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Outline

I Probabilistic forecasting and comparative model assessment

I Motivation: Post-processing ensemble weather simulations

I Neural networks for distributional regression

I Advanced machine learning methods for incorporating
complex sources of information
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Probabilistic forecasting

Model predictions should be probabilistic (given as a parametric or
simulation-based probability distribution) to

I quantify inherent uncertainty

I allow for optimal decision making by obtaining target
functionals (mean, quantiles, ...) of the predictive distributions

I meet increasing popularity and requests across disciplines, in
particular in economics and environmental sciences.
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Deterministic and probabilistic predictions
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Evaluation of probabilistic forecasts: Proper scoring rules

0 2 4 6 8 10

A (negatively oriented) proper scoring
rule is any function

S(F , y)

such that for all F ,G ,

EY∼GS(G ,Y ) ≤ EY∼GS(F ,Y ).

Popular examples include

the logarithmic score

LogS(F , y) = − log(f (y))

the continuous ranked probability score

CRPS(F , y) =

∫ ∞
−∞

(F (z)−1{y ≤ z})2dz
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Proper scoring rules as tools for model estimation

Proper scoring rules provide useful tools for parameter estimation
in an M-estimation framework: Determine

θ̂ = arg min
θ∈Θ

n∑
i=1

S(Fθ, yi ).

LogS yields maximum likelihood (ML) estimation, the CRPS
provides a robust alternative.

Computational tools: Efficient implementations for parametric and
simulation-based predictive models for optimization and large scale
evaluation: R package scoringRules.

Jordan, A., Krüger, F. and Lerch, S. (2019)
Evaluating probabilistic forecasts with scoringRules.
Journal of Statistical Software, 90, 1–37.
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Outline

I Probabilistic forecasting and comparative model assessment

I Motivation: Post-processing ensemble weather simulations

I Neural networks for distributional regression

I Advanced machine learning methods for incorporating
complex sources of information
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Numerical weather prediction

Modern weather forecasts rely on physical numerical weather
prediction (NWP) models of atmospheric processes.

Image source: NOAA1

However, there are major
sources of uncertainty (initial
conditions, physical models).

Ensemble simulations seek to
quantify uncertainty and pro-
vide probabilistic forecasts.

Despite continued improve-
ments, ensemble forecasts
are subject to model biases
and lack calibration.

1https://celebrating200years.noaa.gov/breakthroughs/climate_

model/AtmosphericModelSchematic.png

https://celebrating200years.noaa.gov/breakthroughs/climate_model/AtmosphericModelSchematic.png
https://celebrating200years.noaa.gov/breakthroughs/climate_model/AtmosphericModelSchematic.png
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Example: Ensemble forecasts of temperature
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Example: Ensemble forecasts of temperature
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Statistical post-processing of ensemble forecasts

Ensemble simulations typically fail to accurately quantify model
uncertainty and require calibration via statistical post-processing.

Example: Temperature: Using ensemble predictions of temperature
as input, the post-processed forecast takes the form of a Gaussian
distribution.

y |X t2m ∼ N(µ,σ),

µ = a + b ·mean(X t2m)

σ = c + d · sd(X t2m)
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Distributional regression models for post-processing

Model probability distribution of target variable y given ensemble
model output X by a parametric distribution Fθ,

y |X ∼ Fθ, where θ = g(X ).

Limitations of fully parametric approaches:

I requires choice of link function g connecting predictors X and
distribution parameters θ

I difficult to specify functional form of dependencies if many
possible predictors are available

I requires estimation of parameters of g
I global (using all training data) or local (location-specific)

models?

I requires choice of parametric model Fθ
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Advanced benchmark models

Including additional predictors is not straightforward. To avoid
overfitting, predictor selection strategies are required.

I Gradient boosting approach (EMOS-loc-bst model) proposed
by Messner et al. (2017, MWR): Assume

(µ, σ) =
(
X

Tβ, exp(XTγ)
)
,

and iteratively update coefficient vector entries improving the
current model fit most.

I Quantile regression forest (QRF) model proposed by Taillardat
et al. (2016, MWR): Nonparametric quantile regression based
on random forests. Quantile estimates are obtained from an
ensemble of decision trees.

Have to be implemented as local models to achieve good forecasts.



14

Outline

I Probabilistic forecasting and comparative model assessment

I Motivation: Post-processing ensemble weather simulations

I Neural networks for distributional regression

I Advanced machine learning methods for incorporating
complex sources of information



15

Neural networks for post-processing ensemble forecasts

Novel semi-parametric approach: Estimate distribution parameters
θ directly by training a neural network to

I learn arbitrary nonlinear relations in an automated,
data-driven manner,

I generate local adaptivity in globally estimated models,

I gain meteorological insight from trained models.

Rasp, S. and Lerch, S. (2018)
Neural networks for post-processing ensemble weather forecasts,
Monthly Weather Review, 146, 3885–3900.

Python/R code available at https://github.com/slerch/ppnn.

https://github.com/slerch/ppnn
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Data

I data from 2007–2016

I 48 hours-ahead ECMWF
50-member ensemble
forecasts of temperature
(and 17 other variables)

I DWD station observations
at 537 locations

I data from 2016 used as
evaluation set

I two training datasets: 2015
and 2007–2015
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Neural networks for distributional regression

I Input: Predictor
variables (NWP
quantities, station
characteristics).

I Output:
Distribution
parameters θ

I Embeddings
generate local
adaptivity.

Training via CRPS minimization (mathematically principled
non-standard choice).
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Example: Ensemble forecasts of temperature
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Example: Ensemble forecasts of temperature
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Overview of results

CRPS: Continuous ranked probability score, lower is better

Model Description Mean CRPS for
training period

2015 2007–2015

Raw ensemble 1.16 1.16

Benchmark post-processing methods

EMOS-gl Global EMOS 1.01 1.00
EMOS-loc Local EMOS 0.90 0.90
EMOS-loc-bst Local EMOS with boosting 0.85 0.80
QRF Local quantile regression forest 0.95 0.81

Neural network models

NN-aux-emb Neural network with auxiliary predictors 0.82 0.78
and station embeddings
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Station-specific comparison of NN and benchmark models
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Peeking into the black box of neural network models
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Prospects of modern ML for distributional regression

Modern AI methods provide unprecedented tools for data analysis
and prediction.

In particular, machine learning can be useful for

I incorporating spatial, temporal and inter-variable information
into model building and estimation,

I incorporating prior knowledge about underlying (e.g. physical)
processes into models,

I flexible modelling of complex response distributions.
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Spatial information

Ensemble forecasts are gridded 2D fields of forecasts of weather
variables. Thus far, those were interpolated to station locations.

Gridded ECMWF forecasts over Europe (0.5◦ resolution, 81× 81 pixels)

However, large-scale spatial structure and predictability information
(e.g., ‘weather regimes’) get lost in the interpolation step.
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Ensemble information

Ensemble members provide 50 physically coherent forecasts of
weather variables. Thus far, only mean and standard deviation of
(interpolated) ensemble forecasts were used.

50
 x

Possibly important uncertainty information might get lost by the
use of summary statistics.
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Deep autoencoders for dimensionality reduction

Specific NN architectures to find compact representation of inputs
(unsupervised) by

I training the network to re-create its own inputs

I creating a bottleneck by using fewer hidden units than inputs
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Projections of ensemble forecasts (temperature)

Left: Example input forecast fields from two days.
Middle: Ensemble members in projected space (blue: top, red: bottom).
Right: Reconstructed fields.
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Projections of ensemble forecasts (cloud cover)

Left: Example input forecast fields from two days.
Middle: Ensemble members in projected space (blue: top, red: bottom).
Right: Reconstructed fields.
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Autoencoder representations as additional NN-input

embedding

classic

additional

without

location

temperature

clouds

pressure field

→ weather regime

location

Preliminary results suggest improvements in mean CRPS (0.78 → 0.76).

Ongoing joint work with Kai Polsterer and Antonio D’Isanto.
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Incorporating physical knowledge into ML models

Modern AI methods provide new approaches to better understand
and utilize interactions of domain knowledge and statistics, which
is key to improving forecasting systems and optimize predictions.

In the context of ensemble post-processing, examples include

I incorporating predictability information contained in large-
scale weather patterns (‘weather regimes’), e.g. utilizing
indicators as predictors

I stratified model estimation by objectively identified and
meteorologically meaningful dynamic subregions of storms
(PhD project of Benedikt Schulz)
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Neural networks for nonparametric distributional regression

The choice of a suitable parametric forecast distribution Fθ
remains a challenge for parametric approaches.

NN-based nonparametric distributional regression methods may
allow to flexible model complex response distributions.

Ongoing joint work with Stephan Rasp, M.Sc. thesis by Marvin
Bischoff on electric load forecasting.
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Summary

I semi-parametric distributional regression models based on
neural networks

I flexible, automated and data-driven modelling of nonlinear
relations between predictors and distribution parameters

I perform better than state of the art approaches and allow to
gain meteorological insight from trained models

I compressing complex spatial data might improve performance
and add to interpretability

Rasp, S. and Lerch, S. (2018)
Neural networks for post-processing ensemble weather forecasts,
Monthly Weather Review, 146, 3885–3900.

Python/R code available at https://github.com/slerch/ppnn.

https://github.com/slerch/ppnn

