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Motivation

• Typical regression models relate the expectation of the response to covariates.
• ‘Statisticians are mean lovers’.
• This exclusive focus on the conditional expectation may however

I possibly not meaningful and insufficient,
I often not flexible enough,
I does not comply to the main goal of the analysis.
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Motivation

Motivating Example: The Boston Housing Data

• Popular nonparametric regression dataset with n = 506 and
I Y : Median house price in a census tract
I covariates X : NOX, RN, DIS, LSTAT, TAX

• Aim: Estimate a nonparametric regression model such that the entire
distribution F (Y |X) is a function of X and e.g.

E (Y |X) = f (X).

• However: The marginal distribution of Y is highly non-Gaussian
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Distributional Regression

Bayesian Distributional Regression

• Observed data pairs (y1, x1), . . . , (yn, xn).
• Model assumption 1: Conditional distribution F (yi |xi ) given xi , i = 1, . . . , n is

from pre-specified class of K -parametric densities

p(yi |ϑi1, . . . , ϑiK ).

• Model assumption 2: Each parameter ϑik , k = 1, . . . ,K is related to a
regression predictor ηik = ηk(xi ):

ϑik = hk(ηik) and ηik = h−1
k (ϑik)
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Distributional Regression

However, . . .

establishing a good distributional model is difficult in practice because you need to
decide

• which parametric distribution assumption to pick,
• which variable goes in which predictor (location, scale, shape of the

distribution),
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The General Idea

Our General Idea

• Extract the implicit copula of a response vector from a Bayesian regularized
smoother

• Construct and compare copulas for:
I Three popular shrinkage priors (BVS, PS, HS)
I Differing (matching) bases

Why?
Can be used to compare the shrinkage properties of any Bayesian smoother
Combined with arbitrary margins, the copula models provide a novel class of
semiparametric distributional regression models
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Copula Smoother

Sklar’s Theorem

Consider N realizations Y (N) = (Y1, . . . ,YN)′ of a continuous-valued response,
with corresponding covariate values x(N) = {x1, . . . , xN} Following Sklar’s theorem
the joint density of Y (N)|x(N) can always be written as

p(y(N)|x(N)) = c†(F (y1|x1), . . . ,F (yN |xN)|x)
N∏

i=1
p(yi |xi ) , for N ≥ 2

Here, c†(u(N)|x(N)) is a N-dimensional copula density and F (yi |xi ) is the
distribution function of Yi |xi ; both of which are unknown
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Copula Smoother

Copula Smoother

• We model the joint density (given any covariates) using the copula
decomposition

p(y(N)|x(N)) = cπ(FY (y1), . . . ,FY (yn)|x)
n∏

i=1
pY (yi )

The distribution Yi |xi is assumed to be invariant with respect to xi , and has
density pY and distribution function FY

Distributional flexibility comes from choices for pY

However, the impact of the covariate values on Y (N) is captured through the
copula with density cπ(u(N)|x(N),θ), where ui = FY (yi )
We call this a copula smoother because the relationship between x and y
comes from the copula only
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Copula Smoother

Construction of cπ

• cπ is constructed from a random vector Z̃ with CDF FZ̃ by inversion of
Sklar’s theorem:

Cπ(u|x) = FZ̃

(
F−1

Z̃1
(u1|x), . . . ,F−1

Z̃n
(un|x)|x

)
• Z̃ |x is called pseudo response as it is not observed directly
• u1, . . . , un is called the copula data
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The Pseudo Response Model

The Pseudo Response Model

• For i = 1, . . . , n consider the regression model

Z̃i = m̃(xi ) + εi , εi
iid∼ N(0, σ2),

with

m̃(xi ) =
p∑

j=1
βjBj(xi )

and Bj the p basis functions, such as B-spline basis, radial basis, . . .

β|θ,γ, σ2 ∼ N(0, σ2Pγ(θ)−1

Klein & Smith Implicit Copulas from Bayesian Regularized Regression Smoothers 9



The Pseudo Response Model

The Pseudo Response Model

• For i = 1, . . . , n consider the regression model

Z̃i = m̃(xi ) + εi , εi
iid∼ N(0, σ2),

with

m̃(xi ) =
p∑

j=1
βjBj(xi )

• and Bj the p basis functions, such as B-spline basis, radial basis, . . .

β|θ,γ, σ2 ∼ N(0, σ2Pγ(θ)−1

Klein & Smith Implicit Copulas from Bayesian Regularized Regression Smoothers 9



The Pseudo Response Model

The Pseudo Response Model

• For i = 1, . . . , n consider the regression model

Z̃i = m̃(xi ) + εi , εi
iid∼ N(0, σ2),

with

m̃(xi ) =
p∑

j=1
βjBj(xi )

• and Bj the p basis functions, such as B-spline basis, radial basis, . . .
• Regularization (smoothness) can be achieved via the prior

β|θ,γ, σ2 ∼ N(0, σ2Pγ(θ)−1)

Klein & Smith Implicit Copulas from Bayesian Regularized Regression Smoothers 9



The Pseudo Response Model

The Pseudo Response Model

• For i = 1, . . . , n consider the regression model

Z̃i = m̃(xi ) + εi , εi
iid∼ N(0, σ2),

with

m̃(xi ) =
p∑

j=1
βjBj(xi )

• and Bj the p basis functions, such as B-spline basis, radial basis, . . .
• Regularization (smoothness) can be achieved via the prior

β|θ,γ, σ2 ∼ N(0, σ2Pγ(θ)−1)

Klein & Smith Implicit Copulas from Bayesian Regularized Regression Smoothers 9



Copula Construction

Copula Construction

• Let S(x,θ,γ) = diag(s1, . . . , sn) with

Var(Z̃i |x,θ,γ) = σ2

s2
i

• Set
Z = σ−1S(x,θ,γ)Z̃

• Then, the copula of Z |x,θ,γ is a Gaussian copula with correlation matrix

R(x,θ,γ) = S(x,θ,γ)(I + BPγ(θ)−1B′)S(x,θ,γ)

• Label the copula function C(u|x,θ,γ)
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Copula Construction

Copula Construction

• If π(θ,γ) is any proper density, then the implicit copula is

Cπ(u|x) =
∫

C(u|x,θ,γ)π(θ,γ)d(θ,γ)

• It is easy to show that this is a proper copula
• For the regularization priors, Cπ(u|x) turns out to be far (!) from a Gaussian

copula
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Three Implicit Copulas

Three Implicit Copulas

• P-spline copula (PSC)
I AR(2) prior
I θ = {τ 2, ψ1, ψ2}, γ = ∅
I Matched with B-spline basis

Horseshoe copula (HSC)
βj ∼ N(0, λ2

j ), λj ∼ C+(0, τ), τ ∼ C+(0, 1)
θ = {λ1, . . . , λp , τ}, γ = ∅
Matched with Fourier basis or radial basis

Bayesian variable selection copula (BVSC)
βγ ∼ N(0, c(B′γBγ)−1), π(γ) = Beta(p − pγ + 1, pγ + 1)
θ = ∅, γ = {γ1, . . . , γp}
Matched with regression splines or radial basis
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Dependence Structure

Dependence Structure

• For a univariate function m(x) consider two new response values Y0,1,Y0,2

with covariate values x0,1, x0,2

• Compute the Spearman correlation

ρS
π(Y0,1,Y0,2|x) ≡ ρS

π(Y0,1,Y0,2|x, x0,1, x0,2)

and plot this as over a grid of x0,1, x0,2.
• We do this for π(θ,γ) equal to the prior and the posterior
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Dependence Structure

Dependence Structure

(a) Prior: PSC & B-spline
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(d) Posterior: PSC & B-spline
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(b) Prior: HSC & Fourier
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(e) Posterior: HSC & Fourier
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(c) Prior: BVSC & cubic spline
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(f) Posterior: BVSC cubic spline
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Dependence Structure
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Dependence Structure
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PSC & B-spline (DPhat)
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Posterior Estimation

Posterior Estimation

• cπ cannot be expressed in closed form
• The conditional likelihood

p(y|x,θ,γ) = φn(z; 0,R(x,θ,γ))
n∏

i=1

pY (yi )
φ1(zi )

is also computationally infeasible for large n because R is (n × n) and full
• Instead, we use the augmented likelihood

p(y|x,β,θ,γ)

and MCMC
• Note that in contrast to the Bayesian linear model the posterior of θ is often

not available in closed form
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Predictive Densities

Predictive Densities

• Predict the density of a new observation Y0|x0 using the posterior predictive
density

p(y0|x0, x, y) =
∫

p(y0|x0, x,β,θ,γ)p(β,θ,γ|x, y)d(β,θ,γ),

where

p(y0|x0, x,β, thetavec,γ) = p(z0|x0, x,β, thetavec,γ)pY (y0)
φ1(z0) ,

with z0 = Φ−1(FY (y0))
Easy to compute MC estimates of density, and its moments (or other
summaries) accurately

Klein & Smith Implicit Copulas from Bayesian Regularized Regression Smoothers 18



Predictive Densities

Predictive Densities

• Predict the density of a new observation Y0|x0 using the posterior predictive
density

p(y0|x0, x, y) =
∫

p(y0|x0, x,β,θ,γ)p(β,θ,γ|x, y)d(β,θ,γ),

where

p(y0|x0, x,β, thetavec,γ) = p(z0|x0, x,β, thetavec,γ)pY (y0)
φ1(z0) ,

with z0 = Φ−1(FY (y0))
Easy to compute MC estimates of density, and its moments (or other
summaries) accurately

Klein & Smith Implicit Copulas from Bayesian Regularized Regression Smoothers 18



Predictive Densities

Predictive Densities

• Predict the density of a new observation Y0|x0 using the posterior predictive
density

p(y0|x0, x, y) =
∫

p(y0|x0, x,β,θ,γ)p(β,θ,γ|x, y)d(β,θ,γ),

• where
p(y0|x0, x,β,θ,γ) = p(z0|x0, x,β,θ,γ)pY (y0)

φ1(z0) ,

with z0 = Φ−1(FY (y0))

Easy to compute MC estimates of density, and its moments (or other
summaries) accurately

Klein & Smith Implicit Copulas from Bayesian Regularized Regression Smoothers 18



Predictive Densities

Predictive Densities

• Predict the density of a new observation Y0|x0 using the posterior predictive
density

p(y0|x0, x, y) =
∫

p(y0|x0, x,β,θ,γ)p(β,θ,γ|x, y)d(β,θ,γ),

• where
p(y0|x0, x,β,θ,γ) = p(z0|x0, x,β,θ,γ)pY (y0)

φ1(z0) ,

with z0 = Φ−1(FY (y0))
• Easy to compute MC estimates of density, and its moments (or other

summaries) accurately

Klein & Smith Implicit Copulas from Bayesian Regularized Regression Smoothers 18



Boston Housing Data

Motivating Example: Predicting House Prices

• Pseudo response model:

Z̃i =
5∑

k=1
f (xik) + εi

• Major aim: Predictive densities of four house prices
• These are at 0.4,0.6,0.8,0.975 quantiles of the data distribution
• Comparison with a regular P-spline regression model (with Gaussian

disturbances)
• Log-scores clearly favour the copula model
• We also compared results to other distributions (log-normal and Gamma) but

results stayed similar.
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Boston Housing Data

Predicting House Prices I
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Boston Housing Data

Predicting House Prices II
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Boston Housing Data

Predicted Expectations and Pseudo Residuals
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Discussion

Discussion

• Framework for comparison of Bayesian regularized regression smoothers

Implicit copula has a dependence structure very different from that of a
Gaussian copula

Also, very different from the implicit copula of a Gaussian process prior!

New distributional regression method

All dependence between Y and x is captured through a flexible implicit copula

Improves predictive accuracy

Applicable to multiple covariates and large n (e.g. 40,000 in other work)
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• Applicable to multiple covariates and large n (e.g. 40,000 in other work)
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