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Abstract Although, many nowadays studies gather data of diverse nature (numeric quantities, binary indicators
or ordered categories) on the same units repeatedly over time, there exist only limited number of approaches in
the literature to analyse so called mixed-type longitudinal data. We present a statistical model capable of joint
modelling of several mixed-type outcomes, which also accounts for possible dependencies among investigated
outcomes. A thresholding approach to link binary or ordinal variables to their latent numeric counterparts allows
us to jointly model all, including latent, numeric outcomes using a multivariate version of the linear mixed-effects
model. We avoid the independence assumption over outcomes by relaxing the variance matrix of random effects to
a completely general positive definite matrix. Moreover, we follow Model Based Clustering (MBC) methodology
to create a mixture of such models to model heterogeneity in temporal evolution of considered outcomes. The
estimation of such hierarchical model is approached by Bayesian principles with the use of Markov Chain Monte
Carlo (MCMC) methods. After a successful simulation study with the aim to examine the ability to consistently
estimate the true parameter values and thus discovering the different patterns, the EU-SILC dataset consisting
of Czech households each followed for four years in a time span 2005 – 2016 was analysed. Households were
classified into groups with similar evolution of several closely related indicators of monetary poverty based on
estimated classification probabilities.

Keywords Multivariate longitudinal data · Mixed type outcome · Model based clustering · Classification ·
EU-SILC

1 Introduction

In different types of studies data are nowadays routinely gathered repeatedly over time on the same units leading
to longitudinal or panel data. On top of that, multiple outcomes, both numeric and categorical, i.e., of a mixed
type, are recorded at each measurement occasion leading to multivariate mixed type longitudinal data. An example
of such a dataset which also motivates our research is The European Union Statistics on Income and Living Condi-
tions database (EU-SILC, https://ec.europa.eu/eurostat/web/microdata/european-union-statistics-
on-income-and-living-conditions). This is an instrument with the goal to collect timely and comparable
cross-sectional and longitudinal multidimensional microdata on income, poverty, social exclusion and living con-
ditions in the European Union, Iceland, Norway and Switzerland. The reference population includes all private
households of respective countries and variables, which are collected annually via questionnaires, refer both to
households and to individuals from the household. In this paper, we concentrate on household specific data from
the Czech Republic (period 2005 – 2016), each household was followed annually for a period of 4 years. In total,
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n = 20323 households will be analyzed. The aim of the research is to find typical patterns of temporal evolution of
several indicators related to poverty and material deprivation. The relevant outcome variables are not only numeric
(e.g., income) but also binary (e.g., ability to cover unexpected expenses), or ordinal (e.g., level of a financial bur-
den of housing). From a data analytic point of view, it is our aim to develop a clustering approach suitable for
longitudinal data of a mixed type that allows for above mentioned types of outcome variables.

To formalize the task, we are assuming that data are composed of n independently behaving units (e.g., house-
holds) and for the ith unit (i = 1, . . . ,n), in total R outcome variables Y r

i, j (r = 1, . . . ,R, j = 1, . . . ,ni) are being
gathered at each of ni measurement occasions that take place at times ti,1, . . . , ti,ni . On top of that, each outcome
variable Y r

i, j might be either numeric, binary or ordinal, see Figure 1 for an example. Finally, each observation
might be supplemented by a vector vvvr

i, j of additional covariates that may explain the outcome variability. In sum-
mary, the ith unit is represented by data Di =

{
Y r

i, j, vvvr
i, j, ti, j : r = 1, . . . ,R, j = 1, . . . ,ni

}
, i = 1, . . . ,n and the task

is to use this information to classify each unit into one of K > 1 groups with a priori unknown structure.
Due to complexity of a data structure and also due to the fact that possibly different numbers ni of measurement

occasions appear in data for different units, classical distance-based clustering methods like hierarchical clustering
or the K-means method and their many extensions (see, e.g., Hastie et al, 2009, Chapters 13 and 14) could hardly
be used. On the other hand, methods that further develop ideas of model based clustering (MBC, Banfield and
Raftery, 1993; Fraley and Raftery, 2002) and that exploit mixtures of suitable statistical models proved to be
useful in similar situations. A classical model to analyze continuous longitudinal outcomes is the linear mixed
model (LMM, Laird and Ware, 1982) and hence not surprisingly, several MBC procedures based on mixtures of
LMM’s appeared in the literature. A work by Verbeke and Lesaffre (1996), where growth curves are classified,
provides one of the first methods of this type even though not explicitly called MBC at that time. More recently, an
application of similar ideas to clustering of gene-expression data is covered by Celeux et al (2005). Subsequently,
De la Cruz-Mesı́a et al (2008) base their MBC procedure for longitudinal data on a non-linear mixed model. The
situation of more than one (R > 1) outcome being available for the clustering, nevertheless, all of them still being
continuous, is considered by Villarroel et al (2009).

The MBC methods developed for functional data and (continuous) stochastic processes could also be employed
if we keep dealing with continuous and moreover univariate (R = 1) longitudinal data (e.g. James and Sugar,
2003; Ma et al, 2006; Liu and Yang, 2009; McNicholas and Murphy, 2010). Frühwirth-Schnatter (2011) provides
a comprehensive overview. A possibility to develop the MBC for non-continuous longitudinal data is to replace
LMM by a generalized linear mixed model (GLMM) in the underlying mixture of models. See, e.g., Molenberghs
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Fig. 1: EU-SILC data (Czech Republic). Observed longitudinal profiles of three (numeric, binary and ordinal)
outcomes.
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and Verbeke (2005, Chapter 14) who also provide an example of such a clustering procedure in their Section 23.3.
Nevertheless, it is still only possible to use a single (R = 1) longitudinal outcome.

On the other hand, only little previous work seems to be available in the literature in case where units are
to be classified based on multivariate (R > 1) and possibly non-continuous longitudinal data. If all outcomes are
of the same type (e.g., all binary), a method based again on a mixture of mixed models is offered by the
package lcmm (Proust-Lima et al, 2017). Nevertheless, for the MBC based on multivariate (R > 1) mixed type
longitudinal data, the only two approaches we are aware of and that into some extent allow for classification, are
those implemented in the packages flexmix (Grün and Leisch, 2008) and mixAK (Komárek and Komárková,
2013, 2014). Nevertheless, both of the two approaches are lacking some important aspects. First, Grün and Leisch
(2008) assume independence of different longitudinal outcomes measured at one occasion. This may not only be
unrealistic but also prevents the analyst from exploiting information provided by the dependence structure among
the R outcomes in the clustering procedure. Even though certain form of dependence is considered by Komárek
and Komárková (2013, 2014), only binary or count non-continuous outcomes are considered which does not
allow for use with a typical questionnaire data like the EU-SILC database where many outcome variables are of
an ordinal nature.

One of the reasons why not much is available to perform clustering based on multivariate mixed type longitu-
dinal data is perhaps also the fact that even statistical models needed to develop the MBC procedure that would
allow for datasets of a considered structure are relatively scarce in literature. This especially if we seek for models
that realistically account for possible dependencies between different outcome variables gathered at one occasion.
Fieuws and Verbeke (2004) covered in detail a bivariate case of longitudinal data and also in this manuscript, we
follow their suggestion to use a multivariate mixed model while specifying a general covariance matrix for the
joint distribution of all involved random effects. Later, Fieuws and Verbeke (2006) extended this approach to more
than two outcomes by pairwise fitting and construction of pseudo-likelihood to avoid computational problems with
covariance matrix of a high dimension. Nevertheless, MBC was not employed in any of those solutions. Recently,
Bruckers et al (2016) invented a clustering algorithm that updates pseudo-log-likelihood of the pairwise approach
and reclassifies individuals until no change is made. This solution, however, lacks inclusion of binary and ordinal
outcomes that we aim to provide in this article.

The rest of the paper is organized as follows. In Section 2 we first outline the approach being capable of a joint
modelling of mixed-type (numeric, binary and ordinal) longitudinal data. Second, in Section 3, we incorporate
the developed model within the clustering procedure that allows usage of data with a structure analogous to that
on Figure 1 and classification of study units into groups with apriori unknown structure. Yet, Section 3 only
provides a theoretical clustering concept which assumes a full knowledge of unknown parameters. Transition into
a practically applicable procedure is provided in Section 4 which outlines details of a Bayesian approach towards
this goal. Further, Section 5 evaluates clustering capabilities of our approach on a simulation study. In Section 6,
we apply our method to the EU-SILC database in order to discover clusters of different evolution patterns and to
classifying each household. Finally, Section 7 summarizes the proposed model and suggests ways of improvement
in reaction to our findings from application.

2 Joint modelling of mixed-type longitudinal data

At each measurement occasion, R outcomes (numeric, ordinal or binary) are observed on each study unit. Let
R = {1, . . . , R} = RNum ∪ROB, ROB = ROrd ∪RBin, denote the index set of observed outcomes that con-
sists of indices of numeric outcomes (RNum), ordinal outcomes (ROrd) and binary outcomes (RBin). Let YYY r

i =(
Y r

i,1, . . . ,Y
r
i,ni

)>
be the vector of values of outcome r∈R of subject i= 1, . . . ,n observed at times ttt i =(ti,1, . . . , ti,ni)

together with additional covariates vvvr
i,1, . . . ,vvv

r
i,ni

. Further, let C r
i =

{
ttt i,vvvr

i,1, . . . ,vvv
r
i,ni

}
denote both the measurement

times and the covariate values for the outcome r of the ith subject. Finally, let

Yi = (YYY r
i ,r ∈R) , Ci = {C r

i ,r ∈R} (1)

denote all information (outcomes and covariate values) available for the ith subject, which is assumed to be inde-
pendent of other subjects. YYY r and C r stand for information (outcome and covariate values) regarding one chosen
outcome r ∈R from all subjects, while Y and C stand for all gathered information (all outcomes and covariate
values) from all subjects.
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The joint model for data (1) is built hierarchically. It exploits the linear mixed model (LMM) for each longitudi-
nal outcome (each r ∈R). In case of binary or ordinal outcomes, the LMM is assumed only latently. Dependencies
between different outcomes gathered on a single study unit are captured by considering a vector of shared random
effects. In particular, the model is built as follows.

2.1 Numeric longitudinal outcomes

For each numeric outcome r ∈RNum we directly assume the linear mixed model:

YYY r
i | C r

i ,bbb
r
i ∼ Nni

(
ηηη

r
i , τ
−1
r Ini

)
, (2)

where ηηηr
i =Xr

i βββ
r +Zr

i bbb
r
i is the linear predictor consisting of fixed and random effects parts, τr > 0 is the precision

(inverse variance) of model errors , βββ
r ∈ RdFr are fixed effects and bbbr

i ∈ RdRr are random effects belonging to

subject i. Further, Xr
i =
(

xxxr
i,1, . . . ,xxx

r
i,ni

)>
and Zr

i =
(

zzzr
i,1, . . . ,zzz

r
i,ni

)>
are matrices of regressors being derived from

the explanatory variables information C r
i . For identifiability purposes, matrices Xr

i and Zr
i are assumed not to

share the same columns, i.e. created regressor falls exclusively either into fixed effects part or into random effects
part of the model.

2.2 Ordinal and binary longitudinal outcomes

The rth binary or ordinal outcome r ∈ROB is assumed to attain values 0, . . . ,Lr−1 which are linked to a linear
mixed model through the thresholding concept (see, e.g., Albert and Chib, 1993):

Y r
i, j = l ⇐⇒ γ

r
l < Y ?,r

i, j ≤ γ
r
l+1, (3)

where −∞ = γr
0 < γr

1 < · · · < γr
Lr = ∞ are (unknown) thresholds categorizing a latent (unobserved) numeric vari-

ables Y ?,r
i, j . Let γγγr =

(
γr

1, . . . ,γ
r
Lr−1

)
be the vector of thresholds. For identifiability purposes, we will fix one of the

thresholds, e.g., the first one γr
1 while estimating the model. That is, in case of a binary outcome, all threshold

parameters are fixed.
Analogously to the case of numeric outcomes, latent numeric variables Y ?,r

i, j are assumed to follow the linear
mixed model

YYY ?,r
i

∣∣ C r
i ,bbb

r
i ∼ Nni (ηηη

r
i , Ini) (4)

with analogous notation to that in (2). Nevertheless, this time, the precision parameter τr of model errors is fixed
and equal to one for identifiability purposes.

2.3 Joint model

Let YN
i =

(
YYY r

i ,r ∈RNum
)

denote a vector of all numeric outcomes of subject i. Further, let Y?,OB
i =

(
YYY ?,r

i ,r ∈ROB
)

be a vector of latent numeric variables being behind all ordinal and binary outcomes. The subvectors of Y?
i :=(

YN
i , Y

?,OB
i

)
are assumed to follow linear mixed models (2) and (4) with a set of fixed effects βββ =

{
βββ

r,r ∈R
}

and an overall vector of random effects bbbi = {bbbr
i ,r ∈R}.

In the following, let bbbNi =
{

bbbr
i ,r ∈RNum

}
and bbbOB

i =
{

bbbr
i ,r ∈ROB

}
be random effects related to mod-

els for numeric and ordinal/binary longitudinal outcomes, respectively. The overall random effects vector bbbi ≡(
bbbNi , bbbOB

i

)
is now assumed to follow a multivariate normal distribution with a general covariance matrix, i.e., it

is assumed

bbbi =

(
bbbNi

bbbOB
i

)
iid∼ NdR

(
µµµ =

(
µµµN

µµµOB

)
, ΣΣΣ =

(
ΣΣΣ

N
ΣΣΣ

NOB

ΣΣΣ
OBN

ΣΣΣ
OB

))
, (5)

where dR = dR
N+dR

OB = ∑r∈R dR
r is the total dimension of bbbi, µµµ ∈RdR is the (unknown) mean value of the random

effects and ΣΣΣ > 0 is the unknown random effects covariance matrix. This matrix is left to be completely general
which captures possible dependencies between different longitudinal outcomes.

Throughout the manuscript, the notation p(· | ·) will stand for a conditional probability distribution function.
Next to the fixed effects βββ , mean vector µµµ and covariance matrix ΣΣΣ , the unknown parameters of the model are
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τττ :=
(
τr,r ∈RNum

)
, precisions of the error terms of the LMM’s for numeric outcomes and γγγ =

{
γγγr,r ∈ROrd

}
,

thresholds for ordinal outcomes.
The outlined model implies the following likelihood based on observed data:

p(Yi|Ci;βββ ,µµµ,ΣΣΣ ,τττ,γγγ) =
∫ ∫

p
(
YN

i ,YOB
i ,Y?,OB

i ,bbbi

∣∣∣Ci;βββ ,µµµ,ΣΣΣ ,τττ,γγγ
)

dbbbi dY?,OB
i =

=
∫ ∫

p
(
YOB

i

∣∣∣Y?,OB
i ;γγγ

)
︸ ︷︷ ︸

thresholding (3)

· p
(
YN

i ,Y
?,OB
i

∣∣∣Ci,bbbi;βββ ,τττ
)

︸ ︷︷ ︸
MV LME (2),(4)

· p(bbbi|µµµ,ΣΣΣ)︸ ︷︷ ︸
(5)

dbbbi dY?,OB
i . (6)

The probability density functions which are integrated in (6) are of the form

p
(
YOB

i

∣∣∣Y?,OB
i ;γγγ

)
= ∏

r∈ROB

ni

∏
j=1

[
Lr−1

∑
l=0

1{l}
(
yr

i, j
)
1(γr

l , γr
l+1]

(
y?,OB

i

)]
,

p
(
YN

i ,Y
?,OB
i

∣∣∣Ci,bbbi;βββ ,τττ
)
= ∏

r∈RNum

ni

∏
j=1

ϕ
(
yr

i, j;η
r
i, j,τ

−1
r
)
· ∏

r∈ROB

ni

∏
j=1

ϕ

(
y?,ri, j ;η

r
i, j,1

)
,

p(bbbi|µµµ,ΣΣΣ) = ϕ (bbbi; µµµ,ΣΣΣ) ,

(7)

where ϕ (·;mmm,SSS) is probability density function of multivariate normal distribution with mean mmm and variance
matrix SSS.

3 Model based clustering framework

Classification of subjects into one of K latent subgroups with apriori unknown structure will be based on the
model-based clustering procedure developed above the model introduced in Section 2 in which all parameters of
the underlying linear mixed models might be group specific. As it is usual in this context, let Ui ∈

{
1, . . . , K

}
denote an unobservable group-allocation indicator for subject i (i = 1, . . . ,n). We assume that the model for i-th
subject if it belongs to the k-th group (given Ui = k, k = 1, . . . ,K) is described by the probability density function
p
(
Yi
∣∣Ci; βββ

(k),µµµ(k),ΣΣΣ (k),τττ(k),γγγ
)

of the form (6), where
{

βββ
(k),µµµ(k),ΣΣΣ (k),τττ(k)

}
is a set of (possibly) group-specific

model parameters. That is, the assumed conditional probability distribution function of the i-th subject outcomes
given the group allocation is

p
(
Yi

∣∣∣Ui = k,Ci; βββ
(k),µµµ(k),ΣΣΣ (k),τττ(k),γγγ

)
(6)
=

=
∫ ∫

p
(
YOB

i

∣∣∣Y?,OB
i ;γγγ

)
· p
(
YN

i ,Y
?,OB
i

∣∣∣Ci,bbbi;βββ
(k),τττ(k)

)
· p
(

bbbi

∣∣∣µµµ(k),ΣΣΣ (k)
)

dbbbi dY?,OB
i . (8)

Note that setting different LMM model parameters to be group-specific, we allow for different expressions
of heterogeneity in the population. If, for example, we set parameters βββ to be group-specific we suppose that
differences among the K latent groups can be described in terms of the effect of the fixed effects covariates Xi.
On the other hand, group-specific parameter ΣΣΣ would lead to different associations among random effects that
would subsequently change the marginal relationships among the outcomes. In general, not all of the LMM model
parameters must be group-specific, nevertheless, for clarity, we suppress this in notation. In the following, symbols
βββ , µµµ , ΣΣΣ and τττ will represent sets of all corresponding parameters

{
βββ
(k),k = 1, . . . ,K

}
,
{

µµµ(k),k = 1, . . . ,K
}

,{
ΣΣΣ

(k),k = 1, . . . ,K
}

and
{

τττ(k),k = 1, . . . ,K
}

, respectively.

Let wk = P
(
Ui = k

∣∣www) ∈ (0, 1), k = 1, . . . ,K, ∑
K
k=1 wk = 1, be (unknown) probabilities of pertinence to each

of K groups, www :=
(
w1, . . . , wK

)
. Would we know all the model parameters θθθ :=

{
www, βββ , µµµ, ΣΣΣ , τττ, γγγ

}
, Bayes rule

provides an expression of conditional (given observed data) probabilities for subject i belonging to each of the
groups:

ui,k(θθθ) := P [Ui = k |Yi,Ci; θθθ ] =
wk p

(
Yi

∣∣∣Ui = k,Ci; βββ
(k),µµµ(k),ΣΣΣ (k),τττ(k),γγγ

)
K
∑

k′=1
wk′ p

(
Yi

∣∣∣Ui = k′,Ci; βββ
(k′),µµµ(k′),ΣΣΣ (k′),τττ(k

′),γγγ
) . (9)
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In a majority of the MBC methodologies, the authors consider maximum-likelihood estimation (MLE) of
the unknown parameters. The clustering is then based on estimated subject specific group probabilities ûML

i,k =

ui,k
(
θ̂θθ
ML)

where θ̂θθ
ML

denotes the MLE. In our situation, it would maximize the likelihood function:

L(θθθ) =
n

∏
i=1

{
K

∑
k=1

wk p
(
Yi

∣∣∣Ui = k,Ci; βββ
(k),µµµ(k),ΣΣΣ (k),τττ(k),γγγ

)}
,

This is traditionally solved by using the EM algorithm (Dempster et al, 1977) to face a problem of latent allocations
leading to the mixture type likelihood. Nevertheless, two other levels of latent variables are present in our model
leading to two additional levels of integration when evaluation the likelihood, see expression (6). They are the
random effects bbbi and the latent numeric variables Y?,OB

i associated with ordinal and binary outcomes YOB
i as

well. This makes the likelihood hardly tractable and we switch to the Bayesian framework and the related Markov
chain Monte Carlo (MCMC) methodology which allows to fully exploit a hierarchical structure of our model. The
clustering itself will then be based on the posterior distribution of the individual group probabilities (9).

4 Bayesian inference

For Bayesian inference, we exploit ideas of Bayesian Data Augmentation (BDA, Tanner and Wong, 1987) while
considering all latent quantities, i.e., component allocations UUU :=

{
Ui, i = 1, . . . ,n

}
, LMM random effect vectors

bbb :=
{

bbbi, i= 1, . . . ,n
}

and latent variables Y?,OB :=
{
Y?,OB

i , i= 1, . . . ,n
}

as additional model parameters included
in the posterior distribution. With the model specified in Sections 2 and 3, the joint distribution of observed as well
as latent data and model parameters for the Bayesian model is given by the following decomposition

p
(
YN,YOB, Y?,OB,UUU , bbb, θθθ

∣∣ C ) =

[ n

∏
i=1

p
(
YN

i , YOB
i , Y?,OB

i ,Ui, bbbi
∣∣ Ci; θθθ

)]
p(θθθ)

=

[ n

∏
i=1

p
(
YN

i , YOB
i , Y?,OB

i

∣∣ Ci, bbbi,Ui; θθθ
)

p
(
bbbi
∣∣Ui; θθθ

)
p
(
Ui
∣∣θθθ)] p(θθθ)

=

[ n

∏
i=1

p
(
YOB

i
∣∣Y?,OB

i ; γγγ
)

p
(
YN

i , Y
?,OB
i

∣∣Ci, bbbi; βββ
(Ui), τττ

(Ui)
)

p
(
bbbi
∣∣µµµ(Ui),ΣΣΣ (Ui)

)
wUi

]
p(θθθ), (10)

where factors in (10) follow from (7) and p(θθθ) is the prior distribution of the primary model parameters. By sym-
bols YN and YOB we understand a collection of corresponding outcomes of the same type across all individuals,
i.e. YN =

{
YN

i , i = 1, . . . ,n
}

and YOB =
{
YOB

i , i = 1, . . . ,n
}

. Later, we also use Y for all outcomes available, that
is Y= YN∪YOB.

4.1 Prior distribution

We consider rather standard prior distributions of primary model parameters θθθ being used in a context of hier-
archical models being similar to that of ours. In particular, we assume that the prior distribution is decomposed
as

p(θθθ) = p(www) p(γγγ) p
(
βββ |τττ

)
p(τττ) p(µµµ) p(ΣΣΣ)

with the following choices for the elements of the factorization.
A classically considered Dirichlet prior is assumed for the vector of group weights www =

(
w1, . . . , wK

)
, i.e.,

p(www) ∝

K

∏
k=1

wαk−1
k ,

where ααα = (α1, . . . ,αK) is a set of positive hyperparameters (all being equal to 1 in our applications in Sections 5
and 6).

Considering the thresholding parameters γγγr, r ∈ROrd we first tackle the identifiability issue. Corresponding
parametric space Ω r is limited to set of all vectors of ordered values with fixed first threshold γr

1. An improper
uniform distribution on Ω r is assumed for each set of thresholds γγγr, r ∈ROrd. That is,

p(γγγ) = ∏
r∈ROrd

p(γγγr) ∝ ∏
r∈ROrd

1Ω r (γγγr) .
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All fixed effects parameters βββ
r,(k) =

(
β

r,(k)
1 , . . . , β

r,(k)
dFr

)
, r ∈R, k = 1, . . . ,K, are assumed to be apriori inde-

pendent and following a conjugate normal distributions, i.e.,

p
(
βββ |τττ

)
=

K

∏
k=1

∏
r∈RNum

dFr

∏
j=1

ϕ

(
β

r,(k)
j ;β

r
0, j,
(
τ
(k)
r
)−1 dr

j, j

)
·

K

∏
k=1

∏
r∈ROB

dFr

∏
j=1

ϕ

(
β

r,(k)
j ;β

r
0, j, dr

j, j

)
,

where β r
0, j and dr

j, j are fixed hyperparameters (being equal to zero and ten, respectively, in our applications). The
precision parameters are given independent gamma priors, i.e.,

p
(
τττ
)
=

K

∏
k=1

∏
r∈R

p
(
τ
(k)
r
)
,

where each p
(
τ
(k)
r
)

corresponds to the gamma distribution Γ (a1, a2).
Also for the random effect means, a set of independent, for simplicity only semi-conjugate normal priors is

assumed, i.e.,

p(µµµ) ≡ p
(
µµµ
∣∣τττR) =

K

∏
k=1

dR

∏
j=1

p
(
µ
(k)
j

∣∣τ(k)R, j

)
=

K

∏
k=1

dR

∏
j=1

ϕ

(
µ
(k)
j ; µ

(k)
0, j ,
(
τ
(k)
R, j

)−1
)
,

where µ
(k)
0, j are fixed hyperparameters (being equal to zero in our applications). Finally, parameters τττR =

{
τττ
(k)
R ,k =

1, . . . ,K
}

, τττ
(k)
R =

(
τ
(k)
R,1, . . . , τ

(k)
R,dR

)
are random hyperparameters being assigned independent gamma priors Γ (a3, a4)

in another level of hierarchy to allow for a weakly informative prior distribution.
Covariance matrices ΣΣΣ

(k) of random effects bbbi are required to be completely general positive definite matrices,
therefore, we suppose inverse covariance matrix ΣΣΣ

−(k) :=
(
ΣΣΣ

(k))−1 to follow Wishart distribution to preserve
conjugacy. Again, to achieve a weakly informative prior we introduce a new hyperparameter, scale matrix Q(k),
while keeping the number of degrees of freedom ν0 ≥ dR fixed. Inverse Q−(k) of auxiliary scale matrix Q(k) is
also assumed to follow Wishart distribution, this time with fixed diagonal scale matrix DQ and number of degrees
of freedom ν1. In our applications we use ν0 = ν1 = dR+1 and DQ = 100 · IdR .

4.2 MCMC sampling scheme

Posterior distribution p(θθθ |Y,C ) of model parameters θθθ and its characteristics will be estimated using MCMC
methodology Brooks et al (2011). We adopted well known Gibbs sampling scheme which samples a new value of
each of the parameters from its full-conditioned distribution while always utilizing the last known values of other
parameters. Due to our (semi)-conjugate choice of prior distributions the full-conditioned distributions are from
well-known families, thus straightforward to be sampled from. Derivations of all full-conditioned distributions are
postponed to Appendix section A. In this section we present only the set of required full-conditioned distributions
for Gibbs sampling algorithm using the notation declared in Appendix:

1. www|UUU (37)∼ DirK (nnn(UUU)+ααα),

2. P
(

Ui = k
∣∣∣YN

i ,Ci;Y?,OB
i ,bbbi;βββ ,τττ,µµµ,ΣΣΣ ,www

)
(38)
= · · ·,

3. Y ?,r
i, j

∣∣∣Y r
i, j = l,γγγ

(39)∼ TN
(

η
(Ui),r
i, j , 1, γr

l , γr
l+1

)
for r ∈ROB, l = 0, . . . ,Lr−1,

4. γr
l |YYY

r;YYY ?,r (40)∼ Unif

[
max

y∈Y r
l−1

y, min
y∈Y r

l

y

]
for r ∈ROrd, l = 2, . . . ,Lr−1,

5. τ
(k)
r

∣∣∣YYY r,C r;UUU ,bbbr;βββ
(k),r (42)∼ Γ

(
ã(k),r1 , ã(k),r2

)
for r ∈RNum,

6. βββ
(k),r

∣∣∣YYY r,C r;UUU ,bbbr;τ
(k)
r

(44)∼ NdFr

(
β̃ββ
(k),r

,
(

τ
(k)
r

)−1
[(

Xr
Nk(UUU)

)>
Xr

Nk(UUU)+(Dr)−1
]−1
)

for r ∈R,

7. τ
(k)
R, j

∣∣∣µ(k)
j

(46)∼ Γ

(
a3 +

1
2 ,a4 +

1
2

(
µ
(k)
j −µ

(k)
0, j

)2
)

,

8. µµµ(k)
∣∣∣UUU ,bbb;ΣΣΣ

(k);τττ
(k)
R

(48)∼ NdR

(
µ̃µµ
(k)
,
[
nk(UUU)ΣΣΣ−(k)+diag

(
τττ
(k)
R

)]−1
)

,
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9. Q−(k)
∣∣∣ΣΣΣ (k) (50)∼ WdR

([
ΣΣΣ
−(k)+

(
DQ)−1

]−1
,ν0 +ν1

)
,

10. ΣΣΣ
−(k)

∣∣∣UUU ,bbb; µµµ(k),Q(k) (52)∼ WdR

(
Q̃(k),nk(UUU)+ν0

)
,

11. bbbi

∣∣∣YN
i ,Ci;Y?,OB

i ,Ui;βββ ,τττ,µµµ,ΣΣΣ
(54)∼ NdR

(
b̃bbi,
[
Z̃>i Z̃i +ΣΣΣ

−(k)
]−1
)

,

A sample from converged chain constructed in this way then can be used for estimation of marginal posterior
distributions of individual parameters.

4.3 Classification probabilities

Posterior distribution is invariant towards permutation of cluster labels. Hence, before calculation of classification
probabilities we consider problem of label switching by method of Stephens (2000). This post-sampling procedure
that considers all K! permutations of labels for each iteration ensures that the latent clusters 1, . . . ,K have fixed
meaning during the whole sampling procedure. However, in our applications no need of permutation has occurred.

Primarily, we perform classification using posterior means Ûi,k =
∫

θθθ
ui,k(θθθ) · p(θθθ |Y,C )dθθθ of allocation prob-

abilities ui,k(θθθ) defined in (9). With MCMC based inference we need to calculate ui,k(θθθ) at each iteration of
sampled θθθ , for which probability density functions of i-th outcomes given cluster need to be evaluated (8). Un-
fortunately, this involves non-trivial integration of auxiliary latent variables - random effects bbbi and latent numeric
outcomes Y?,OB

i . Therefore, we devote the rest of this section to description of a method chosen for calculating
desired integrals

p
(
Yi

∣∣∣Ui = k,Ci; βββ
(k),µµµ(k),ΣΣΣ (k),τττ(k),γγγ

)
=

=
∫

p
(
YOB

i

∣∣∣Y?,OB
i ;γγγ

)
·
[∫

p
(
YN

i ,Y
?,OB
i

∣∣∣Ci,bbbi;βββ
(k),τττ(k)

)
· p
(

bbbi|µµµ(k),ΣΣΣ (k)
)

dbbbi

]
︸ ︷︷ ︸

p
(
YN

i ,Y
?,OB
i

∣∣∣Ci;βββ
(k),τττ(k),µµµ(k),ΣΣΣ (k)

)
dY?,OB

i . (11)

4.3.1 Integration with respect to random effects bi

Let us first perform the integration of random effects bbbi from (11) to obtain distribution of numeric variables
unconditioned by random effects. We will avoid integration by realization that under normality assumption of
both numeric outcomes and random effects the unconditioned distribution of outcomes is also normal.

Vector of all numeric and latent numeric outcomes YYY i (YN
i combined with Y?,OB

i ) of length d = ni|R| given a
vector of all random effects bbbi follows by our LME assumption multivariate normal distribution

YYY i

∣∣∣Ci;bbbi;βββ
(k),τττ(k),µµµ(k),ΣΣΣ (k) ∼ Nd

(
Xiβββ

(k)+Zibbbi, T
)
,

where Xi and Zi are block diagonal matrices composed of model matrices of fixed effects Xr
i and of random effects

Zr
i , respectively. The variance matrix T is diagonal due to independence assumption and contains corresponding

variance, that is τ−1
r for r ∈RNum and 1 otherwise.

Using the normality of random effects, i.e. bbbi|µµµ(k),ΣΣΣ (k) ∼ NdR

(
µµµ(k), ΣΣΣ

(k)
)

, and notoriously known formulas
we obtain unconditioned mean and variance matrix:

E
[
YYY i

∣∣∣Ci;βββ
(k),τττ(k),µµµ(k),ΣΣΣ (k)

]
= E(E [YYY i |bbbi ]) = Xiβββ +Ziµµµ,

var
[
YYY i

∣∣∣Ci;βββ
(k),τττ(k),µµµ(k),ΣΣΣ (k)

]
= E(var [YYY i |bbbi ])+var (E [YYY i |bbbi ]) = T+Z>ΣΣΣZ=: V,

which results in
YYY i

∣∣∣Ci;βββ
(k),τττ(k),µµµ(k),ΣΣΣ (k) ∼ Nd (Xiβββ +Ziµµµ, V) . (12)

This distribution has general covariance structure which reflects the general structure of ΣΣΣ and hence captures
dependencies among outcomes.
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4.3.2 Integration with respect to latent numeric outcomes Y?,OB
i

It remains to perform the following integration:∫
p
(
YOB

i

∣∣∣Y?,OB
i ;γγγ

)
· p
(
YN

i ,Y
?,OB
i

∣∣∣Ci;βββ
(k),τττ(k),µµµ(k),ΣΣΣ (k)

)
dY?,OB

i ,

which is in fact integration of multivariate normal density within the bounds given by thresholds γγγ and observed
ordinal and binary outcomes. First, we separate marginal distribution of numeric outcomes YN

i since it can avoid
integration, while the conditional normal distribution of latent numeric outcomes Y?,OB

i given YN
i still awaits the

integration:

p
(
YN

i

∣∣∣Ci;βββ
(k),τττ(k),µµµ(k),ΣΣΣ (k)

)
︸ ︷︷ ︸

pdf of MVN

·
∫

p
(
YOB

i

∣∣∣Y?,OB
i ;γγγ

)
︸ ︷︷ ︸

thresholding (3)

·ϕ
(
Y?,OB

i ;ηηη
(k)
OB,V

(k)
OB

)
︸ ︷︷ ︸

pdf of Y?,OB
i

∣∣∣YN
i

dY?,OB
i ,

where ηηη
(k)
OB and V(k)

OB are the conditional mean and variance matrix of Y?,OB
i

∣∣∣YN
i ,Ci;βββ

(k),τττ(k),µµµ(k),ΣΣΣ (k).
It remains to integrate the product of two functions, first one of which just declares lower and upper integration

bounds and the second one is the probability density function of multivariate normal distribution with mean ηηη
(k)
OB

and variance matrix V(k)
OB. For each individual categorical outcome r ∈ROB and observation j ∈ {1, . . . ,ni} the

value yr
i, j = l determines an interval given by the corresponding pair of γ parameters, see (3):

Y r
i, j = l =⇒ Y ?,r

i, j ∈
(
γ

r
l , γ

r
l+1
]
=:
(
er

i j, f r
i j
]
.

If we denote the resulting Cartesian product of these intervals as �
(
YOB

i
)
= (eeei, fff i ] ⊂ RdOB

then the remaining
integral can be written in the form

Ik(�) =
∫

�(YOB
i )

p
(
Y?,OB

i

∣∣∣YN
i ,Ci;βββ

(k),τττ(k),µµµ(k),ΣΣΣ (k)
)

dY?,OB
i =

fff i∫
eeei

ϕ

(
yyy; ηηη

(k)
OB,V

(k)
OB

)
dyyy. (13)

Finally, after the integrals Ik for all k = 1, . . . ,K are computed, the classification probabilities can be calculated
proportionally:

ui,k (θθθ) =
wk · p

(
YN

i

∣∣Ci;βββ
(k),τττ(k),µµµ(k),ΣΣΣ (k)

)
· Ik(�)

K
∑

k′=1
wk′ · p

(
YN

i

∣∣Ci;βββ
(k′),τττ(k

′),µµµ(k′),ΣΣΣ (k′)
)
· Ik′(�)

. (14)

In order to compute integrals (13) needed in (14) we adopted an effective algorithm presented by Genz (1992)
which is also based on MCMC sampling. Since the approximation of such an integral is needed K-times for each
generated state of our Gibbs sampling, the procedure is considerably time-consuming. The implemented function
pmvnorm in package mvtnorm (Genz et al, 2019) is being used in our applications.

4.4 Classification rules

Once we have estimated the posterior means of classification probabilities Ûi,k we can face the problem of pairing
a subject i with the most suitable cluster. Naturally, we may choose cluster k such that the corresponding estimated
Ûi,k is the largest among all k = 1, . . . ,K values. However, that may not be the most fitting choice in cases when
two of the clusters have both comparable and high probability.

In order to prevent misclassification, we allow subjects to remain unclassified when the decision is not clear.
One way to accomplish that would be to classify into the cluster with the highest probability only if it clearly
overcomes the second largest probability. That is, when the difference between the two largest probabilities is
higher than chosen threshold. However, the choice of the value of this threshold for different values of K would be
another problem to be dealt with. Therefore, in our applications we make use of 95% Highest Posterior Density
(HPD) interval estimates. We classify a subject i into the class k with the highest classification probability Ûi,k if
its lower 95% HPD bound is still higher than any other upper 95% HPD bound of the remaining probabilities.
Otherwise, the subject i remained unclassified. That should fill clusters with theirs most typical representatives
and keep indecisive subjects aside. Unclassified subjects can then be additionally analysed to determine the pair
(or potentially larger group) of clusters they are associated with the most.
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4.5 Number of groups

Throughout the paper we treated the number of latent classes K fixed as to be selected by statistician in advance.
In most circumstances, however, there is no prior knowledge of the suitable value of K to be used. Usual practice
in this situation is to try several values of K and choose the one that optimizes one of the known criteria. We follow
the steps of Aitkin et al (2009) and use a deviance criterion that is solely based on the goodness of fit measured by
the log-likelihood function.

Deviance is a parametric function of θθθ generally defined as

D(θθθ ;Y,C ) =−2log p(Y|C ;θθθ) =−2
n

∑
i=1

log p(Yi|Ci;θθθ). (15)

Contribution of individual i to the deviance in our model can be expressed as

−2log p(Yi|Ci;θθθ) =−2log

[
K

∑
k=1

∫ ∫
p
(
Yi,Y?,OB

i ,bbbi,Ui = k
∣∣∣Ci;θθθ

)
dbbbi dY?,OB

i

]
(16)

which includes the integration (11) for calculating classification probabilities which has been described in sec-
tion 4.7. Using the same notation we can write

D(θθθ ;Y,C ) =−2
n

∑
i=1

log

[
K

∑
k=1

wk · p
(
YN

i

∣∣∣Ci;βββ
(k),τττ(k),µµµ(k),ΣΣΣ (k)

)
· Ik

(
�
(
YOB

i

))]
(17)

where the denominator of (14) is inserted into the logarithm. Therefore, calculation of deviance for one set of
parameters θθθ requires calculation of classification probabilities for every individual. Only then the deviance para-
metric function can be fully evaluated. Hence, exploration of posterior distribution of deviance is heavily time-
consuming. This is why we applied thinning in our applications to speed up calculations of all of the probabilities.
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4.6 MCMC sampling scheme

Joint density of observed outcomes Yi of ith subject and its latent variables Ui, Y?,OB
i and bbbi decomposes into

product of several conditional probability density functions:

p
(
Yi,Ui,Y?,OB

i ,bbbi

∣∣∣Ci;θθθ

)
=

p
(
YOB

i

∣∣∣Y?,OB
i ;γγγ

)
· p
(
YN

i ,Y
?,OB
i

∣∣∣Ci,bbbi;βββ
(Ui),τττ(Ui)

)
· p
(

bbbi

∣∣∣µµµ(Ui),ΣΣΣ−(Ui)
)
· p(Ui|www) , (18)

which is easier to work with than p(Yi|Ci;θθθ) obtainable by combining (??) and (8). We adopt Bayesian framework
in which we consider parameters θθθ to be of random nature by assigning a prior distribution p(θθθ) of parameter
θθθ . Then complete probability density function of all measured or latent data (across all subjects i = 1, . . . ,n) and
parameters is of the form:

p
(
Y,UUU ,Y?,OB,bbb,θθθ

∣∣∣C)= [ n

∏
i=1

p
(
Yi,Ui,Y?,OB

i ,bbbi

∣∣∣Ci;θθθ

)]
· p(θθθ),

to which is posterior probability density function p
(

UUU ,Y?,OB,bbb,θθθ
∣∣Y,C ) proportional by the Bayes theorem.

Ideally, we would be interested in marginal posterior distribution of parameter θθθ given by

p(θθθ |Y,C ) =
∫ ∫ ∫

p
(

UUU ,Y?,OB,bbb,θθθ
∣∣∣Y,C) dbbbdY?,OB dUUU .

To avoid computation of needed multiplicative constant and integration with respect to all latent variables we
exploit MCMC methods (Robert, 2001) based on sampling Markov chain of states corresponding to parameter θθθ

and latent variables. As the chain reaches its stationary distribution (equal to the posterior one) generated states
are considered to be sampled representatives of that distribution. Marginal posterior distribution of θθθ can then be
described by M generated values θθθ [B+1], . . . ,θθθ [B+M] after the burn-in period B.

For our model we decided to choose basic Gibbs sampling method (Geman and Geman, 1984) for con-
structing Markov chain of required properties. Such an algorithm requires effortless sampling from so-called
full-conditioned distributions. We can obtain a well-known distribution when prior distributions of all components
of θθθ are suitably set to achieve conjugacy.

4.6.1 Prior distributions

decomposed into several independently distributed blocks: www, γγγ , (βββ ,τττ), (µµµ,τττR),
(
ΣΣΣ
−1,Q−1

)
, which results in the

following form of the probability density function:

p
(

θθθ ,Q−1,τττR
∣∣ζζζ)= p(www|ζζζ ) · p(γγγ|ζζζ ) · p(βββ |τττ;ζζζ ) · p(τττ|ζζζ ) · p(µµµ|τττR;ζζζ ) · p(τττR|ζζζ ) · p(ΣΣΣ−1|Q−1;ζζζ ) · p(Q−1|ζζζ ),

where τττR, Q−1 are another random parameters (or set of parameters in case of group-specificity) making prior
distributions of µµµ and ΣΣΣ

−1 more flexible and ζζζ stands for set of other hyper-parameters that need to be fixed.
Since www is a vector of probabilities that add up to 1, ideal choice for prior distribution is Dirichlet distribution

DirK (ααα) with pdf equal to

p(www|ααα) =

Γ

(
K
∑

k=1
αk

)
K
∏

k=1
Γ (αk)

K

∏
k=1

wαk−1
k , (19)

where ααα = (α1, . . . ,αK) is a set of positive parameters (set to 1 by default).
For each ordinal variable rO ∈ RO we suppose that thresholding constants γγγrO follow (independently) an

improper uniform distribution on RLrO−2
γrO

1 <
, i.e.

p
(

γγγ

∣∣∣γrO
1 ,rO ∈ROrd

)
∝ ∏

rO∈ROrd

1
RLrO−2

γrO
1 <

(
γγγ

rO
)
. (20)
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For each outcome r ∈R we suppose that fixed effects

βββ
(k),r

∣∣∣τ(k)r ;βββ
r
0,D

r ∼ NdFr

(
βββ

r
0,
(

τ
(k)
r

)−1
Dr
)

for allk = 1, . . . ,K, (21)

where βββ
r
0 ∈ RdFr is the prior mean and Dr is diagonal matrix with diagonal elements dr

·,· > 0. We remind that for
ordinal or binary variable we impose τrOB = 1 for rOB ∈ROB, which eliminates τrOB from (21). Due to supposed
prior independence of βββ

(k),r we get the following pdf:

p(βββ |τττ;βββ 0,D ) =
K

∏
k=1

∏
r∈R

dFr

∏
j=1

√√√√ τ
(k)
r

2πdr
j, j

exp

{
− τ

(k)
r

2dr
j, j

(
β
(k),r
j −β

r
0, j

)2
}
. (22)

For numerical outcomes rN ∈ RNum we set precision parameters τ
(k)
rN

to independently follow Γ (a1,a2) with
a1,a2 > 0 fixed hyper-parameters, which leads to

p(τττ|a1,a2) =
K

∏
k=1

∏
rN∈RNum

aa1
2

Γ (a1)

(
τ
(k)
rN

)a1−1
exp
{
−a2τ

(k)
rN

}
. (23)

We set β r
0, j = 0, dr

j, j = 10 and a1 = a2 = 1.

For set of random effects µµµ we suppose µµµ(k)|τττ(k)R ; µµµ0 ∼ NdR

(
µµµ0, diag

(
τ
(k)
R

)−1
)

independently for all k =

1, . . . ,K, where µµµ0 ∈ RdR is the prior mean of µµµ(k) and its prior covariance matrix is diagonal with positive

elements τττ
(k)
R =

(
τ
(k)
R,1, . . . ,τ

(k)
R,dR

)>
. These diagonal elements (viewed as another random parameters of our hi-

erarchical model) might not be considered to be group-specific, nevertheless, we from now on work under this
assumption for the sake of generality. Similarly as for elements of τττ we suppose elements of τττR follow indepen-
dently Γ (a3,a4) with fixed hyper-parameters a3,a4 > 0, which results in probability density functions:

p(µµµ |τττR; µµµ0 ) =
K

∏
k=1

dR

∏
j=1

√
τ
(k)
R, j

2π
exp

−τ
(k)
R, j

2

(
µ
(k)
j −µ

(k)
0, j

)2

 ,

p(τττR|a3,a4) =
K

∏
k=1

dR

∏
j=1

aa3
4

Γ (a3)

(
τ
(k)
R, j

)a3−1
exp
{
−a4τ

(k)
R, j

}
.

(24)

We set µ
(k)
0, j = 0 and a3 = a4 = 1.

Covariance matrices ΣΣΣ
(k) of random effects bbbi are required to be completely general positive definite matri-

ces, therefore, we suppose inverse covariance matrix ΣΣΣ
−(k) to follow Wishart distribution to preserve conjugacy.

More specifically, ΣΣΣ
−(k)
∣∣∣Q−(k),ν0 ∼WdR

(
Q(k),ν0

)
, where Q(k) is (for generality purposes) group-specific scale

matrices and ν0 ≥ dR is the number of degrees of freedom. Auxiliary positive definite random matrix Q−(k)

is distributed in very similar way: Q−(k)
∣∣∣DQ,ν1 ∼WdR

(
DQ,ν1

)
, where DQ is diagonal matrix with fixed di-

agonal elements dQ
·,· > 0 and ν1 is again the number of degrees of freedom. Probability density functions of

ΣΣΣ
−1 =

{
ΣΣΣ
−(k),k = 1, . . . ,K

}
and Q−1 =

{
Q−(k),k = 1, . . . ,K

}
then can be expressed as

p
(

ΣΣΣ
−1∣∣Q−1;ν0

)
∝

K

∏
k=1

∣∣∣Q−(k)∣∣∣ ν0
2
∣∣∣ΣΣΣ−(k)∣∣∣ ν0−dR−1

2
exp
{
−Tr

[
Q−(k)ΣΣΣ−(k)

]}
,

p
(
Q−1∣∣DQ,ν1

)
∝

K

∏
k=1

∣∣∣Q−(k)∣∣∣ ν1−dR−1
2

exp
{
−Tr

[(
DQ
)−1

Q−(k)
]}

.

(25)

We set ν0 = ν1 = dR+1 and DQ = 100 · IdR .
The set of all hyper-parameters then consists of

ζζζ =
{

ααα,γrOB

1 ,βββ r
0,D

r,a1,a2,µµµ0,a3,a4,ν0,ν1,DQ,rOB ∈ROB,r ∈R
}
.
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4.6.2 Gibbs algorithm

For construction of Gibbs algorithm it is needed to derive full-conditioned distributions of all random parameters
that enter our model ΨΨΨ =

{
UUU ,Y?,OB,bbb,www,γγγ,βββ ,µµµ,ΣΣΣ−1,τττ,τττR,Q−1

}
. By full-conditioned distribution of parameter

ψψψ ∈ΨΨΨ we understand distribution ψψψ|Y,C ;ΨΨΨ−ψψψ ;ζζζ , where ΨΨΨ−ψψψ =ΨΨΨ \{ψψψ}, with probability density function

p
(
ψψψ
∣∣Y,C ;ΨΨΨ−ψψψ ;ζζζ

)
∝

[
n

∏
i=1

p
(
Yi,Ui,Y?,OB

i ,bbbi

∣∣∣Ci;θθθ

)]
· p
(

θθθ ,Q−1,τττR
∣∣ζζζ) (26)

viewed as a function of ψψψ .
Derivations of all full-conditioned distributions of ψψψ ∈ΨΨΨ are postponed to Appendix section A. In this section

we present only the resulting Gibbs sampling algorithm using the notation declared in Appendix.

Algorithm By index •[m] we understand value of parameter • generated in m-th step.
1. Take initial values ψψψ [0] and set m = 1.
2. Generate m-th set of parameters ψψψ [m]:

(a) www|UUU ;ααα
(37)∼ DirK (nnn(UUU)+ααα),

(b) P
(

Ui = k
∣∣∣YN

i ,Ci;Y?,OB
i ,bbbi;βββ ,τττ,µµµ,ΣΣΣ−1,www

)
(38)
= · · · ,

(c) Y ?,rOB

i, j

∣∣∣Y rOB

i, j = l,γγγ
(39)∼ TN

(
η
(Ui),rOB

i, j , 1, γrOB

l , γrOB

l+1

)
,

(d) γrO
l

∣∣∣YYY rO ;YYY ?,rO (40)∼ Unif

 max
y∈Y rO

l−1

y, min
y∈Y rO

l

y

 , l = 1, . . . ,LrO ,

(e) τ
(k)
rN

∣∣∣YYY rN ,C rN ;UUU ,bbbrN ;βββ
(k),rN ;βββ

rN
0 ,DrN ,a1,a2

(42)∼ Γ

(
ã(k),r

N

1 , ã(k),r
N

2

)
,

(f) βββ
(k),r

∣∣∣YYY r,C r;UUU ,bbbr;τ
(k)
r ;βββ

r
0,Dr (44)∼ NdFr

β̃ββ
(k),r

,

[(
Xr

Nk(UUU)

)>
Xr

Nk(UUU)+(Dr)−1
]−1

τ
(k)
r

,

(g) τ
(k)
R, j

∣∣∣µ(k)
j ; µ

(k)
0, j ,a3,a4

(46)∼ Γ

(
a3 +

1
2 ,a4 +

1
2

(
µ
(k)
j −µ

(k)
0, j

)2
)

,

(h) µµµ(k)
∣∣∣UUU ,bbb;ΣΣΣ

−(k);τττ
(k)
R ,µµµ

(k)
0

(48)∼ NdR

(
µ̃µµ
(k)
,
[
nk(UUU)ΣΣΣ−(k)+diag

(
τττ
(k)
R

)]−1
)

,

(i) Q−(k)
∣∣∣ΣΣΣ−(k);ν0,ν1,DQ (50)∼ WdR

([
ΣΣΣ
−(k)+

(
DQ)−1

]−1
,ν0 +ν1

)
,

(j) ΣΣΣ
−(k)

∣∣∣UUU ,bbb; µµµ(k),Q−(k);ν0
(52)∼ WdR

(
Q̃(k),nk(UUU)+ν0

)
,

(k) bbbi

∣∣∣YN
i ,Ci;Y?,OB

i ,Ui;βββ ,τττ,µµµ,ΣΣΣ−1 (54)∼ NdR

(
b̃bbi,
[
Z̃>i Z̃i +ΣΣΣ

−(k)
]−1
)

,

where in each step we use the latest generated values of parameters, i.e. either elements of previously generated
ψψψ [m−1] or currently generated ψψψ [m].

3. If m < M then increase m := m+1 and repeat step 2., otherwise end the algorithm.
4. Output: M generated states ψψψ [1], . . . ,ψψψ [M].

Generated values ψψψ [1], . . . ,ψψψ [M] are then used for estimation of marginal distributions of individual parameters.
Usual methods as cutting first B values (burn-in period) that serve to get to posterior distribution and thinning the
rest of the chain to lower the autocorrelation were applied.

For example, the final classification of subject i into one of K latent groups can be based on generated values
Ui,[1], . . . ,Ui,[M]. When cutting the burn-in period (of length B < M) and thinning (of order t) are applied then
subject i can be classified into the most common value among the rest of generated Ui:

Ûi = mod
{

Ui,[B+m∗t+1],m ∈
{

0,1, . . . ,
⌊

M−B−1
t

⌋}}
. (27)

For practical reasons it also makes sense to actually classify subject into this group only if the corresponding
proportion is higher than given threshold, if not, the subject remains unclassified to avoid misclassification.

Another way of classification is presented in the next section, which also covers the situation of newly observed
subject.
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4.6.3 Label switching

One of the possible disadvantages of MCMC approach is the fact that the latent clusters 1, . . . ,K do not have fixed
meaning. The resulting estimates of class-specific parameters could be arbitrarily permuted while preserving the
final model. There is a danger of possible change of the cluster interpretation during a single chain called label
switching. This problem could be dealt within post-processing phase by following recommendations of Stephens
(2000). As we consider low values of K we adopt an algorithm that examines all K! possibilities for each iteration
and chooses the one minimizing a given criterion. However, during our experiments no need of permutation has
occurred. This may be given by the complexity of our model that prevents any switching of the interpretation
during our Gibbs sampling procedure.

4.7 Classification probabilities calculation

Let us consider subject with outcomes Ynew and covariate values Cnew, our task is to classify this subject into one
of K latent groups. In Section ?? we described mixture probability density function (8) and (??) of all outcomes
given covariates for one subject. Derived classification probability ui,k is a function that depends on parameters
of interest θθθ but is free of latent parameters such as Y?,OB

new , bbbnew or τττR, Q−1. Such a parametric function can be
evaluated for each generated state θθθ [m] to obtain a chain of posterior classification probabilities. Unfortunately,
each evaluation of such function requires integration with respect to random effects bbbnew and latent numeric
outcomes Y?,OB

new described in (8):

∫ ∫
p
(
YOB
new

∣∣∣Y?,OB
new ;γγγ

)
· p
(
YN
new,Y?,OB

new

∣∣∣Cnew,bbbnew;βββ ,τττ
)
· p
(

bbbnew|µµµ,ΣΣΣ−1) dbbbnew dY?,OB
new =

=
∫

p
(
YOB
new

∣∣∣Y?,OB
new ;γγγ

)
·
[∫

p
(
YN
new,Y?,OB

new

∣∣∣Cnew,bbbnew;βββ ,τττ
)
· p
(

bbbnew|µµµ,ΣΣΣ−1) dbbbnew

]
︸ ︷︷ ︸

p
(
YN
new,Y

?,OB
new

∣∣∣Cnew;βββ ,τττ,µµµ,ΣΣΣ−1
)

dY?,OB
new (28)

4.7.1 Integration with respect to random effects bnew

Let us first perform the integration of random effects bbbnew from (11) to obtain distribution of numeric variables
unconditioned by random effects. This issue is commonly faced and solved in LME models by realizing that under
normality assumption of both numeric outcomes and random effects the unconditioned distribution of outcomes
is also normal. Let us stack all outcomes into one long vector:

YYY new =



...
YYY rN
new
...

YYY ?,rOB

new
...


,

rN ∈RNum,

rOB ∈ROB

and stack regressors into diagonal matrices

Xnew =



. . .

XrN
new

. . .

XrOB

new
. . .


, Znew =



. . .

ZrN
new

. . .

ZrOB

new
. . .


,

rN ∈RNum,

rOB ∈ROB.

In this section let βββ , µµµ , ΣΣΣ
−1 and τττ stand for only one representative of the parameter among K groups (similarly as

in opening Section ??). Moreover, let βββ and bbbnew be stacked vectors of fixed and random effects of all outcomes,

14



i. e.

βββ =



...

βββ
rN

...

βββ
rOB

...


, bbbnew =



...
bbbrN
new
...

bbbrOB

new
...


,

rN ∈RNum,

rOB ∈ROB.

Adding dimensions d = nnew |R|, dN = nnew
∣∣RNum

∣∣, dOB = nnew
∣∣ROB

∣∣
YYY new |bbbnew ∼ Nd

(
Xnewβββ +Znewbbbnew, T= diag

{
τ
−1
rN Innew ,r

N ∈RNum,IdOB

})
Now we can use notoriously known formulas to obtain unconditioned mean and variance matrix:

EYYY new = E(E [YYY new |bbbnew ]) = Xnewβββ +Znewµµµ,

varYYY new = E(var [YYY new |bbbnew ])+var (E [YYY new |bbbnew ]) = T+Z>ΣΣΣZ=: V,

which results in
YYY new ∼ Nd

(
Xnewβββ +Znewµµµ, T+Z>ΣΣΣZ

)
, (29)

which can be distribution with completely general covariance structure due to our generality of ΣΣΣ . Thus, depen-
dencies among outcomes are captured by this model.

4.7.2 Integration with respect to latent numeric outcomes Y?,OB
new

It remains to perform the following integration:∫
p
(
YOB
new

∣∣∣Y?,OB
new ;γγγ

)
· p
(
YN
new,Y?,OB

new

∣∣∣Cnew;βββ ,τττ,µµµ,ΣΣΣ−1
)

dY?,OB
new ,

which is in fact integration of multivariate normal density within the bounds given by thresholds γγγ and observed
ordinal and binary outcomes. Only the truly numerical part survives this integration intact, therefore, we aim to
separate it from the rest.

Let us divide vector YYY new on the truly numerical part and the vector of latent numeric variables for ordinal and
binary outcomes:(

YYYN
new

YYY ?,OB
new

)
∼ NdN+dOB

((
ηηηN

ηηηOB

)
=

(
XN
newβββ

N+ZN
newµµµN

XOB
newβββ

OB+ZOB
newµµµOB

)
,

(
VN VNOB

VOBN VOB

))
. (30)

Since the latent part is about to be integrated out we exploit properties of multivariate normal distribution to obtain

YYYN
new ∼ NdN

(
ηηη
N, VN

)
,

YYY ?,OB
new

∣∣∣YYYN
new = yyyNnew ∼ NdOB

(
ηηη
′
OB, V

′
OB

)
,

where ηηη ′OB = ηηηOB+VOBNV−1
N

(
yyyNnew−ηηηN

)
and V′OB = VOB−VOBNV−1

N VNOB and corresponding probability
distribution function decomposes into the product

p
(

YYYN
new,YYY

?,OB
new

∣∣∣Cnew;βββ ,τττ,µµµ,ΣΣΣ−1
)
=

= p
(

YYY ?,OB
new

∣∣∣YYYN
new,Cnew;βββ ,τττ,µµµ,ΣΣΣ−1

)
· p
(

YYYN
new

∣∣∣Cnew;βββ ,τττ,µµµ,ΣΣΣ−1
)
,

second part of which is invariant of YYY ?,OB
new and, therefore, avoids integration:

p
(

YYYN
new

∣∣∣Cnew;βββ ,τττ,µµµ,ΣΣΣ−1
)
·
∫

p
(

YYYOB
new

∣∣∣YYY ?,OB
new ;γγγ

)
︸ ︷︷ ︸

thresholding (3)

· p
(

YYY ?,OB
new

∣∣∣YYYN
new,Cnew;βββ ,τττ,µµµ,ΣΣΣ−1

)
︸ ︷︷ ︸

pdf of NdOB(ηηη ′OB,V
′
OB)

dYYY ?,OB
new .
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I zde je třeba se rozhodnout, jak s tı́m tlustým YYY či Y.
It remains to integrate the product of two functions, first one of which just declares lower and upper integration

bounds and the second one is the probability density function of multivariate normal distribution NdOB

(
ηηη ′OB, V

′
OB

)
.

For each individual categorical outcome rOB ∈ROB and observation j ∈ {1, . . . ,nnew} the value yrOB

new, j = l deter-
mines an interval given by the corresponding pair of γ parameters, see (3):

Y rOB

new, j = l =⇒ Y ?,rOB

new, j ∈
(

γ
rOB

l , γ
rOB

l+1

]
=:
(

erOB

j , f rOB

j

]
.

If we denote the resulting Cartesian product of these intervals as �
(
YYYOB
new

)
⊂ RdOB

, i.e.

�
(

YYYOB
new

)
= (eee, fff ] =

⊗
rOB∈ROB

nnew⊗
j=1

(
erOB

j , f rOB

j

]
=

⊗
rOB∈ROB

nnew⊗
j=1

(
γ

rOB

Y ?,rOB

new, j

, γ
rOB

Y ?,rOB

new, j +1

]
,

then the remaining integral can be written in the form

I(�) =
∫

�(YYYOB
new)

p
(

YYY ?,OB
new

∣∣∣YYYN
new,Cnew;βββ ,τττ,µµµ,ΣΣΣ−1

)
dYYY ?,OB

new =

fff∫
eee

p
(
yyy
∣∣ηηη ′OB,V

′
OB

)
dyyy, (31)

where p
(
yyy
∣∣ηηη ′OB,V

′
OB

)
denotes the probability density function of multivariate normal distribution NdOB

(
ηηη ′OB, V

′
OB

)
.

In order to compute such integral we adopted an effective algorithm presented by Genz (1992) which is also
based on MCMC sampling. Since the approximation of such an integral is needed K-times for each generated
state of our Gibbs sampling, the procedure is considerably time-consuming. We exploit the implemented function
pmvnorm in package mvtnorm (Genz et al, 2019).

Altogether, the probability of being classified into group k is proportional to

unew,k (θθθ) ∝ wk · p
(

YYYN
new

∣∣∣Cnew;βββ
(k),τττ(k),µµµ(k),ΣΣΣ−(k)

)
· Ik(�),

=
wk · p

(
YYYN
new

∣∣Cnew;βββ
(k),τττ(k),µµµ(k),ΣΣΣ−(k)

)
· Ik(�)

K
∑

k′=1
wk′ · p

(
YYYN
new

∣∣Cnew;βββ
(k′),τττ(k

′),µµµ(k′),ΣΣΣ−(k
′)
)
· Ik′(�)

(32)

where Ik is the integral (13) computed with set of parameters θθθ
(k) belonging to group k. These classification

probabilities are then computed for all (or just a subset due to burn-in period and thinning) generated states
θθθ [1], . . . ,θθθ [M] and can be used to describe the posterior distribution. Subjects then can be classified to the class
with convincingly high value of posterior mean estimator ûnew,k. The subject might remain unclassified, if neither
of the classes seems to dominate others.

4.7.3 Deviance

Throughout the paper we treated the number of latent classes K fixed as to be selected by statistician in advance. In
most circumstances, however, there is no prior knowledge of the suitable value of K to be used. Usual practise in
this situation is to try several values of K and choose the one that optimizes one of the known criteria that measure
the goodness of fit to the data and penalizes the number of estimated unknown parameters θθθ . We present here a
deviance criterion that is solely based on the goodness of fit measured by the log-likelihood function.

Deviance is defined as

D(θθθ ;Y,C ) =−2log p(Y|C ;θθθ) =−2
n

∑
i=1

log p(Yi|Ci;θθθ). (33)

Contribution of individual i to the deviance can be expresses as

−2log p(Yi|Ci;θθθ) =−2log

[
K

∑
k=1

∫ ∫
p
(
Yi,Y?,OB

i ,bbbi,Ui = k
∣∣∣Ci;θθθ

)
dbbbi dY?,OB

i

]
(34)

16



which includes the integration (11) which has been described above. Once we use analogous notation we can
simply write

D(θθθ ;Y,C ) =−2
n

∑
i=1

log

[
K

∑
k=1

wk · p
(
YN

i

∣∣∣Ci;βββ
(k),τττ(k),µµµ(k),ΣΣΣ−(k)

)
· Ik

(
�
(
YOB

i

))]
(35)

where the denominator of (14) was inserted into the logarithm. In order to compute the deviance (and all related
criteria) we need to basically compute classification probabilities for every individual. Deviance is, as a matter of
fact, a parametric function of θθθ and has, therefore, its posterior distribution, which can be estimated by calculation
of deviance parametric function on a sample θθθ [1], . . . ,θθθ [M]. As the computation of classification probabilities is
time-consuming we resort to thinning.

5 Simulation

In this section we design and perform a simulation study in order to demonstrate the functionality of our proposed
model. Data consisting of a numeric, a binary and an ordinal variable were generated while assuming different
types of random effects structure. The only parameter distinguishing the latent groups (K = 2 or K = 3) was the
parameter connected to the parametrization of time, i.e. intercept or slope. Parameters describing the covariance
structure (τττ and ΣΣΣ

−1) were held equal for all latent groups.

5.1 Simulation design

Each type (numeric, binary and ordinal) is represented by just one longitudinally measured variable (YN
i, j, YB

i, j, YO
i, j ,

i = 1, . . . ,n and j = 1, . . . ,ni). We set the number of observations per one subject ni to be fixed at ni = 4 for each
of the n subjects, n ∈ {100,500,1000}, which corresponds to the same amount of observations per household
available in the EU-SILC data.

The part of the predictor which is common to all types of variables is of the form

1 ·X1
i, j−2 ·X2

i, j, where X1
i,1 = · · ·= X1

i,4
iid∼ Alt(0.5) and X2

i, j
iid∼ Unif (0,1) .

Then we suppose that each subject has his set of times 0 < ti,1 < ti,2 < ti,3 < ti,4 < 1 which were generated as
an ordered sample from uniform distribution over interval (0,1). We suppose the linear parametrization of time,
which is, however, different subject to the structure of random effects. We consider three scenarios

1. (r=intercept) - b0,i +β1ti, j, random intercept term and fixed slope,
2. (r=slope) - β0 +b1,iti, j, fixed intercept term and random slope,
3. (r=both) - b0,i +b1,iti, j, both intercept and slope are random effects.

We keep the same random effects structure for all outcome types. Therefore, the random effects of i-th subject are
multivariate normal of dimension 3 (cases 1. and 2.) or 6 (case 3.). Its variance matrix ΣΣΣ was adequately chosen
matrix of non-diagonal form, more details can be found in supplement materials.

Another 3 types of scenarios arise from the types of differences among K = 2 or K = 3 latent groups:

a) (d=intercept) - only in the intercept term - β
(k)
0 (case 2.) and µµµ

(k)
0 (case 1. and 3.) are class-specific, but slope

parameters β1 and µµµ1 are not,
b) (d=slope) - only in the slope - β

(k)
1 (case 1.) and µµµ

(k)
1 (case 2. and 3.) are class-specific, but intercept terms β0

and µ0 are not,
c) (d=both) - both in the intercept term and the slope - β

(k)
0 , β

(k)
1 , µµµ

(k)
0 and µµµ

(k)
1 are class-specific.

These three types of differences are combined with the three types of random effects structure creating 9 different
scenarios which are examined for K = 2,3 and different sample sizes n. The values of intercept and slope for each
of the 9 scenarios were chosen in different ways to obtain clusters distinguishable by eye (see Figure 2 for the
case K = 3), the true values of intercept and slope parameters can be found in Tables S?? and S?? in supplement
materials.

The group allocation indicator Ui was always generated from uniform distribution which results in clusters
of comparable sizes. All (latent) numeric outcomes were sampled with unit variance τ = 1. Binary variable was
obtained by threshold γB1 = 1 and the ordinal one by thresholds γO1 =−1 and γO2 = 2.
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Each scenario under given K and n was replicated 200-times to explore the properties of resulting estimators.
Estimation is based on M = 10000 sampled states from posterior distribution. To spare computation time, thinning
of order 10 was applied for classification probabilities leading to 1000 calculated probabilities per subject. We are
also interested in overall probability that subject from k-th cluster is correctly classified to cluster k. For this reason
we compute for each k arithmetic mean pk of our estimates Û i,k of posterior probabilities of belonging to cluster
k across all cluster members:

pk =
1

|i : Ui = k| ∑
i:Ui=k

Û i,k.

These probabilities are also estimated dynamically, i.e. using only limited amount of information, see 4.4.
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Fig. 2: The samples of a numeric outcome distinguishing different scenario types (row difference, column struc-
ture of random effects) when K = 3 latent groups are supposed.
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5.2 Results

Let us first focus on the estimation properties of the proposed modelling procedure, which is shown by Figure 3.
Colours distinguish the estimates in different classes (clusters?) and the corresponding true values of intercept
and slope parameters are captured by dashed lines. Grey colour depicts the true value shared by all classes. Each
segment represents 2.5% and 97.5% quantiles of 200 times replicated estimator and full circle represents corre-
sponding mean. Figure 3 provides estimates of parameters belonging to ordinal outcome only, plots for numeric
and binary are postponed to supplement materials.

Figure 3 demonstrates that the proposed procedure is capable of quite precise estimation of parameters despite
the latent modelling and thresholding concept. In most cases it successfully discovers the difference among classes
as intervals of different colours tend not to overlap each other. There is apparent a decreasing trend in standard
deviation as n increases which is disrupted only when corresponding estimate does not reach the true value. This
phenomenon occurs mostly in the estimation of intercept term when it is considered to be random and different
among clusters at the same time. Such a behaviour can be spotted also for the class-specific slope term when both
intercept and slope term are random effects. In these situations, the estimates are shrunk towards a mean of the
true values. This might be a result of combination of incapability of discrimination between classes for low value
of n and the fact that LME usually tend to shrink random effects to zero. In the case of K = 3, this effect does not
fully vanish even for n = 1000, see the row both and column intercept. However, it seems that the large number of
subjects n can overcome this issue, which we rely on in the further real data analysis.

As the ability to discover differences among classes has been verified we now proceed to examine the clas-
sification abilities. Table 1 contains the percentages of correctly classified subjects (using the HPD interval rule)
among all n of them across 200 replications. This percentage differs scenario by scenario as the random structures
and differences among classes interact in different ways leading to diverse success rates. For example, the case
with class-specific random slope successfully classifies the vast majority of subjects for both K = 2 and K = 3,
which is in agreement with the strict separation in the corresponding plot of Figure 2. Classification does not work
satisfactorily in the problematic cases discussed above. Since for the low values of n the difference between classes
is not estimated to be as strict as it should be, much larger percentage of subjects is kept unclassified in such cases.
With increasing n the percentage of unclassified subjects rapidly decreases and converts mainly into correctly clas-
sified category. Under all scenarios we managed to keep the misclassification rate very low, always under 10 %.
The unclassified proportion is also much higher for K = 3 as one of the classes (green) is surrounded from both
sides which significantly declines the ability to distinguish among classes, revisit Figure 2 for illustration.
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Fig. 3: 95% quantile bounds and means for the intercept and slope parameters for ordinal outcome under different
random effects structures and differences between classes. True values of the parameters are depicted by dashed
lines (grey if common to all classes).
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Table 1: Percentages (standard deviation) of correctly classified, unclassified and misclassified subjects (using the
HPD interval rule) for several choices of n, K, structure of random effects and class differences in 200 replications.

r
1

d
2

n K = 2 K = 3
Correct [%] Uncl. [%] Miscl. [%] Correct [%] Uncl. [%] Miscl. [%]

in
te

rc
ep

t

in
te

rc
ep

t 100 27.0 (17.2) 63.2 (25.4) 9.8 (13.7) 23.0 (17.5) 70.2 (21.0) 6.8 (9.4)
500 62.5 (27.2) 33.0 (27.3) 4.4 (3.8) 44.3 (20.6) 50.8 (22.1) 4.9 (4.4)

1000 85.1 (6.7) 10.1 (7.1) 4.8 (0.9) 58.6 (16.9) 35.5 (17.2) 6.0 (3.1)

in
te

rc
ep

t

sl
op

e 100 76.8 (5.4) 20.3 (5.5) 2.9 (1.9) 56.0 (8.5) 40.4 (8.9) 3.6 (2.4)
500 86.1 (1.8) 8.9 (1.8) 5.0 (1.0) 74.6 (2.0) 19.0 (2.1) 6.4 (1.2)

1000 87.5 (1.1) 6.7 (0.9) 5.9 (0.7) 78.2 (1.5) 13.8 (1.5) 8.0 (0.8)

in
te

rc
ep

t

bo
th

100 86.5 (4.4) 12.0 (4.4) 1.5 (1.1) 58.0 (9.4) 38.5 (10.2) 3.4 (2.2)
500 92.9 (1.4) 4.5 (1.1) 2.6 (0.7) 76.9 (2.5) 16.5 (2.5) 6.7 (1.1)

1000 93.8 (0.8) 3.3 (0.6) 2.9 (0.5) 79.4 (1.6) 12.8 (1.6) 7.8 (0.8)

sl
op

e

in
te

rc
ep

t 100 96.2 (2.6) 3.4 (2.5) 0.4 (0.6) 61.2 (15.5) 36.4 (15.7) 2.3 (1.8)
500 97.9 (0.5) 1.5 (0.5) 0.6 (0.4) 87.6 (2.2) 9.2 (2.2) 3.2 (0.7)

1000 98.3 (0.4) 0.9 (0.3) 0.8 (0.3) 90.2 (1.2) 6.2 (1.1) 3.6 (0.5)

sl
op

e

sl
op

e 100 80.1 (20.4) 16.3 (19.0) 3.6 (8.7) 85.7 (13.5) 13.3 (13.6) 1.0 (1.2)
500 92.8 (1.5) 4.6 (1.4) 2.6 (0.7) 94.9 (1.2) 3.6 (1.0) 1.5 (0.5)

1000 93.9 (0.9) 3.3 (0.7) 2.8 (0.5) 95.5 (0.7) 2.6 (0.5) 1.9 (0.4)

sl
op

e

bo
th

100 85.3 (18.0) 13.8 (18.0) 0.9 (0.9) 62.2 (23.5) 35.8 (23.4) 2.0 (2.7)
500 96.2 (1.0) 2.6 (0.9) 1.3 (0.6) 92.4 (1.7) 5.5 (1.5) 2.1 (0.8)

1000 96.7 (0.6) 1.8 (0.4) 1.5 (0.4) 93.3 (0.9) 4.1 (0.9) 2.5 (0.5)

bo
th

in
te

rc
ep

t 100 18.8 (13.7) 76.0 (16.6) 5.2 (7.2) 18.7 (15.2) 78.1 (16.7) 3.2 (4.1)
500 35.4 (25.2) 58.7 (27.2) 6.0 (8.5) 30.6 (18.5) 65.1 (20.5) 4.3 (3.9)

1000 70.5 (22.4) 24.3 (23.4) 5.2 (1.9) 46.4 (12.1) 48.2 (13.9) 5.4 (2.4)

bo
th

sl
op

e 100 16.2 (13.2) 79.2 (16.8) 4.5 (6.0) 23.4 (22.3) 74.9 (23.6) 1.6 (2.3)
500 69.7 (18.1) 24.7 (19.4) 5.6 (2.0) 69.8 (13.4) 25.2 (14.4) 5.0 (1.4)

1000 80.5 (3.0) 12.0 (3.3) 7.4 (1.2) 81.1 (2.2) 11.9 (2.1) 7.0 (0.8)

bo
th

bo
th

100 16.7 (14.5) 80.3 (17.3) 3.0 (5.5) 19.4 (19.8) 79.7 (20.7) 0.9 (1.4)
500 43.6 (30.5) 53.3 (32.3) 3.0 (2.8) 66.3 (19.6) 29.1 (21.1) 4.5 (1.9)

1000 80.3 (10.5) 13.5 (11.1) 6.2 (1.2) 80.9 (3.3) 12.1 (3.5) 7.0 (1.0)

1 Structure of random effects.
2 Difference among classes.

Now we discuss the classification properties when limited amount of information is given. Dynamically cal-
culated probabilities, i.e. using just first j ∈ {1, . . . ,ni} observations (see more in 4.4), are shown in Figure 4. It
shows mean and quantile bounds of dynamically calculated mean probabilities p2 based on 200 replications of
experiments with K = 3 clusters. Class 2 has been chosen for demonstration as it is the middle one that overlaps
the other two, which covers the most problematic case (with respect to successful classification). The other choices
of k and K (with much higher probabilities) can be found in the supplement. If a difference among classes lies in
the random intercept term only, then there seems to be no improvement with any additional observation. However,
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in other scenarios the probability improves with any additional observation from later times as they help to fit the
corresponding medium slope value better. That results in rejecting the low and the extremely large slope values
of other classes, and therefore increasing the probability of classification towards the true middle class. It also
improves with increasing number of subjects n since the classes are then better distinguished.

The simulation study was conducted on cluster consisting of CPU units: Intel(R) Xeon(R) CPU E5-2620 v2
@ 2.10GHz, 64GB RAM. The average computation time of generating a chain of M = 10000 followed by much
more demanding computation of 1000 classification probabilities for all n subjects could not fit under an hour
even for the lowest values of n = 100 and K = 2 (around 80 minutes). The number of calls of pmvnorm seem to
influence the computational time the most. As expected, in the case of n = 500 or n = 1000 the procedure requires
5 or 10-times more time than if n = 100. Similarly, addition of another cluster increases the computational time as
well due to one additional call of pmvnorm function per subject and set of θθθ parameters to calculate corresponding
classification probabilities. The most challenging combination of n = 1000 and K = 3 took around 1200 minutes
(20 hours).
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Fig. 4: Subjects of class 2 when K = 3. The mean and 2.5% and 97.5% quantile of mean classification probabilities
p2 towards the true class calculated dynamically using only first j ∈ {1,2,3,4} observations under several random
effects structure and difference among K = 3 classes. Three lines of the same colour in one cell correspond to
increasing values of n ∈ {100,500,1000}.
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6 Application to EU-SILC data

We will now apply the proposed methodology to find temporal patterns for households in the EU-SILC database
in the Czech Republic as outlined in the introduction. The chosen time period 2005 – 2016 covers the economical
crisis and we expect it to heavily impact the budget of households leading to different ways of coping with the
crisis. From those who were not affected and prosper on, to those who suffer unpleasant consequences. We chose
one numeric, binary and ordinal variables that reflect the financial situation of a household the most and we aim
to discover several different patterns in their evolution while modelling them jointly.

6.1 Data description

First, we need to delve into the data gathering mechanism which is crucial for appropriate interpretation of results.
The EU-SILC longitudinal study follows a rotational design - rotating a part of the sample from one year to the
next and retaining the other part unchanged. The study in the Czech Republic was launched in 2005 with more
than 7000 households. Each following year about a quarter of households in the study were dropped and replaced
by newly entering ones. Apart from the natural leave from the study, households were followed no longer than
4 years. Since the primary focus is on the evolution part we use for the analysis only the households that were
interviewed indeed ni = 4 times. This decision reduces the number of total households used for the analysis to
n = 20323.

The analysis will be performed on the following outcomes:

i) Total disposable income (numeric),
ii) Capacity to afford paying for one week annual holiday away from home (binary - yes/no),

iii) Financial burden of the total housing cost (ordinal - a heavy burden/a slight burden/no burden at all).

All-year income (in EUR) of the household follows heavily skewed distribution. Therefore, we rather work with
its logarithmic transformation which suits our LME assumptions much better. Binary outcome refers to the afford-
ability and to the actual meaning ‘ability to pay’ regardless of whether the household wants it. Ordinal outcome
was filled subjectively by the respondent to assess his/her feeling about the extent to which housing costs are a fi-
nancial burden to the household. For obvious reasons these three cannot be considered as completely independent
random variables.

Data contains information about the year and month of the interview (CZE data keep only the quarter - either
Q1 or Q2). We construct the time variable as the number of years past the beginning of 2005 which limits the time
into the interval [0,12). For the regression part of the model we will also use the weighted family size which is a
sum of weights of each of the household members. Adult person in the role of the head of the family has weight 1
and others have either weight 0.5 or 0.3 depending on whether they are older or younger than 14, respectively.

6.2 Model structure

Since the three outcomes are strongly related we cannot model them separately using independent models. Our
proposed joint model capable of capturing the relationships is more than suitable for modelling of these outcomes.

We suppose the LME model of the same structure of both fixed and random component for numeric outcome
and latent numeric counterparts of binary and ordinal outcomes. Being aware of possible change in the evolution
of these outcomes within the time period 2005 – 2016 we decided to parametrize the effect of time by B-spline of
order 3 with knots in the years 2005, 2008, 2010 and 2017, which leads to six β parameters including the intercept.
This fixed part of the model is extended by the weighted family size as an additional regressor. The random effects
structure, which is also responsible for the covariance structure among outcomes, is simply composed of the zero
mean random intercept term which allows households to evolve on different level than others. The model formula
for j-th observation of i-th household at time ti, j is then:

β
r
0 +β

r
1B1(ti, j)+ · · ·+β

r
5B5(ti, j)+β

r
6Si, j︸ ︷︷ ︸

fixed effects

+ br
0,i︸︷︷︸

random effects

, r ∈ {N,B,O},

where B1, . . . , B5 are B-spline functions corresponding to spline of order 3 with knots at 0, 3, 5 and 12 that

does not include the intercept, Si, j is the weighted family size and bbb0,i =
(

bN0,i,b
B
0,i,b

O
0,i

)>
is the three-dimensional

mean-zero vector of random intercepts.
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We suppose that the hidden latent groups of households with different evolution patterns share the same co-
variance properties, meaning that parameters ΣΣΣ and τ are supposed to be common for all classes. Hence, the
relationships among outcomes are kept the same in all classes. However, we suppose them to differ in the βββ

(k)

coefficients, which mainly describes the different evolution patterns captured by splines. The revealed clusters will
then be characterized according to the shape and level of resulting curve.

6.3 Results

Contrary to the previous simulation study we had to be more careful when sampling from the posterior distribu-
tion. Initial values of all the unknown parameters and latent variables were randomly generated to obtain different
starting points for sampled chains. The progress in each of the model parameters was visually monitored every
10000 steps in order to suggest a reasonable choice of initial values for the subsequent continuation of sampling.
Chains required up to hundred thousands iterations until the visual stationarity in all of the aspects was reached.
The slow convergence was mainly caused by the threshold parameters γ due to almost negligible steps. A final
chain of length M = 10000 used for the analysis and results interpretation was sampled only after such visual sta-
tionarity was verified and then checked for label-switching issues. In the calculation of classification probabilities
and deviance we again thinned the chain by 10 to spare the computation time.

Following Section 4.7.3, we applied this methodology under several different choices of the number of hidden
clusters K and examined the posterior distribution of deviance in hope of selecting the most suitable one. Ideally,
we would search for the K such that the decrease of deviance becomes negligible. Although, some improvement in
decrement of deviance is visible in Figure 5, we can also notice that the solution for K = 4 surprisingly achieved
lower deviance than the one for K = 5. Higher choice of K led to even lower deviance, however, first signs of
overfitting appeared with it. Small groups of households of extraordinary and very specific behaviour emerged.

The solution for K = 5 already contains an example of such rare clusters. Figure 6 contains estimated splines
curves for logarithm of total disposable income for each of the considered solutions. Case K = 1 shows us a general
increasing trend flattening after the year 2011 (red curve) that seems to be followed by majority of households
even for higher K. With K = 3 there appears new violet cluster that follows the same shape of the general curve
but on much higher level. Hence, it represents about 5–9 % of households having high income at their disposal.
The solution for K = 2 actually started with parallel curves of the same shape, however, it slowly transformed
one of the clusters into a very rare cluster of U-shaped trend (blue curve). For K ≥ 5 such cluster appears again
accompanied with a golden cluster that behaves reversely. This is why this solution should be rather viewed as an
extension of K = 3 solution. However, situation K = 4 avoids these clusters of extreme behaviour and additionally
covers a turquoise cluster representing more than 10 % of households of very low disposable income. This cluster
seem to be the reason why this solution defeats K = 5 in terms of deviance. Unfortunately, it brings more confusion
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Fig. 5: Comparison of posterior distribution of deviances based on model with number of clusters K = 1,2,3,4,5.
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in terms of classification (25 % of households remained unclassified) as the red, green and turquoise clusters do
not substantially differ. To interpret such clusters more precisely we should not forget the other used outcomes.
The resulting spline shapes for the affordability of week holiday and the financial burden of total housing cost can
be found in the supplement, (Figures S12–S13).

Now we discuss the case K = 5 in more detail. As our goal is to find different patterns in evolution we may
actually be even interested in blue and golden cluster of extreme antagonistic behaviour. These clusters cover
households undergoing some substantial transformation which may indeed be what we aim to identify. However,
we must not forget the fact that households were followed only for 4 consecutive years. Therefore, the blue cluster
should be interpreted rather in the following way: it consists of households measured in

– 2005 – 2009 - with rapidly decreasing income,
– 2009 – 2011 - with very low disposable income,
– 2011 – 2016 - with steeply increasing income,

but not necessarily following this trend for the whole span of 12 years, analogously for the golden cluster. Hence,
these two clusters do not represent two of the typical outcome evolutions of a Czech household. This is the reason
why we consider them rather an overfitting issue than actual clusters worthy of exploration. Which leaves us with
K = 4 solution being the most suitable for the overall interpretation.

Households in the violet cluster with exceptionally high income can also always afford to pay for one week
of holiday abroad and do not find the housing cost to be a really heavy burden. On the other hand, turquoise
cluster represents households of completely reverse characteristics - very low disposable income, inability to pay
for a week holiday abroad and almost all of them struggle with payments for housing. The other two remaining
clusters (red and green) share very similar and ordinary evolution of total disposable income, but can still be
distinguished. See the proportions of categorical outcomes changing in time, especially the years 2010 and 2011
when the red cluster has the lowest percentage of households able to pay for week holiday, while the green cluster
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Fig. 6: Spline curves for logarithm of the total disposable household income of unit weighted family size for
different choice of the number of clusters K.
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has the largest. Moreover, the evolution of proportions in both categorical outcomes is reversely mirrored, when
one cluster thrives the other struggles and vice versa. It almost seems like that one big 60 % cluster of average
households was divided in half based on the undergoing positive or negative changes at certain periods of time.
This division was allowed by our spline parametrization and the 4-year rotational panel invoked by the EU-SILC
study.

7 Conclusion

In this paper we faced the problem of joint modelling of longitudinally measured numeric, ordinal and binary
outcomes. We proposed to use multivariate linear mixed effects model on numeric and latent numeric outcomes
corresponding to the categorical ones by exploiting the thresholding concept. Supposing all random effects to
follow a joint normal distribution we enabled the outcomes to be related as it is common situation in real data
analyses. On top of that, we enriched the model by construction of a mixture of such models allowing us to cluster
individuals into several groups of various patterns in terms of time evolution or the variance covariance structure.
By setting reasonable prior distributions for model and auxiliary parameters a hierarchical model was created and
fully Bayesian approach was adopted and then executed using Gibbs sampling as one of the methods of MCMC.
Appendix provides extensive derivations of full conditioned distributions used within the sampling mechanism.
Sampled parameter values were not only used for the model estimation but for the calculation of classification
probabilities as well, detailed derivation of which was provided in Section 4.7.

Proposed model and estimation method were tested in a simulation study with the aim to examine the ability
to properly estimate model parameters and to correctly capture the patterns of each individual cluster. And indeed,
we verified the consistency of parameter estimates even in the case of categorical variables modelled by simple
thresholding. On the other hand, certain issues with the rate of convergence of variance matrix ΣΣΣ or, especially,
thresholds of latent numeric counterparts of ordinal variables have appeared. This motivates us to improve or even
replace current Gibbs sampling with some more advanced MCMC techniques. That may include even automated
selection of the total number of clusters K, where the inspiration for the future work comes from Neal (2000) and
his use of Dirichlet process. Variance matrix ΣΣΣ of random effects needs a careful attention as well as its dimension
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Fig. 7: Longitudinal profiles of numeric, binary and ordinal outcomes of n = 1000 randomly selected Czech
households. Bold curves on the left represent the estimated conditional expectation of response within K = 4
discovered groups for a household of unit weighted family size. Categorical outcomes are presented by the pro-
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rises with the number of modelled outcomes and the complexity of random effects structure. It may prove useful
to abandon the complete generality and replace it with some commonly used block structures of variance matrices.

So far we examined the properties under fixed and minimal number of outcomes. Next work should be focused
on the case of much higher number of measured outcomes and possibly on their relevance towards clustering
using, for example, methods presented by Raftery and Dean (2006). The variable selection process could also
be extended to the regression part part of the model. For example, in the EU-SILC database each household has
several potential characteristics (family size, type of dwelling, number of rooms, degree of urbanization, region,
country, gender, age or education of the head of a household, . . . ), influence of which on outcomes and subsequent
clustering may be of interest.

Regarding the real data analysis, we successfully managed to discover several different patterns in the evolution
of total disposable income, affordability of a week holiday abroad and self-evaluation of difficulty to pay for
housing. Minorities of extremely high (7.43 %) or low (11.58 %) life standard are easily distinguishable unlike the
other mid-class households of similar income and categorical proportions but different periods of increasing and
decreasing tendencies. Using more than 4-cluster solution separates out households undergoing a huge progress
or recession during a certain period of time. Though these findings may be of some interest, the corresponding
patterns as a whole are unrealistic due to rotational design of the study, which demands only observations from
four consecutive years, and hence, these clusters are irrelevant from the realistic point of view.

The whole estimation process was implemented completely from scratch using for data preparation and
processing while functions were called during the sampling phase in hope to reduce the computation time. This
combination truly proved to be more efficient then pure implementation and resulted in a matter of minutes.
The computation time, however, mainly depends on the number of subjects n - the larger it is, the higher number
of latent parameters is to be sampled. For example, each of the cluster indicators Ui requires computation of K full
conditional probabilities (38), which is still easily manageable as the latent numeric outcomes are at our disposal.
This however, does not hold true for the classification probabilities (14) computed right after the sampling using
an additional function within environment, since an integration over latent numeric outcomes need to be
performed. The temporarily best solution (in terms of computation time and accuracy) involved calling a version
of pmvnorm function from mvtnorm package which itself uses MCMC principles. Triggering this iterative process
K-times for each individual and each sampled set of parameters takes a heavy toll. Therefore, some thinning
methods were applied in order to obtain results in a still reasonable time.
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Appendix

A Full-conditioned distributions in Gibbs sampling

In this section we derive full-conditioned distributions for all parameters ψψψ ∈ΨΨΨ one by one. All derivations are
based on viewing (26) as a function of parameter ψψψ . The function on the right hand side of (26) can be decomposed
into the following products:
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Derivations are made under the assumption that parameters βββ , τττ , µµµ , τττR, ΣΣΣ
−1 and Q−1 are all group-specific.

Similar derivations (with corresponding changes) can be made in the case of chosen subset of group-specific
parameters. Note that if τττR and Q−1 are group-specific, then µµµ and ΣΣΣ

−1 must be group-specific as well.
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A.1 Probabilities www

Parameter www of prior probabilities of being classified into certain categories, i.e. wk = P(Ui = k), appear only in
p(Ui|www) and its prior distribution p(www|ααα), therefore:

p(www |Y,C ;ΨΨΨ−www;ζζζ ) ∝

n

∏
i=1

p(Ui|www) · p(www|ααα)

p(www |UUU ;ααα ) ∝

K

∏
k=1

w

n
∑

i=1
1(Ui=k)

k ·
K

∏
k=1

wαk−1
k =

K

∏
k=1

wnk(UUU)+αk−1
k ,

where nk(UUU) is the total number of appearances of value k among all current group-allocation indicators UUU =
{Ui, i = 1, . . . ,n}, i.e. the total number of subjects (from n possible) currently belonging to group k. Comparing
this pdf with (19) we recognize the shape of pdf of Dirichlet distribution, thus,

www|Y,C ;ΨΨΨ−www;ζζζ ∼ DirK (nnn(UUU)+ααα) , (37)

where nnn(UUU) =
(
n1(UUU), . . . ,nK(UUU)

)>.

A.2 Group-allocation indicators Ui

According to (36) the group-allocation indicator Ui appears only in its prior distribution Ui|www and at places, where
it selects the corresponding group-specific parameter:

p(Ui |Y,C ;ΨΨΨ−Ui ;ζζζ ) ∝ p
(
YN

i ,Y
?,OB
i

∣∣∣Ci,bbbi;βββ
(Ui),τττ(Ui)

)
· p
(

bbbi

∣∣∣µµµ(Ui),ΣΣΣ−(Ui)
)
· p(Ui|www) .

Ui only attains values k ∈ {1, . . . ,K}, therefore, we aim to calculate full-conditioned probability that ith subject is
allocated in group k:

P
(

Ui = k
∣∣∣YN

i ,Ci;Y?,OB
i ,bbbi;βββ ,τττ,µµµ,ΣΣΣ−1,www

)
∝ wk · ∏

rN∈RNum

(
τ
(k)
rN

) ni
2 ·
∣∣∣ΣΣΣ−(k)∣∣∣ 1

2 ·

· exp

{
−1

2 ∑
rN∈RNum

ni

∑
j=1

τ
(k)
rN

(
yrN

i, j −η
(k),rN
i, j

)2
− 1

2 ∑
rOB∈ROB

ni

∑
j=1

(
y?,r

OB

i, j −η
(k),rOB

i, j

)2
}
·

· exp
{
−1

2

(
bbbi−µµµ

(k)
)>

ΣΣΣ
−(k)

(
bbbi−µµµ

(k)
)}

, (38)

where η
(k),r
i, j =

(
xxxr

i, j

)>
βββ
(k),r+

(
zzzr

i, j

)>
bbbr

i is the linear predictor of j-th observation of outcome r ∈R of ith subject
in group k.

A.3 Latent numeric variables Y?,OB
i

Latent numeric outcomes Y?,OB
i for actually measured ordinal and binary outcomes YOB

i appear only in the thresh-
olding procedure and multivariate LME for both YN

i and Y?,OB
i :

p
(
Y?,OB

i

∣∣∣Y,C ;ΨΨΨ−Y?,OB
i

;ζζζ

)
∝ p

(
YOB

i

∣∣∣Y?,OB
i ;γγγ

)
· p
(
YN

i ,Y
?,OB
i

∣∣∣Ci,bbbi;βββ
(Ui),τττ(Ui)

)
.

From (7) we see that for all rOB ∈ ROB and j = 1, . . . ,ni are Y ?,rOB

i, j independently distributed. Ignoring the

thresholding concept Y ?,rOB

i, j would follow N
(

η
(Ui),rOB

i, j , 1
)

, however, corresponding density is now limited by

indicator 1(
γrOB

l , γrOB
l+1

](y?,OB
i

)
, where l = yrOB

i, j . Therefore, the full-conditioned distribution is truncated normal

distribution on interval
(

γrOB

l , γrOB

l+1

]
:

Y ?,rOB

i, j

∣∣∣Y rOB

i, j = l,γγγ ∼ TN
(

η
(Ui),rOB

i, j , 1, γ
rOB

l , γ
rOB

l+1

)
. (39)
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A.4 Thresholds γγγ

Parameter γγγ affects (36) only in the thresholding phase and in prior distribution of γγγ:

p
(

γγγ

∣∣∣Y,C ;ΨΨΨ−γγγrO ;ζζζ

)
∝

n

∏
i=1

p
(
YOB

i

∣∣∣Y?,OB
i ;γγγ

)
· p
(

γγγ

∣∣∣γrO
1 ,rO ∈RO

)
Let us consider ordinal outcome rO ∈ ROrd and corresponding set of thresholds: −∞ = γrO

0 ,γrO
1 ,γγγrO ,γ

LrO = ∞.

Let Y rO
l be the set of all latent numeric outcomes Y ?,rO

i, j such that the truly measured ordinal category is l =

0, . . . ,LrO −1, i.e.
Y rO

l =
{

Y ?,rO
i, j : Y rO

i, j = l, i = 1, . . . ,n, j = 1, . . . ,ni

}
,

which is assumed to be non-empty (all levels of outcome LrO are attained at least once). The latent numeric
variables had to be generated according to the thresholding concept, therefore, the following inequalities hold:

−∞ < y0
∈Y rO

0

< γ
rO
1 < y1

∈Y rO
1

< γ
rO
2 < y2

∈Y rO
2

< · · ·< γ
rO

LrO−1
< y

LrO−1
∈Y rO

LrO−1

< ∞.

Thus, under the uniform prior (20) for γγγrO we get that individual thresholds γrO
l are uniformly distributed on

intervals given by maxima and minima of corresponding sets:

γ
rO
l

∣∣∣YYY rO ;YYY ?,rO ∼ Unif

 max
y∈Y rO

l−1

y, min
y∈Y rO

l

y

 , l = 1, . . . ,LrO . (40)

A.5 Precision parameters τττ

Parameters τττ =
{

τ
(k)
rN

: k = 1, . . . ,K, rN ∈RNum
}

are the inverse variance of errors of supposed LME models

over numeric outcomes. The right-hand side of (36) includes τττ only in three factors - supposed LME for YN
i and

prior distribution of (βββ ,τττ):

p(τττ |Y,C ;ΨΨΨ−τττ ;ζζζ ) ∝

n

∏
i=1

p
(
YN

i ,Y
?,OB
i

∣∣∣Ci,bbbi;βββ
(Ui),τττ(Ui)

)
· p(βββ |τττ;βββ 0,D) · p(τττ|a1,a2)

From the structure of (7), (22) and (23) we see that individual τ
(k)
rN

are distributed independently of each other
(given all other information and parameters):

p
(

τ
(k)
rN

∣∣∣YYY rN ,C rN ;UUU ,bbbrN ;βββ
(k),rN ;βββ

rN
0 ,DrN ,a1,a2

)
∝

(
τ
(k)
rN

) 1
2

n
∑

i=1
ni1(Ui=k)+ 1

2 dF
rN

+a1−1
·

· exp

−τ
(k)
rN

1
2 ∑

i∈Nk(UUU)

ni

∑
j=1

(
yrN

i, j −η
(k),rN
i, j

)2
+

1
2

dF
rN

∑
j=1

(
β
(k),r
j −β r

0, j

)2

dr
j, j

+a2


 , (41)

where Nk(UUU) = {i : Ui = k, i = 1, . . . ,n} is a set of subjects currently belonging to group k. For YYY rN ,C rN and
current values of UUU ,bbbrN and βββ

(k) let us denote

ã(k),r
N

1 =
1
2 ∑

i∈Nk(UUU)

ni +
dF

rN

2
+a1,

ã(k),r
N

2 =
1
2 ∑

i∈Nk(UUU)

ni

∑
j=1

(
yrN

i, j −η
(k),rN
i, j

)2
+

1
2

dF
rN

∑
j=1

(
β
(k),r
j −β r

0, j

)2

dr
j, j

+a2.

Comparing (41) with (23) we see that

τ
(k)
rN

∣∣∣YYY rN ,C rN ;UUU ,bbbrN ;βββ
(k),rN ;βββ

rN
0 ,DrN ,a1,a2 ∼ Γ

(
ã(k),r

N

1 , ã(k),r
N

2

)
(42)

independently for each rN ∈RNum and k = 1, . . . ,K.
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A.6 Fixed effects βββ

Fixed effects βββ appear only in LME model specification and prior distribution:

p
(
βββ
∣∣Y,C ;ΨΨΨ−βββ ;ζζζ

)
∝

n

∏
i=1

p
(
YN

i ,Y
?,OB
i

∣∣∣Ci,bbbi;βββ
(Ui),τττ(Ui)

)
· p(βββ |τττ;βββ 0,D) ,

which can be decomposed for individual outcomes r ∈R and k = 1, . . . ,K as follows:

p
(

βββ
(k),r

∣∣∣YYY r,C r;UUU ,bbbr;τ
(k)
r ;βββ

r
0,D

r
)

∝ exp

{
−τ

(k)
r

2

(
βββ
(k),r−βββ

r
0

)>
[Dr]−1

(
βββ
(k),r−βββ

r
0

)}
·

· exp

{
−τ

(k)
r

2

(
ỹyyr
Nk(UUU)−Xr

Nk(UUU)βββ
(k),r
)>(

ỹyyr
Nk(UUU)−Xr

Nk(UUU)βββ
(k),r
)}

,

where notation •r
Nk(UUU) restricts given parameter • to the subset of subjects in group k:

Xr
Nk(UUU) =


...
Xr

i
...

 , i ∈Nk(UUU), ỹyyr
Nk(UUU) =


[
(yyyr

i −Zr
i bbb

r
i )
> , i ∈Nk(UUU)

]>
, if r ∈RNum,[(

yyy?,ri −Zr
i bbb

r
i
)>

, i ∈Nk(UUU)
]>

, if r ∈ROB.

Using basic algebraic operations and ignoring several multiplicative constants we can rewrite probability density
function of full-conditioned distribution of βββ

(k),r into:

p
(

βββ
(k),r

∣∣∣YYY r,C r;UUU ,bbbr;τ
(k)
r ;βββ

r
0,D

r
)

∝

exp

{
−τ

(k)
r

2

(
βββ
(k),r− β̃ββ

(k),r
)> [(

Xr
Nk(UUU)

)>
Xr

Nk(UUU)+(Dr)−1
](

βββ
(k),r− β̃ββ

(k),r
)}

, (43)

where

β̃ββ
(k),r

=

[(
Xr

Nk(UUU)

)>
Xr

Nk(UUU)+(Dr)−1
]−1((

Xr
Nk(UUU)

)>
ỹyyr
Nk(UUU)+(Dr)−1

βββ
(k),r
0

)
,

which compared to pdf of multivariate normal distribution yields

βββ
(k),r

∣∣∣YYY r,C r;UUU ,bbbr;τ
(k)
r ;βββ

r
0,D

r ∼ NdFr

β̃ββ
(k),r

,

[(
Xr

Nk(UUU)

)>
Xr

Nk(UUU)+(Dr)−1
]−1

τ
(k)
r

 . (44)

A.7 Prior precisions τττR for µµµ

Parameter τττR serves as an auxiliary parameter for specifying prior distribution of µµµ , see section 4.6.1. The deriva-
tion of full-conditioned distribution of this parameter is solely based on combining probability distribution func-
tions in (24). Therefore,

p(τττR |µµµ; µµµ0,a3,a4 ) ∝

K

∏
k=1

dR

∏
j=1

(
τ
(k)
R, j

)a3+
1
2−1

exp
{
−τ

(k)
R, j

[
a4 +

1
2

(
µ
(k)
j −µ

(k)
0, j

)2
]}

(45)

and

τ
(k)
R, j

∣∣∣µ(k)
j ; µ

(k)
0, j ,a3,a4 ∼ Γ

(
a3 +

1
2
,a4 +

1
2

(
µ
(k)
j −µ

(k)
0, j

)2
)

(46)

independently for all j = 1, . . . ,dR and k = 1, . . . ,D.
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A.8 Prior expected values µµµ for bbb

Parameter µµµ consists of all possible expected values µµµ(k) of random effects bbbi in all groups k = 1, . . . ,K. The
right-hand side of (36) is in the case of this parameter simplified into

p
(
µµµ
∣∣Y,C ;ΨΨΨ−µµµ ;ζζζ

)
∝

n

∏
i=1

p
(

bbbi

∣∣∣µµµ(Ui),ΣΣΣ−(Ui)
)
· p(µµµ|τττR; µµµ0) .

From the product across all subjects for given group k = 1, . . . ,K we extract only those factors that correspond
to subjects within k-th group, i.e. Nk(UUU). By performing several algebraic operations and ignoring multiplicative
constants, we obtain

p
(

µµµ
(k)
∣∣∣UUU ,bbb;ΣΣΣ

−(k);τττ
(k)
R ,µµµ

(k)
0

)
∝ ∏

i∈Nk(UUU)

p
(

bbbi

∣∣∣µµµ(k),ΣΣΣ−(k)
)
· p
(

µµµ
(k)|τττ(k)R ; µµµ

(k)
0

)
∝ exp

{
−1

2 ∑
i∈Nk(UUU)

(
bbbi−µµµ

(k)
)>

ΣΣΣ
−(k)

(
bbbi−µµµ

(k)
)
− 1

2

(
µµµ
(k)−µµµ

(k)
0

)>
diag

(
τττ
(k)
R

)(
µµµ
(k)−µµµ

(k)
0

)}

∝ exp
{
−1

2

(
µµµ
(k)− µ̃µµ

(k)
)> [

nk(UUU)ΣΣΣ−(k)+diag
(

τττ
(k)
R

)](
µµµ
(k)− µ̃µµ

(k)
)}

,

(47)

where

µ̃µµ
(k)

=
[
nk(UUU)ΣΣΣ−(k)+diag

(
τττ
(k)
R

)]−1

nk(UUU)ΣΣΣ−(k)
1

nk(UUU) ∑
i∈Nk(UUU)

bbbi︸ ︷︷ ︸
bbb

k
(UUU)

+diag
(

τττ
(k)
R

)
µµµ0


leading to the following full-conditioned distribution

µµµ
(k)
∣∣∣UUU ,bbb;ΣΣΣ

−(k);τττ
(k)
R ,µµµ

(k)
0 ∼ NdR

(
µ̃µµ
(k)
,
[
nk(UUU)ΣΣΣ−(k)+diag

(
τττ
(k)
R

)]−1
)

(48)

independently for all k = 1, . . . ,K.

A.9 Prior scale matrices Q−1 for ΣΣΣ
−1

Parameter Q−1 is the set of auxiliary parameters that makes prior distribution of ΣΣΣ
−1 more flexible within Gibbs

sampler. The right-hand side of (36) shrinks into

p
(
Q−1 ∣∣Y,C ;ΨΨΨ−Q−1 ;ζζζ

)
∝ p

(
ΣΣΣ
−1∣∣Q−1;ν0

)
· p
(
Q−1∣∣DQ,ν1

)
.

Combining the two probability density functions in (25) we get

p
(
Q−(k)

∣∣∣ΣΣΣ−(k);ν0,ν1,DQ
)

∝

∣∣∣Q−(k)∣∣∣ ν0+ν1−dR−1
2

exp
{
−Tr

[(
ΣΣΣ
−(k)+

(
DQ
)−1

)
Q−(k)

]}
, (49)

which compared to (25) resembles pdf of Wishart distribution. Therefore,

Q−(k)
∣∣∣ΣΣΣ−(k);ν0,ν1,DQ ∼ WdR

([
ΣΣΣ
−(k)+

(
DQ
)−1

]−1

,ν0 +ν1

)
(50)

independently for all k = 1, . . . ,K.
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A.10 Prior inverse covariance matrices ΣΣΣ
−1 for random effects bbb

Parameter ΣΣΣ
−1 is the set of inverse covariance matrices for random effects bbbi that contributes to the right-hand

side of 36 only in pdf for random effects and in prior distribution of ΣΣΣ
−1:

p
(
ΣΣΣ
−1 ∣∣Y,C ;ΨΨΨ−ΣΣΣ

−1 ;ζζζ
)

∝

n

∏
i=1

p
(

bbbi

∣∣∣µµµ(Ui),ΣΣΣ−(Ui)
)
· p
(

ΣΣΣ
−1∣∣Q−1;ν0

)
Again, we need to separate subjects into groups Nk(UUU),k = 1, . . . ,K according to their current allocation indicators
UUU . Similarly as before, the equation above decomposes into K independent parts - one for each group k = 1, . . . ,K.
Considering group k the right-hand side of equation above reduces into

p
(

ΣΣΣ
−(k)

∣∣∣UUU ,bbb; µµµ
(k),Q−(k);ν0

)
∝

∣∣∣ΣΣΣ−(k)∣∣∣ nk(UUU)+ν0−dR−1
2 ·

· exp

{
−1

2 ∑
i∈Nk(UUU)

(
bbbi−µµµ

(k)
)>

ΣΣΣ
−(k)

(
bbbi−µµµ

(k)
)
−Tr

[
Q−(k)ΣΣΣ−(k)

]}

∝

∣∣∣ΣΣΣ−(k)∣∣∣ nk(UUU)+ν0−dR−1
2

exp

{
−Tr

[(
Q−(k)+

1
2 ∑

i∈Nk(UUU)

(
bbbi−µµµ

(k)
)(

bbbi−µµµ
(k)
)>)

ΣΣΣ
−(k)

]}
, (51)

which compared to (25) resembles pdf of Wishart distribution. Therefore, independently for all k = 1, . . . ,K

ΣΣΣ
−(k)

∣∣∣UUU ,bbb; µµµ
(k),Q−(k);ν0 ∼ WdR

(
Q̃(k),nk(UUU)+ν0

)
, (52)

where
Q̃(k) =

(
Q̃−(k)

)−1
and Q̃−(k) =Q−(k)+

1
2 ∑

i∈Nk(UUU)

(
bbbi−µµµ

(k)
)(

bbbi−µµµ
(k)
)>

.

A.11 Random effects bbb

The key role of our model is played by random effects bbbi, i = 1, . . . ,n that create linear predictors ηηη
(k),r
i , k =

1, . . . ,K and r ∈R. Probability density function of corresponding full-conditioned distribution is based on only
two parts of the right-hand side of (36):

p(bbb |Y,C ;ΨΨΨ−bbb;ζζζ ) ∝

n

∏
i=1

p
(
YN

i ,Y
?,OB
i

∣∣∣Ci,bbbi;βββ
(Ui),τττ(Ui)

)
·

n

∏
i=1

p
(

bbbi

∣∣∣µµµ(Ui),ΣΣΣ−(Ui)
)
.

Clearly, random effects bbbi will be distributed independently even in the full-conditioned distribution. Let us select
subject i (say from group Ui = k) in which case its corresponding probability distribution function is of the shape

p
(

bbbi

∣∣∣YN
i ,Ci;Y?,OB

i ,Ui;βββ ,τττ,µµµ,ΣΣΣ−1
)

∝ ∏
rN∈RNum

exp

−τ
(k)
rN

2

(
ỹyyrN

i −ZrN
i bbbrN

i

)>(
ỹyyrN

i −ZrN
i bbbrN

i

) ·
· ∏

rOB∈ROB

exp
{
−1

2

(
ỹyy?,r

OB

i −ZrOB

i bbbrOB

i

)>(
ỹyy?,r

OB

i −ZrOB

i bbbrOB

i

)}
·

· exp
{
−1

2

(
bbbi−µµµ

(k)
)>

ΣΣΣ
−(k)

(
bbbi−µµµ

(k)
)}

,

where ỹyyrN
i = yyyrN

i −XrN
i βββ

rN and ỹyy?,r
OB

i = yyy?,r
OB

i −XrOB

i βββ
rOB

. Constructing

ỹyyi =



...√
τ
(k)
rN

ỹyyrN
i

...

ỹyy?,r
OB

i
...


,

rN ∈RNum,

rOB ∈ROB,

Z̃i =



. . . √
τ
(k)
rN

ZrN
i

. . .

ZrOB

i
. . .


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we can simplify the above to

exp
{
−1

2

(
ỹyyi− Z̃ibbbi

)>(
ỹyyi− Z̃ibbbi

)
− 1

2

(
bbbi−µµµ

(k)
)>

ΣΣΣ
−(k)

(
bbbi−µµµ

(k)
)}

,

which after several algebraic operations and ignoring multiplicative constants becomes

exp
{
−1

2

(
b̃bbi−bbbi

)> [
Z̃>i Z̃i +ΣΣΣ

−(k)
](

b̃bbi−bbbi

)}
, (53)

where

b̃bbi =
[
Z̃>i Z̃i +ΣΣΣ

−(k)
]−1(

Z̃>i ỹyyi +ΣΣΣ
−(k)

µµµ
(k)
)
.

Therefore, the full-conditioned distribution of bbbi for subject belonging to group k = 1, . . . ,K is

bbbi

∣∣∣YN
i ,Ci;Y?,OB

i ,Ui;βββ ,τττ,µµµ,ΣΣΣ−1 ∼ NdR

(
b̃bbi,
[
Z̃>i Z̃i +ΣΣΣ

−(k)
]−1
)
. (54)
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Frühwirth-Schnatter S (2011) Panel data analysis: a survey on model-based clustering of time series. Advances in
Data Analysis and Classification 5(4):251–280, DOI 10.1007/s11634-011-0100-0

Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images.
IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-6(6):721–741, DOI 10.1109/TPAMI.
1984.4767596

Genz A (1992) Numerical computation of multivariate normal probabilities. Journal of Computational and Graph-
ical Statistics 1(2):141–149

Genz A, Bretz F, Miwa T, Mi X, Leisch F, Scheipl F, Hothorn T (2019) mvtnorm: Multivariate Normal and t
Distributions. URL https://CRAN.R-project.org/package=mvtnorm, r package version 1.0-11

Grün B, Leisch F (2008) FlexMix version 2: Finite mixtures with concomitant variables and varying and constant
parameters. Journal of Statistical Software 28(4):1–35, DOI 10.18637/jss.v028.i04

Hastie T, Tibshirani R, Friedman J (2009) The Elements of Statistical Learning: Data Mining, Inference, and
Prediction, Second edn. Springer Science+Business Media, New York

32

https://doi.org/10.1214/08-AOAS205
https://doi.org/10.1214/08-AOAS205
http://www.jstor.org/stable/2532201
https://CRAN.R-project.org/package=mvtnorm


James GM, Sugar CA (2003) Clustering for sparsely sampled functional data. Journal of the American Statistical
Association 98(462):397–408, DOI 10.1198/016214503000189
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