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Latent class analysis

@ Variables in multivariate categorical data are often associated.

@ Latent class analysis assumes that this association is due to the
presence of latent classes (Lazarsfeld, 1950).

@ This leads to a finite mixture model where the categorical variables
are assumed to be independent given latent class membership.

@ The latent class model represents the standard model-based
clustering approach for categorical data.

@ Applications are diverse and include the social sciences,
psychometrics, medicine, etc.
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@ The latent class model for observations y;, i = 1, ..., nis given by
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Inference and issues in latent class analysis

@ Estimation:
e Frequentist maximum likelihood estimation based on the EM
algorithm (Linzer and Lewis, 2011).
e Bayesian estimation based on data augmentation and Gibbs
sampling.
@ Identifiability (Goodman, 1974):

e Only local identifiability.
e Induced by the multivariate structure, i.e., the number of
categorical variables.

@ Boundary solutions:

e Occur in a ML setting without regularization if all observations
in a component have the same observed category.

@ Selecting the number of classes.
@ Variable selection.



Prior choices for sparse modeling

We will investigate the choice of shrinkage priors for:

@ Priors on the weights:
In combination with overfitting mixtures, where the likelihood is
problematic.

@ Priors on the component-specific parameters:
Assuming the presence of cluster-irrelevant variables we
investigate priors which allow to distinguish between
cluster-relevant and cluster-irrelevant variables.



Prior on the weights

@ Conjugate prior: Dirichlet prior
n~ D(ey,...,ek)
@ The exchangeable Dirichlet prior is assumed with
exk=e, k=1,...,K.

This implies:
e The prior expectation is

1
E[nk|eo] = K

regardless of the specific value of eg.
e The prior variance depends on the size of g.
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Dirichlet prior for overfitting mixtures

@ Overfitting mixtures are mixtures where the fitted number of
components K exceeds the true number of components K.
@ The likelihood reflects the two possible ways of dealing with the
superfluous components:
o Empty components:
@ 1) is shrunken towards O.
e The component-specific parameters are identified only
through their prior.
e Duplicated components:
e The difference of the component-specific parameters are
shrunken towards 0.
o Only the sum of the corresponding component weights is
identified.
@ The likelihood is multimodal, because it mixes these two
unidentifiability modes.
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@ Rousseau and Mengersen (2011) indicate that the value of gy
strongly influences the asymptotic posterior density for overfitting
mixtures.

@ They show the following asymptotic result:

e If ey < d/2, then asymptotically the posterior density
concentrates over regions where K — K¢ groups are left
empty.

e If gg > d/2, then asymptotically the posterior density
concentrates over regions with duplicated components.

d denotes the dimension of the component-specific parameters.



Identifying the number of components

@ Use overfitting mixtures with empty components (ey small).
= To obtain sparsity, ey very often has to be much smaller than
d/2 in finite samples.

@ Determine the number of non-empty components for each sweep
m of the sampler

K
K™ = K-> 1{n" =0}
k=1

and use the most frequently visited value as estimate for K™®.



Prior on the component-specific parameters

@ A-priori the parameters of the variables are independent within
components.

@ For each variable j and component k the component specific
parameter vector 6y ;. a-priori follows a Dirichlet distribution:

ek,j. ~ Dirichlet(a,-).

@ The value for a; is selected to regularize the likelihood and avoid
modes at the boundary of the parameter space.
@ Galindo Garre and Vermunt (2006) consider the following priors for
Bayesian MAP estimation to regularize ML estimation:
e Jeffreys prior.
e Normal prior on the logit scale.
e Dirichlet prior for the probabilities.



Identifying cluster-irrelevant variables

@ Inclusion of cluster-irrelevant variables can:

e Mask the cluster structure.
e Reduce the accuracy of the parameter estimates.

@ Proposed approaches:

e Variable selection using step-wise procedures or stochastic
model search for ML and Bayesian estimation as well as
Gaussian mixture models and latent class models (Dean and
Raftery, 2010; Tadesse, Sha, and Vanucci, 2005; White and
Murphy, 2016).

e Shrinking of component means towards a common mean in
the Gaussian mixture case (Yau and Holmes, 2011;
Frahwirth-Schnatter, 2011).



Shrinkage priors

@ To shrink irrelevant variables towards a common Dirichlet
parameter a hierarchical prior is specified on a.

@ Re-parameterize the Dirichlet parameter into a mean and
precision parameter plus a regularizing additive constant:

a = ao,; + Pjpy-

@ ¢; represents the shrinkage factor for variable j.
@ Using \; = 1/¢; one can impose as prior

Aj ~ Gamma(ag, by), V.
@ 1 is the common mean of all components.

p; ~ Dirichlet(m;), Vj.
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Model estimation

@ Since the 1990s the use of MCMC made Bayesian estimation of
finite mixture models feasible.

@ Like the EM algorithm (Dempster, Laird, and Rubin, 1977),
practical Bayesian estimation is based on considering the class
allocations as missing data and adding them in the estimation
process.
= Data augmentation and Gibbs sampling makes sampling from
the posterior density surprisingly simple (Diebolt and Robert,
1994).

@ The priors assumed allow for a straightforward MCMC
implementation.



Model identification

@ The likelihood is invariant with respect to a permutation of the
components.

@ The use of symmetric priors implies that this invariance also holds
for the posterior.

@ Component-specific inference is impossible based on the MCMC
output due to label switching (Redner and Walker, 1984).

@ Several strategies have been proposed to determine an identified
model (for an overview see Jasra, Holmes, and Stephens, 2005).
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@ We suggest to cluster the component-specific parameters of the
MCMC draws in the point process representation, e.g., using
k-means:

e The point process representation is label-invariant.

e If component-specific parameters from the same MCMC draw
are assigned to the same k-means cluster, no unique
relabeling is possible.

e We discard the draws where no unique relabeling is achieved
and use the proportion of discarded draws as a quality
measure how well the fitted mixture model can be used as a
clustering tool.



Modeling strategy

@ Use a large value for K and a small ¢ in order to allow for
automatic selection of a suitable number of clusters using the most
frequent number of non-empty clusters during MCMC sampling.

@ Use a gamma prior on the inverse precision of the
component-specific parameters with a; = 1 and b, large.
e If component-specific parameters are pulled together with a
shrinkage prior, the choice made for u; is crucial.
e Add a regularization ap ; to avoid boundary solutions if
precision is small, i.e., the variable is cluster-relevant.



Back pain data

@ Fop, Smart, and Murphy (2017) use a binary data set on low back
pain to perform latent class analysis.

@ The data set contains for 425 patients the information on the
presence / absence of 36 binary clinical indicators.

@ A classification into 3 groups is known.

@ Standard clustering methods using all available variables lead to a
more fine-grained clustering solution than implied by the number of
known groups.

@ Some of the variables might imply sub-groups and thus variable
selection could help to reduce the number of clusters detected.
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Variable selection

@ Fop et al. (2017) distinguish three different roles for clustering
variables:
e Relevant variables.
e Redundant variables.
e Irrelevant variables.

@ They perform a computational expensive step-wise procedure to
select a suitable model based on maximum likelihood estimation
using the BIC as model selection criterion.

@ Their model selection task consists of:

e Selecting a suitable number of groups.
e Assigning one of the three roles to the clustering variables.



Bayesian estimation

@ We apply Bayesian estimation with shrinkage priors on the
component weights and the component-specific parameters.

@ We use the following setting for the priors:

K =10, ey = 0.01,
a¢:1, b¢:800.

@ We run MCMC sampling for 2,000 iterations burn-in and 20,000
recorded iterations.
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We obtain the following results:
@ 3 non-empty components occur for 85% of the MCMC draws.

@ Model identification using only the variables where shrinkage
factors are largest gives a non-permutation rate of 11%.

@ The obtained clustering corresponds to the known classes:

e Error rate: 8%.
e Adjusted Rand index: 0.76.
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Future work

@ Investigate the impact of the parameter specification of
hyper-priors and the regularization.

@ In particular focus on the choice for p; which is the common mean
to which the parameters are shrunken.

@ Use simulation studies to assess how the different roles of the
clustering variables influence the performance of the Bayesian
approach.

@ Increase the number of variables to highlight the computational
advantages of the Bayesian approach.

@ Compare different prior specifications, such as also the use of the
normal-gamma prior for the component-specific parameters on the
probit scale.



Summary

@ Shrinkage priors for Bayesian mixture models avoid overestimating
heterogeneity without requiring fitting a large set of different
models.

@ Variable selection in particular in the context of latent class
analysis is ambiguous due to the different roles which can be
attributed to the variables.

@ Bayesian analysis provides a flexible tool to vary how coarse or

fine-grained the clustering solution obtained is depending on the
amount of shrinkage imposed.
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