R, random effects Bi have to be
sampled jointly across all outcomes due to our common general prior Bi |Ui = g ∼ N (0,Σg). Note that each unit
i = 1, . . . ,n has to be treated separately while using parameters specific to cluster to which unit i currently belongs.

A unique treatment is required for cgr parameter of ordered intercepts for ordinal outcomes. Derivation of Newton-
Raphson method leads to an algorithm that does not necessarily guarantee the ordinality of elements of cgr . Hence,
we propose the following transformation

c1 = a1 a1 = c1,

c2 = a1 + ea2 a2 = log(c2 − c1),

c3 = a1 + ea2 + ea3 a3 = log(c3 − c2),

... =
...

... =
...

cK−1 = a1 +

K−1∑
k=2

eak aK−1 = log(cK−1 − cK−2).

There is one to one correspondence between the ordered intercepts cgr and newly defined parameter agr , elements of
which are no longer restricted. Therefore, we set multivariate normal prior over parameter agr and apply Metropolis
step to it with the use of proposal distribution found by Newton-Raphson method (the transformation preserves
smoothness), which now does not face any limitations. After sampling agr we transform it back to obtain ordered
intercepts cgr .

In order to fully approximate posterior distribution of parametric functions of allocation probabilities pi,g(θ) we
would need to efficiently compute integral (1). Nevertheless, if we settle for posterior mean only, we can utilize
full-conditional (also given Bi) classification probabilities that are already calculated for each sampled state in
order to obtain new Ui indicators. By the fact that∫

P [Ui = g |Yi;Ci,θ] · p(θ |Yi;Ci) dθ =
∫ ∫

P [Ui = g |Yi;Ci,θ,Bi] · p(θ,Bi |Yi;Ci) dBidθ,

we can approximate the posterior mean of pi,g(θ) by arithmetic mean of full-conditional probabilities. This
approximation can then be used for classifying units into cluster with highest posterior mean probability. However,
without full exploration of posterior distribution we can hardly create more sophisticated classification rules that
would adequately account for possible indecisiveness.

5 Application to EU-SILC
The Czech subset of EU-SILC dataset gathered between 2005 and 2018 consists of n = 23 360 households that
were followed for exactly ni = 4 consecutive years which is induced by rotational design. Each year a quarter of
the followed households is dropped to be replaced by a set of new households. For the analysis we primarily use
data gathered on household level, however, on special occasions we use gathered personal data to create a new
indicator that summarizes the whole household. Outcomes of interest are listed below with respect to their type:
• Numeric outcomes (used on log-scales)

– HX090 - Equivalised total disposable income [€/year]
– HS130 - Lowest monthly income to make ends meet (to pay for its usual necessary expenses) [€/month]
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• Binary outcomes (Yes / No)
– HS040 - Capacity to afford paying for one week annual holiday away from home
– HS060 - Capacity to face unexpected financial expenses

• Ordinal outcomes (the higher, the less problematic)
– HS120 - Ability to make ends meet (self-evaluation by respondent)

1. with great difficulty
2. with difficulty
3. with some difficulty
4. fairly easily
5. easily
6. very easily

– HS140 - Financial burden of the total housing cost (self-evaluation by respondent)
1. a heavy burden
2. a slight burden
3. not a burden at all

• Categorical outcomes (Yes / No - cannot afford / No - other reason)
– HS090 - Do you have a computer?
– HS110 - Do you have a car?

The dataset also offers plenty of potential regressors to be used in the fixed part of the model.
• Time is the most important one due to the economical crisis that has struck during the follow-up time. This

had a great impact on the households in several different ways. Hence, we decided for quadratic spline
parametrization with one inner knot to allow for the change in evolution.

• Equivalised household size expresses how large the household is while taking age into consideration. The
head of the household (respondent) has unit weight, while other members have either 0.5 or 0.3 depending on
their age - older or younger than 14, respectively. We keep it in a linear parametrization as one of the fixed
effects.

• Level of urbanisation was originally divided by the population density and minimum population into three
categories: densely populated area, intermediate area and thinly-populated area. However, the capital city
Prague behaves in many aspects very distinctly. For that reason we created fourth category dedicated to
households in Prague exclusively.

• The highest education level achieved within the whole household rarely attains the lowest possible option of
primary education. The most common one - secondary education was divided into lower, upper and post
secondary categories. The highest group - tertiary education - are households where at least one member has
some kind of university degree.

• Presence of student or baby are binary indicators whether some household member currently attends any
educational institution or is younger than 3 years, respectively.

Usage all of the above suggested regressors creates the fixed part of the predictor dependent on 13-dimensional
vector of β coefficients plus an intercept term for non-ordinal outcome. Each of the outcomes shares the same
structure of the fixed effects but is supposed to have his own group-specific βgr . On the other hand, we try to keep
random structure as simple as possible to not to increase the dimension of Σ (common to all clusters). Therefore,
a simple random intercept term for each considered outcome suffices for our purposes of joint modelling. Then
the dimension of Bi is the lowest possible and corresponds to the number of considered outcomes, which means 8
if all outcomes suggested above are used.

During the analysis we treat the number of groups G to be fixed and known in advance. However, nothing stops
us from trying several potential values of G ∈ {2,3,4,5,6} and choose the one that fits best according to cluster
interpretations. In [6] we also used posterior distribution of deviance D(θ; Y1, . . . ,Yn) = −2

n∑
i=1

log f (Yi; Ci,θ).

However, this approach is as computationally demanding as full exploration of posterior distribution of all classifi-
cation probabilities pi,g(θ), which for Markov chain of length M includes M · n ·G approximations of integral (1).

We classify households into the cluster with the highest posterior mean of classification probabilities (2) only when
this estimate dominates other probabilities by a certain margin, e.g. 0.1. Apart from cluster characteristics given
by specific fixed effects βgr we can relate the clustering with other available data. A very interesting comparisons
are with the type of the household (its family composition) and with the poverty indicator (whether a household
has equivalised total disposable income below 60 % of the median). It shows that our clustering method provides
an alternative and more elaborated approach for identification of households endangered by poverty.
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6 Conclusion
Although, replacement of latent variable approach byGLMMbrings several difficulties with respect to the sampling
process for estimation, we were able to circumvent them by the use of Metropolis proposal steps combined with
Newton-Raphson method. For this effort we were rewarded by significantly improved convergence properties.
However, some of the difficulties still remain in the integration (1). For example, when we want to explore
posterior distribution of classification probabilities or deviance in more depth. Although, suggested solution by
multivariate version of adaptive Gauss-Hermite quadrature using Laplace approximation (Breslow and Clayton,
[1]) can handle the integration quite satisfactorily, the enormous amount of its performance significantly prolongs
the computational time.

The next step in the improvement could be to replace generality of covariance matrix Σ by some block structure to
make the dependence clearer and to allow for much higher dimensions of random effects and possibly much larger
set of outcomes of interest. The GLMM framework and the use of Newton-Raphson method also opens door for
other types of models for numeric outcomes, choice of different link function than logit or even for addition of
count-type outcomes.

In terms of real data application, our methodology can identify households of both regular and extraordinary
behaviour. Classical poverty indicators tend to be one-dimensional and do not take all household aspects into
consideration. Our method can absorb diverse kinds of information and then provide a more complex insight. One
of the advantages of being still a fully parametric model is that we can describe exactly how the clusters differ
among themselves.
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