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Parametric Regression Framework




Regression framework

(Y, Xt)ten time series such that ...
@ Y; — real-valued response variable,
@ X; — RP-valued covariates / regressors
e I' — functional of interest for the conditional distribution f; = Fy, x,
with values in R¥
Classes of distributions: Fy, € Fy, Fx, € Fx, Fyt‘xt € -7:y|2(:
Fyhxt € .7'—3;7)(.
e m:RP x © - R¥ — parametric model
@ © < RY — parameter space

Assumption (1): Unique model specification

Assume that there is some unique 6y € © such that

L(Fy,x,) = m(Xt,0p), P-as. forallteN

@ 0y is a functional of the joint distribution Fy, x,.
@ We do not need strong stationarity, but only semiparametric

stationarity.
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Key task in statistics and econometrics:

Given (Yt Xt)¢=1,..7, find a ‘good’ estimator §7- for 6. J

Desirable properties of 57-
o Consistency: §T 5 0o

e Unbiasedness: E[f7] = 6,
Asymptotic normality: \/7'(57- —tp) < N(0,%)

o

e (Asymptotic) efficiency: 97 is more efficient if its (asymptotic)
covariance matrix is smaller in the Loewner order

@ Equivariance properties

@ Robustness
o Computational aspects

We will mainly consider efficiency and equivariance properties.
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M- and Z-estimation




M- and Z-estimation

T
A 1

M-estimator: Op, 7 = argmin — Z pt(Yt, m(Xt, 9))

6e® T t=1

,
Z-estimator: éz,r = arg min || 1 Z Pi(Ye, X, 0) H2
0 T4

Assumption on serial dependence:
(Y, Xt) is iid, or stationary and ergodic, or mixing.

~+ Consistency and asymptotic normality of 6, 7 and 67 1 under
strict unconditional model-consistency:

]E[pt(yt, rn(Xt, 60))] < ]E[pt(yt, m(Xt,G))] for all 6 #* 90
strict unconditional model-identification:

E[i(Ye X 0)] =0 <« =6, forall6ec©
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M- and Z-estimation

e If I is one-dimensional, there is a (roughly speaking) a one-to-one
correspondence between M- and Z-estimators:

» differentiate p; wrt 8 to obtain v,
» integrate v, to obtain p;.

@ This one-to-one correspondence means that that there is no difference
in terms equivariance and efficiency properties.

o If I is vector-valued, there are (roughly speaking) more Z-estimators
than M-estimators.

@ Reason: Not every identification function v; has an antiderivative
due to integrability conditions.
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Integrability conditions

Integrability conditions
Let U< R" be open and fi, ..., f,: U— R continuously differentiable.

If there is a potential f: U — R such that
oif = f; foralli=1,...,n,

then fis twice continuously differentiable and it holds that

oif; = O/f; forall i,j=1,...,n.

In order to establish this gap between the classes of Z- and M-estimators
we need to establish some structural results.
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Construction of loss p

Definition 1 (Consistency)

(i) The loss p is strictly F-consistent for I' if

E[p(Y,T(Fv)] <E[p(Y,2)]
for all Y such that Fy € F and for all z # I'(Fy).

(i) The loss p: R x R¥ — R is strictly unconditionally Fy x-model-consistent for the
model m if
E[p(Y.m(X,60))] < E[p(Y. m(X,6))]

for all (Y, X) such that Fy x € Fy x» and for all 6 € ©, 0 # 6o.

(iii) The loss p is strictly conditionally Fy x-model-consistent for the model m if
IE[p(Y, m(X, 00))|X] < E[p(Y, m(X, 6’))‘X] P-a.s.

for all (Y, X) such that Fy x € Fy x» and for all 6 € ©, 0 # 6o.

(i) = (i) = (i)
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Construction of loss p

Theorem 2 (Dimitriadis, F and Ziegel (2020))

Sufficiency: Under assumption (1) any strictly Fyx-consistent loss for I' is strictly
unconditionally Fy . x-model-consistent for m.

Necessity: Under assumption (1) and richness assumptions on Fy x,° any strictly

unconditionally Fy, x-model-consistent loss for m is strictly Fy,x-consistent for I

a . - Aoy . -
For any given conditional distribution FYIX’ the marginal of the regressors Fx can vary sufficiently.

~> We can characterise M-estimators in terms of strictly consistent losses
p for I,

r | ply.2) \
mean o(y) —o(2) + &' (2)(z—y) ¢ strictly convex
a-quantile | |1{y < z} — o| |g(z) — g(y)| | g strictly increasing

Z-estimators are a bit trickier ..
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Identification function
Definition 3 (ldentification functions)
(i) The function @: R x R — R is a strict F-identification function for T if
Elp(Y,2)] =0 <« z=T(Fy)

for all Y such that Fy € F and for all z

(ii) The function ¢: R x R? x ® — RY is a strict unconditional Fy x-identification
function for 6g: Fy x — O if

E[p(Y,X,0)] =0 <= 0 =00(Fvx)

for all Y, X such that Fy x € Fy x and for all € ©.

(iii) The function v is a strict conditional Fy x-identification function for
Oo: Fy,x — O if

E[z/)(Y,X, 0)|X] =0 P-as. << 0= eo(Fy,x)

for all Y, X such that Fyx € Fy x and for all § € ©.

(i) = (i) = (ii)

Tobias Fissler (WU Wien) Efficiency Gap 13 March 2020 10 / 43



Identification functions

Idea: Use ¢(Y, m(X,0)) as identification functions for 6.

I | ey

mean z—y

a-quantile | I{y <z} —«

If ¢ is a strict identification function for I', then (Y, m(X,6)) is a strict
conditional identification function for 6.

However: It is in general not possible to establish an equivalence between
strict conditional and strict unconditional identification functions due to
possible cancellation effects.
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Construction of identification functions

e Starting with a strict Fy, y-identification function ¢ for ', the
function ¢(y, m(x,8)) is only a strict conditional Fy x-identification
function for 8y:

E[o(Y, m(X,H))’X] =0 P-as. — 0 =0o(Fyx) .
e Recall that E[p(Y, m(X,0))|X] = 0 P-a.s. is equivalent to
E[a(X)Te(Y,m(X,0))] =0  for all measurable a: R? — R*

@ Unless o-algebra o(X) is very simple (e.g. if X assumes only finitely
many values), we need infinitely many test functions...

@ Construction: Stack test functions into an instrument matrix
A(x,0) € R?*k and consider

Yaly, x, ‘9) = A(X’ 9)30(% m(X, 0))

@ One needs to check strict unconditional identification on a case by
case basis (sometimes there are primitive conditions).
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Conditional vs. unconditional identifiability
Conditional identifiability = unconditional identifiability:
Example 4 (Mean regression with a linear model)

Let k=1, g= p > 1 and consider
Y=X0+e, 6oecO=R E[]X =0.

Recall Econometrics | course: no perfect multicollinearity, i.e. E[XXT] has full rank.
Indeed, this full rank condition implies a uniquely identified model parameter:

0<(0—0)E[XX](0—0)=E[|m(X,0) — m(X,0)]*] V& 6.

Setting A(X,0) = X, and using ¢(y,z) = z— y, we obtain a strict unconditional
identification function:

E[A(X,0)0(Y, m(X,0))] = E[A(X,0)XT] (6 — 60) = E[XXT] (0 — 6o).

~> We can also use other instrument matrices A(X,0). Crucial condition is

E[A(X,0)X"]  has full rank for all 6 € ©.
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Conditional vs. unconditional identifiability
Conditional identifiability = unconditional identifiability:

Proposition 5 (Dimitriadis, F, Ziegel (2020))

Under Assumption (1), let ¢: R x R¥ — R be a strict Fy,x-identification function. Let
A: RP x © — R9*¥ be an instrument matrix such that

E[A(X,0)D(X,0")] has full rank, where
D(X,0') = VE[p(Y, m(X,0) | X] | _
for all (Y, X) such that Fy,x € Fy.x and for all §,0" € © such that there is a A € [0, 1]
with 0" = (1 — \)fo + \6.

Then A(x,0)¢(y, m(x,0)) is a strict unconditional identification function for 6.

v

Proof: Clearly, E[A(X, 60)¢ (Y, m(X,60))] = 0. For 6 # 6 use the mean value theorem:
E[p(Y,m(X,0)) | X] =E[p(Y,m(X,0)) | X] —E[e(Y,m(X,60)) | X]
= VQ]EI:SD(K m(X7 9)) | X] ‘9:9/(0 - 90) = D(X7 0/)(0 - 90)
Therefore
E[A(X,0)¢(Y,m(X,0))] =E[A(X,0)D(X,60")] (6 — 6o) .
O
R



Summary
e Given a strictly Fy)y-consistent loss function p: R x R > R for T,
p(Y,m(X.0))

is an unconditional strictly Fy y-model-consistent loss.

e Given a strict Fy)y-identification function ¢: R x Rk — R for T,
w(Y,m(X.0))

is a strict conditional Fy y-identification function for .

@ If we use an instrument matrix A: RP x © — R9*k such that
E[A(X, 0)D(X, 0’)] has full rank

for all 0,6’ € © such that there is a A € [0, 1] with
0" =(1—=XN)b+ N\0. Then

A(X,0)p( Y. m(X.0))
is a strict unconditional Fy xy-identification function for 6.
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Mind the Gap!
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Gap between M- and Z-estimators

What is the relation between the building blocks p and ¢?

Theorem 6 (Osband (1985), Gneiting (2011), F and Ziegel (2016),
Dimitriadis, F and Ziegel (2020))

Let o: R x R¥ — R¥ be some strict F-identification function for T' and F be sufficiently
rich.

(i) p: R x R¥ = R is a strictly F-consistent loss for I': F — R¥ only if there is some
matrix-valued function h(z) € R*** such that

Vap(y, 2) = h(2)¢(y, 2) - (1)

(i) @: R x R* — R js a strict F-identification function for T': F — R* if and only if
there is some matrix-valued function h(z) € R¥* with full rank such that

2(v,2) = h(2)¢(y,2) - (2)

v

~ Vop(Y,m(X,0)) = (Vem(X.0))"h(m(X.0)) o(Y, m(X,0)).

=A(X,0)
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Gap between M- and Z-estimators

For one-dimensional functionals k = 1, the class of strictly consistent
losses and strict identification functions is very similar.

Mean:
Vaply,z2) = h(z) (y—2),
———
_(;5”(2)20
o(y,z2) = h(2)(y—2), h(z) #0.
a-quantile:

Vaply,2) = h(z) (L{y<z}-a),

=g’(2)=0

¢(y,2) = h(z)(l{y < z} —a), h(z2) #0.
If the expected losses don't have saddle points, then h > 0. If the expected
identification functions are continuous, then either h > 0 or h < 0.
Therefore, ignoring the sign, there is a one-to-one relation between strictly consistent
losses and strict identification functions for I'.

Tobias Fissler (WU Wien) Efficiency Gap 13 March 2020 17 / 43



Gap between M- and Z-estimators

There is a substantial gap between the classes of M-estimators and
Z-estimators for higher dimensional functionals! The reason are
integrability conditions.?

Examples: Double quantile:

Ve mply.21,22) = (g’l(ozl) gé(022)> (ﬁﬁ;ﬁ:g) gi(21), gb(z) > 0

- 1{y < -
oy, z1,22) = h(z1, z2) <1g< 2% B g) , det h(z1,22) # 0

(mean, variance):

V2,20, 21, 22), h symmetric and positive semi-definite
h(z1, z2) (22 —2221 Z/\/)2> = Ohiz = O1haa, O2h11 = 01ha1 — 2h22
85(}/721722)7 det h(zlaZQ) # 0.

2The Hessian of the expected score must be symmetric.
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Gap between M- and Z-estimators

(VaRy, ESq):
_ Hy<zi}-a
Pz, 22) = ( +(y<a}—a)z/a—1{y< a}y/a) '
Vamplyaz = (EEIHIE 0 oz,

where g'(z1) + ¢'(22)/a, ¢"(z2) = 0.

()5(.% 21722) = h(21722)(p(y7 21722)7 det h(Zl,Zz) #0

Considering vector-valued functionals I" might be of direct applied interest (e.g. when
fitting prediction intervals). On the other hand, the non-elicitability of functionals such
as variance or ES requires to use their co-elicitability with other functionals (mean or
VaR).
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Implications |: Equivariance




Equivariance — Example: mean regression with linear model

Response Y Response Y+ 5

In(formula = y ~ x) Im(formula = y + 5 ~ x)

Coefficients: Coefficients:

(Intercept) X (Intercept) x
-0.003084 0.931221 4.9969 0.931221
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Equivariance

@ Previous example reflects: E[Y+ ¢] = E[Y] + ¢ for all ce R.
@ Recall that for all ce R

(VaRa(Y+ ¢), ESa(Y+ o)) = (VaRa(Y) + ¢, ESa(Y) + ¢),
(E[Y+ d,Var(Y+c)) = (E[Y] + ¢, Var(V)) .

@ Assume we model (VaR,,ES,) with a common or two distinct
intercepts. Alternatively, assume we model (E, Var) with an intercept
for the mean component.

@ For fixed regressors, if the responses Y; are shifted by some constant
ce R, an equivariant estimator 6 should have the same shift in the
intercept components.

o If the model is correctly specified and the estimator is consistent, its
limit will exhibit this equivariance property.

@ We would like the estimator to be equivariant also on finite samples
or under model misspecification.
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Equivariance

@ There are no translation invariant losses for (VaR,, ES,) and for
(E, Var) (F and Ziegel, 2019).

@ But there are translation invariant identification functions:

(E, Var) : oy, 21,22) = (22 _zzz:{ y)2> ;

. _ Hy<aza}-a
(VaRa,ESq) : oy, z1,22) = (22 F iy < n)(n—y) —21> .

e Given that A(X,0) is constant in the intercept component?, we obtain
a translation equivariant Z-estimator.

3This can usually be used for linear models.
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Implications |l: Efficiency




Efficiency

9/\// T= arglé)lln— Z Pt Yt» (Xba))’
S

N 1
GZ,T = arg min H? Z At(Xta 9)@(Yt’ m(Xt’ 0)) ||2’
0e© =1

Question: What is a good / optimal choice of for p; and ¥ / As?

@ ~ Consider asymptotic efficiency of estimators:

VTAY O T — 00) 5> N0, lg), VTAYHBz7 — o) — No(0, 1)
@ Estimator with lower asymptotic covariance matrix wrt the Loewner
order is more efficient:
For two positive semi-definite matrices B and C we say that
B> C <= B-— Cis positive semi-definite,
B> C <= B-— Cis positive definite.
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Asymptotic efficiency

Asymptotic covariance of Z-estimator is Agl-r where:

AzT= A;lZT (A}I)T , (Sandwich form!)

;
1
Y= 7. D E [Ae(Xe, 00)Se(Xe, 00) Ae( Xz, 00)T] € RI*9 and
=1

TZ E [Ae(Xz, 00) De( Xy, 00)] € RI*9

where, for any 6 € O,
5¢(Xe,0) = E [o(Ye, m(Xe, 0)) o (Ye, m(Xe, 0)) 7| Xe] € R4 and
Di(Xe 0) = VB[ (Vi m(X,,0)) | X,] € RS

Asymptotic covariance of the M-estimator has the same structure,
considering

’lpt( Yt, Xt, 9) = VGpt(Yt; m(Xt, 9)) = (Vg m(Xh 0))Tht(m(Xt, 0)) QD(YL», m(Xt, 0)) .

=At(Xt,0)

Tobias Fissler (WU Wien) Efficiency Gap 13 March 2020 24 / 43




Efficiency bound

Theorem 7 (Dimitriadis, F, Ziegel (2020))
A% o(Xe,00) = CDy(X,00)TSe(Xe,00) " forallt=1,...,T, (3)

for some invertible matrix C € R9%9. Then

(i) The Z-estimator based on A¥ ~ has asymptotic covariance matrix

t=1

T —1
(A= (lTZE [De(Xt, 00)TSe(Xe, 60) ™ De(Xe, 90)]) .

(i) Any other choice of instrumental matrices is at most as efficient:
AF'Sr (AT > (An)7h
(iii) The form at (3) is necessary: If for some te {1,..., T} and for any

non-singular and deterministic matrix C
P(Ae(Xt,00) # A% (Xe,00)) > 0, then AT'S7 (A7) > (A5~

v
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Efficiency bound

Idea of the proof:
e (i) is direct calculation.
o (ii) define the vectors

ver = (ATRAXe 00) = AT AT (X:, 00) ) 9o (Ve m(Xe, 00))
Then one can show that
1TE T ] = A-ly . (A=1)T wy—1
7—2 Xt,TXeT| = 27 T(AF)" = (A7)
t=1
e (iii) More involved, but same starting point as (ii).

Comments:

@ Time series generalisation of the result in Newey (1993).

o Necessary assertion (iii) is novel.
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Example: Mean regression

@ Let F(Fytp(t) = E[Yt‘xt}

@ pi(Ye, m(Xt,0)) = ¢e(Y2) — dpe(m(Xe, 0)) + ¢(m(Xe, 0)) (m(Xe, 0) — Yr)
where ¢ is strictly convex.

° (p(Yt, m(Xs, 9)) = Y:— m(X,0).

[*] St(Xt, 00) =E [(p(yt, m(Xh 9))(,0(Yt, m(Xt, 0))1-‘ Xt] = Var( Yt|Xt)
o Dt(Xt, GO) = VQE[SD(YM m(Xt, 9)) | Xt} = ng(Xf, 90)

O A%(Xe,00) = Di(Xe, 00)S:(Xe, f0) " = (TamOto®

@ This efficiency bound can be achieved with an M-estimator, using the loss
functions

(Y: — m(X.,0))? 1 2

1
pelYemXe0) = 5 Natvixy 70D T 2 Var(vixy

@ Classical result. But: Estimating the conditional mean efficiently requires to solve
the more involved problem of estimating the conditional variance!
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Example: Quantile regression

@ Let F(Fyr|xr) = qa(FYt\Xr)
pe(Ye,m(Xe,0)) = (1{Y: < m(X,0)} — &) (ge(m(Xz,0)) — g(Ye))
where g; is strictly increasing.

° gp(Yt, m(Xz, 9)) =1{Y: < m(Xy,0)} — a.

@ Si(X:,00) =E [@(Ye,m(Xe,0)) 0 (Ye, m(Xe,0))T| Xe] = (1 — )

@ D(X:,00) = VgE[ap(Yt, m(Xt, 0)) |Xt} = fytp(t(m(Xt7 00))V9m(Xt, 0o)

® A¥/(X:,00) = De(Xe, 00)T Se(Xe, 00) ™ = f,px, (m(Xs, 0)) FerXudoD T

a(l—a)
@ This efficiency bound can be achieved with an M-estimator, using g: = Fy,|x,,
resulting in the loss function (Komunjer and Vuong, 2010)

pe(Yor m(Xe, 0)) = (L{Y: < m(Xe,0)} — @) (Fyyp (M(Xe, 0)) — Fyyx (Y0)) -

@ Drawback: Estimating the conditional quantile efficiently requires to solve the
more involved problem of estimating the whole conditional distribution! (Actually,
estimating the conditional density at the correct quantile would be sufficient. But
still very involved!)
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Example: Mean—Variance regression

o Let T(Fy,x,) = (E[V:|XJ, Var(Y:X)"

) pt(Yt, my(Xe, 0), v(Xe, 9)) =
m (Xt, 0) ml(Xf, 0)
0, 01 ) (59 (s, 6y o ) 2 mXe0)

_ ml(Xt, 9) - Y:
® o (¥em(X.,0)) = <v(xt, 6) + m? (Xe,0) — YZ)

® S(X:,600) :Var(Yt Y?|Xt)

_ Vomi(X:, 0o)
® Di(X,00) = (vgv(xt, 00) + 21 (Xe, 00) Vo (Xe, 00)

@ No Efficiency Gap: Efficiency bound can be achieved using the strictly convex
function

¢t(Z) = %ZT<VaI‘(Yt Y?|Xt))712
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Example: Double Quantile regression

® Let I'(Fyx.) = (qa(Fvix): 98(Fyix))", o < 5
(For example when interested in prediction intervals).

°
oy, 21,22) = (H{y < 21} — o) (g1.e(z1) — g1.4(y))
+ (Ly < 22} = B) (g2.6(22) — &2.(y)) + £e(),
where g1+, g2+ are strictly increasing (F and Ziegel, 2016).
(]

Hy<z}-p

@ Efficiency Gap: There are DGPs where this efficiency bound cannot be achieved by
an M-estimator!

oy, 21,22) = (l{ys 2) — a)
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Theorem 8 (Dimitriadis, F, Ziegel (2020))
Assume that
(dqrl) the parameters of the individual models are separated

m(Xe,0) = (ma(Xe, 0*), ms(Xe, 0°))7,

where 6 = (00‘, 0ﬁ) € 0% x ©F = O C RY, where 0% € R% and 6° € R%2:

(dqr2) the support of Vma (X, 05) contains at least g1 + 1 different values vi, ..., Vg, 41,
such that any subset of cardinality g1 of {vi,...,vq,+1} is linearly independent.
Similarly, the support of Vmg(X, 05’ ) contains at least g2 + 1 such values.

Then, the following statements hold:
(i) If not

fi(ma (X, 08)) = c1fi(ma(Xe,05)) P-a.s. and
dci,c,c3>0Vt=1,...,T: gjl t(ma(Xt,GO)) C2 ft(ma(Xt, 00 )) P-a.s. and
gh.:(mp(Xe,05)) = cafe(ms(Xe, 05)) P-a.s.

then the M-estimator cannot attain the Z-estimation efficiency bound.

(i) If the condition above holds and V mu (X, 05) = Vmg(Xe, 65) almost surely for all
t=1,..., T, then the M-estimator achieves the Z-estimation efficiency bound.

v
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Example: Double Quantile regression

Proposition 9 (Dimitriadis, F, Ziegel (2020) — Working version)
For a parametric and linear model with separated parameters such that

fe(ma (X, 00))

ﬂ'(mﬁ (va 00))

is deterministic for all t =1, ..., T, the most efficient Z-estimator is based on a strict
global identification function.
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Example: VaR-ES regression

@ Let F(Fytp(t) = (Qa(FYf\Xz)vESG(FY:IXr))T

°
pe(y, 21, 22) = (L{y < 21} — @) ge(21) — Ly<zy 3 8:(y) + Kely)
—y)l{y <
+ ¢i(z2) <22 —n+ W) — de(z2),
where g; is increasing and ¢, ¢"” > 0 (F and Ziegel, 2016).
°

oy, z1,22) = ( H{y<zi}—a )

n—z+2(z—y)l{y<z}

@ Efficiency Gap: There are DGPs where this efficiency bound cannot be achieved by
an M-estimator!
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Theorem 10 (Dimitriadis, F, Ziegel (2020))
Assume that

(qesrl) the parameters of the individual models are separated
m(Xe,0) = (qa(Xt,0%), €a(Xe,0°)", 6= (67,6°) € @ x ©° =0 < R*

(qesr2) the support of Vqa(Xe,03) contains at least g1 + 1 different values va, . .., Vg, +1,
such that any subset of cardinality g1 of {vi,...,vq,+1} is linearly independent.
Similarly, the support of Ve (Xt 05) contains at least g2 + 1 such values.

Then, the following statements hold:

(i) Ifnot3ci,co,c3 >0,caeRVE=1,...,T:

Ef[(qa(va 03) — YT)QH{Ytqu(XT,GS)}} =a (qa(Xt,GZ) = ea(Xt,HS))Q, P-a.s. and

Y (ea(X:, 05)) = ey P-a.s. and
£ (8a (Xt 05)) (40 (X009 e (X,68))
aX ) = faxyq_ 2 — 4 P gs.
8:(qa(Xe, 07)) = csfi(qa(Xe, 67)) (0 X0 0) e (X008))  © a.s

then the M-estimator cannot attain the Z-estimation efficiency bound.

(ii) If the condition above holds and V qa (X:, 03) = Vea (X, 05) almost surely for all
t=1,..., T, then the M-estimator achieves the Z-estimation efficiency bound.

v
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Simulation: Double Quantile Regression
Xe = (1, Xe2)T, 70 = (10,0.5)T and no = (0.5,0.5)T, T = 2000

Xt2 idsg. Beta(3,1.5), and Y= X]yo + (XIno)ut,

for a conditional location model X]~q, conditional scale model X]7y and
residuals vy independent of regressors X; such that,

homoscedastic u; ”~d/\/'(0, 1), or
heteroscedastic u; iid ty,(pe, o) with time-varying location i, scale o and
degrees of freedom v;.

For the heteroscedastic case, we consider a break model:
ve = 3lirct/oy + 1001 e 79y

Mt = Qﬂ(tVl) _UtQﬁ(tIIt) and O =

s Qa(yt|Xt) = XI (70 + 7]0201) and Q/B(Yt|Xt) = XI ('70 + 7]02,3)’
where z, = F,Y(a), zz = F,1(B).

u
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Simulation: Double Quantile Regression

For homoscedastic scenario:

3 deterministic constant c>0: ¢

Il
|
Sh s

For heteroscedastic scenario:

is deterministic, but time varying!
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Simulation: Double Quantile Regression — True
Asymptotic Standard Deviations

01 02 03 04 01 02 03 04

Panel B: (o, 8) = (1%, 2.5%)

id 14.220 7.865 10.175 5.627 51.446 24.383 31.131 15.319
eff 13.619 7.546 9.745 5.399 48.632 22.643 29.936 14.636
eff.bound 13.619 7.546 9.745 5.399 47.871 22.289 29.466 14.409

Panel C: (e, B) = (5%, 10%)

id 8.238 4.517 6.664 3.654 17.012 8.929 11.996 6.389
eff 7.895 4.337 6.387 3.508 16.605 8.672 11.643 6.208
eff.bound 7.895 4.337 6.387 3.508 16.453 8.585 11.536 6.145

Panel D: (a, 8) = (25%, 50%)

id 5.306 2.910 4.880 2.677 6.306 3.450 5.436 2.975
eff 5.091 2.797 4.683 2.573 6.037 3.309 5.211 2.857
eff.bound 5.091 2.797 4.683 2.573 6.031 3.306 5.206 2.854
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Simulation: VaR-ES regression
Xe = (1, Xe2)T, 70 = (—=1,—0.5)T and 79 = (0.5,0.5)T, T = 2000
Xt2 . Beta(3,1.5), and Y= X]yo + (XIno)uy,

for a conditional location model X[~, conditional scale model X[, and
residuals vy independent of regressors X; such that,

homoscedastic u; ”~dN(O, 1), or
heteroscedastic uy; iid ty,(pe, o) with time-varying location ¢, scale o and
degrees of freedom v;.

For the heteroscedastic case, we consider a break model:
ve = 3l <r/y + 1001 (1o 72y

_ Qa(tul) - ESOé(tl/l)
Qa(tl/t) - ESOé(tVt)
~ Qa(Yt|Xt) - XI (’YO + nOZOé)a and Esa(yt’Xt) = XI (’)’0 + 770211)7

Ht = Qa(tlll) - O'tQa(tllt) and Ot

where z, = VaR,(u:) and z, = ES,(u;) are true quantile and ES of wu;.
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Simulation: VaR-ES regression

For homoscedastic scenario:

2
Vare (Vi Ye < 00(X69) = (X [1 =gy (o63) ] ,

(qa(Xe, 60) — €a(Xe,68))” = (20 — 2a)? (X[10)*,  and

1
f(qa (X, 67 = ——"f,(z),
t(ga (Xt 0)) XI’UO (za)
For heteroscedastic scenario:

Var, (V4] Ye < ga(Xe, 60)) = (XTno)? Var (uelur < Qul(uy)),

which is time varying.
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Simulation: VaR-ES regression — True Asymptotic

Standard Deviations

Hom Het
01 02 03 04 01 02 03 04
Panel A: oo = 1%
zero exp 17.760 11.411 19.282 11.525 238.471 216.677 323.986 304.832
zero log 13.780 7.611 16.966 9.370 70.491 32.788 153.331 84.508
eff eff 13.772 7.607 16.926 9.349 61.588 28.192 153.252 84.468
eff.bound eff.bound 13.772 7.607 16.926 9.349 55.103 24.923 123.186 70.744
Panel B: @ = 2.5%
zero exp 12.274 7.610 13.107 7.632 83.024 63.349 113.068 85.285
zero log 9.950 5.479 11.942 6.574 36.121 17.699 71.808 39.550
eff eff 9.943 5.475 11.908 6.557 33.381 16.354 71.747 39.517
eff.bound eff.bound 9.943 5.475 11.908 6.557 31.153 15.235 59.236 33.869
Panel C: o = 10%
zero exp 7.268 4.299 7.474 4.227 18.627 11.866 27.838 16.970
zero log 6.356 3.505 7.182 3.959 13.186 6.970 23.749 13.108
eff eff 6.350 3.501 7.154 3.945 12.760 6.795 23.706 13.085
eff.bound eff.bound 6.350 3.501 7.154 3.945 12.473 6.669 19.888 11.173
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Summary and Outlook




Summary

@ Structural results of conditional and unconditional consistency /
identifiability.

@ For vector-valued functionals, class of Z-estimators is substantially
larger than the class of M-estimators, due to integrability conditions.

@ Implication I: M-estimators may fail to be translation equivariant,
where Z-estimators are.

@ Implication IlI: Efficiency Gap:

» Generalisation of the classical Z-estimation efficiency bound into a time
series framework.

» For double quantile regression and VaR-ES regression, there are DGPs
where the M-estimator does not reach the Z-estimation efficiency
bound.

» Simulated data support the result and hint and a more pronounced gap
for ‘extreme’ levels of v for VaR—ES regression
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Discussion and Outlook

o Generalise separated parameter condition.

@ Semiparametric Z-estimation efficiency bound does not necessarily
coincide with semiparametric efficiency bound due to Stein (1956).

@ Investigate more situation, such as double expectile regression.
Suspicion that there is an efficiency gap.

@ Examine efficiency considerations for Diebold-Mariano tests as well,
which aim at forecast comparison and forecast selection.
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Thank you for your attention!




