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A matter of perspective

Can you guess the data generating mechanism?



A matter of perspective

And now?

Swissroll mapping: (x , y)→ (x cos x , y , x sin x)



Motivation

A small number of variable is often sufficient to effectively describe
high-dimensional data

This number is called the intrinsic dimension (ID) of the data

The ID can vary within the same dataset

We exploit this fact to gain insight in the data structure by
developing an approach to cluster regions with the same local ID

Regions with the same ID host points differing in core properties:
• firms with different financial risk in balance sheets data
• identified vs unidentified models in MCMC simulation
• winning vs loosing teams in NBA basketball
• folded vs unfolded state in protein configurations
• active vs non-active regions in brain imaging data

A simple topological feature uncovers a rich data structure



The Intrinsic Dimension (ID) of the Data

Given data points with D coordinates, the ID = d is the
minimum number of dimensions required to describe the
data, while minimizing the information loss
Many methods [e.g. 1-3] for estimating the ID are based on the
scaling of the number of neighbors of point xi within distance r

Ni (r) ≈ rdρ(xi )

where ρ(xi ) is the density of the data evaluated in xi

1 Physics Rew. Letters, 1983

2 Proc. Machine Vision, 2003

3 Scientific Report, 2016



Statistical inference based on Local Intrinsic Dimension

Referring to the ID, we assume that the number of independent
directions of variation of the data can be lower, equal to d < D

Accounting for the ID can improve statistical analysis such as
identification of patterns and classification schemes which are
computationally hard in high dimension D (many variables)



Intrinsic dimension: what is the right d?

If the data actually lie on hypersurface of lower dimension than D
the density should be evaluated on this hypersurface



ID Toy Example: Iris Data

Three types of Iris flowers,
D = 4 recorded variables



ID Example I: Molecular Dynamics



ID Example II: Image Processing



ID Example III: Different Manifolds



The Intrinsic Dimension as a function of the scale

We randomly extract samples from the dataset
The smaller is the sample size, the larger is the typical nearest
neighbor distance
We compute the ID as a function of the size of the subsample N
Example: d = 2 dimensional gaussian wrapped around a swissroll
and embedded in a D = 30 dimensional space + 30 dimensional
noise
A plateau in the plot of d vs N indicates the ID (d = 2)



How to estimate the ID? Projective approach

Project D-dimensional data into lower dimension d :

Πd : xi ∈ RD 7→ yi ∈ Rd

We should try different d and evaluate for each a Loss function:
L
(
Πd
)
, where L

(
Πd
)

measures the data loss occurring in the
projection
Examples:
L
(
Πd
)

=
∑

i ‖xi − yi‖2 Preserves the original distance relations

L
(
Πd
)

=
∑

i xix
T
i − yiy

T
i Preserves the original covariance matrix

We try to balance the tradeoff between
dimension reduction and data loss



How to estimate ID? Projective approach

Problem 1: Computationally burdensome (search for optimal
projection for each d)
Problem 2: Robust ID estimates only if L

(
Πd
)

has large gap as a
function of d . If there is no gap, the estimation can be rather
arbitrary

Example: Principal Component Analysis (PCA)

Projects data, X , onto linear
subspace spanned by first d
eigenvalues of covariance matrix
XTX
Loss:
L
(
Πd
)

=
∥∥∑

i xixTi − yiyT
i

∥∥
on the villin headpiece MD

simulation (example I):

How can one select an appropriate d?



How to estimate ID? A (first) Statistical Approach

Assume that data are sampled from a distribution with density ρ(x)
The distances between points in the dataset follow a scaling law
that depends on ρ(x) and d
If the dependence on ρ(x) can be removed, then d can be
estimated from the scaling relation

Example: Correlation Dimension The number of points at
distance < r from point i scales as

Ni (r) =
∑
j

I (dij < r) ≈ rdρ (xi )

If ρ(x) is constant,

N(r) =
∑
ij

I (dij < r) ∼ rdρ

d can be estimated with simple linear fit
However, when ρ(x) is variable the estimation fails dramatically



ID: TWO-NN Estimator

TWO-NN idea: decouple the estimation problem by finding
suitable function of the distances that depends only on d
Two assumptions:

• the data points xi are independent samples from a density
ρ(x)

• for all xi , ρ(x) is approximately constant in the region
containing the first 2 neighbors of xi

Then, consider µi = ri2/ri1 where rij is the distance between i and
its j-th nearest neighbor
Under the assumption of local uniformity, the distribution of
µi depends only on d and follows a Pareto law:

L(µi ) = dµ
−(d+1)
i

Presented in: Facco, Errico, Rodriguez, Laio, Scientific Reports (2017)



ID: TWO-NN Estimator

The ID can be inferred from the µi of all points collectively (fit a
Pareto distribution)
This is independent on the estimates of ρ (assuming ρ is constant
over scale of first 2 neighbors)

There are several ways of fitting:

• Fit the empirical cumulative distribution of µ: F (µ) = 1−µ−d

• Equivalently, linear fit on − log(1− F (µi )) = d · logµi

If the assumptions are satisfied, then the distribution of µi is well
fitted

If the fit is not good, it means the model fails because:

1 the density is strongly varying even on the scale of the first
two neighbors

2 the intrinsic dimension is not uniform in the dataset
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The problem of multiple IDs

The data may lie on several manifolds M1, . . . ,MK , each with
different ID: d1 . . . dk . Example with D = 3 and K = 3:



How to deal with this heterogeneous ID case? HIDALGO!

Heterogeneous ID algorithm - Hidalgo model
allows for the possibility that the ID may not be uniform in the
dataset. Assumptions of the model:
H1) ρ(x) is constant (uniform) on scale of the first two
neighbors
H2) ρ(x) has support on the union of a finite number K of
manifolds M1, . . . ,MK with intrinsic dimensions d1 . . . dk

We postulate the density as a mixture

ρ(x) =
K∑

k=1

pkρk(x)

Under the previous assumptions one can show that the distribution
of µi is a mixture of Pareto distributions

f (µi ) =
K∑

k=1

pkdkµ
−dk−1
i



Likelihood and Estimation

The likelihood of the data is

L(µ|d,p) =
N∏
i=1

K∑
k=1

pkdkµ
−dk−1
i

where µ = (µ1 . . . µN)
Then we can again estimate

d = (d1 . . . dK ) , p = (p1 . . . pK )

To estimate parameters, fix inferential approach

(A) Frequentist:
de ,pe = argmax(L(µ|d,p))

(B) Bayesian:
Fix Pprior (d,p) and compute the posterior means
de ,pe = 〈d,p〉post Ppost(d,p) ∝ L(µ|d,p)Pprior (d,p)
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Likelihood and Estimation

Because of the sum over K , hard to work with

L(µ|d,p) =
N∏
i=1

K∑
k=1

pkdkµ
−dk−1
i

Solution: Introduce Latent Variables Z = Z1, . . . ,ZN which
record the manifold membership of each point
Likelihood is seen as marginal

L(µ|d,p,Z) =
N∏
i=1

pZi
dZi
µ−dzi−1
i

Jointly estimate (d,p,Z)



The number of components K is inferred by trying increasing
values in [1,Kmax ] and performing model selection with BIC

Simulation Study: ρ(x) = Gaussian
Comparison between two manifolds of dimension d1 = 4 and
d2 = 5, . . . , 9
In every case, the estimation of d1 and d2 is inaccurate and the
estimation of Z is wrong



What are we missing?

This approach does not work! Why?

Pareto distributions with different d are highly overlapping
Difficult to assign a point i based only on its µi
Neighboring points have different Z

We must assume that the manifolds are separated, with at
most a (small) intersection



One more necessary hypothesis

We then add the following
Hypothesis: the first q neighbors of a point mostly belong to
the same manifold
This implies that the neighborhoods of each point must be
approximately homogeneous (H1)
We enforce this through additional term in the likelihood:
Let the neighborhood of point i be defined by its first q neighbors

nini = number of neighbors with same Z as i ,

nouti = number of neighbors with different Z from i

New term in the Likelihood:

L
(
nini |Z

)
=
ζn

in
i (1− ζ)n

out
i

Z

ζ > 1
2 : Parameter that controls the degree of uniformity



Enforcing uniform neighborhoods

Thanks to L
(
nin|Z

)
=
∏

i
ζn

in
i (1−ζ)n

out
i

Z , we get correct estimates of
both d,p and Z:



A Global Topological Description

We achieve a global topological description of the data space,
dividing the space into regions of uniform intrinsic dimension



A Global Topological Description

We achieve a global topological description of the data space,
dividing the space into regions of uniform intrinsic dimension.
We can also represent the size and dimension of the manifolds with
a diagram:



Application I



Application II



Application III



Confirmatory Data Analysis vs Exploratory Data Analysis

CDA: Starts from assumed model for the data, given a priori, and
uses statistics to verify whether the data fit the assumed model.
Can be rigid: fail to exploit richness of the data



Confirmatory Data Analysis vs Exploratory Data Analysis

EDA: Set of procedures (algorithms) to find structure in the data
Often, no formal evaluation of the results: danger of falling into
magical thinking (seeing structures that are not there)



Towards statistical validation of EDA

CDA techniques are rigid, EDA techniques usually lack statistical
validation.
Can we have the flexibility of EDA and the reliability of CDA?
A tentative solution is to embed EDA within a statistical framework
based on mild assumptions and extremely flexible models.

A possible compromise consists in what we did:
We started with EDA method with no statistical validation of
results.
For statistical validation, some assumptions on the data were
introduced.
As a result, we developed procedure to reconstruct the data
intrinsic dimension.



BNP - HIDALGO

• To adopt a full Bayesian approach, we need to address the
uncertainty on the number of mixture components K

• Instead of making K stochastic, we adopt a Bayesian
nonparametric approach, letting K →∞

Let us denote the Pareto (1, d) distribution, with P (·|d)
We now model the ratios of the two smallest distances for every
point µi as a infinite mixture of Pareto distributions:

+∞∑
i=1

pi · P(µi |di )

We can adopt a Dirichlet process prior for the parameters that
model the ID



In this way, we formulate a Dirichlet Process Mixture Model:

µi ∼ P(µi |di )
di ∼ G

G ∼ DP (α,G0)

where the base measure G0 = Gamma(α, β), to exploit conjugacy



If we introduce a latent variable Z which denotes, for every
observation, the assigned component of the mixture, we can
rewrite the model as:

µi |Z,d∗ ∼ f
(
µ|d∗zi

)
Zi |p

ind∼
+∞∑
k=0

pkδk ⇐⇒ P (Zi = k) = pk

nin|Z ∼ Q

p ∼ SB(α)

d∗k ∼ G0

where with SB we denote the usual stick breaking prior, G0 is a
Gamma(α, β) and Q is a distribution with a density defined as

L
(
nin|Z

)
=
∏

i
ζn

in
i (1−ζ)n

out
i

Z



BNP Hildago: Toy Example - Iris

The two plots contain an histogram of all the pairwise distances between

the observations. The bottom one shows the histogram for all µi ’s. Our

methodology proposes a stronger dimensionality reduction than other

distance-base clustering models 1

It seems that the data contains
some sort of information:

look at the matrix N q, with q = 3

1Bayesian Distance Clustering - Duan and Dunson



We record T = 50k iterations after 150k burn-in steps
Minimizing the Binder Loss (which measures the disagreements in all

possible pairs of observations between the true and estimated clusterings

- R function mccclust::minbinder),we find three cluster, almost
coincident with the Flower Species. (Setosa - Versicolor - Virginica)
Here is the Pairwise Coclustering Probability Matrix.



For each observation µi , we obtaind a MCMC of Intrinsic
Dimensions dt , t = 1, . . . ,T . The distributions of the posterior
medians, grouped per Species, are

We can conclude that the measurements of the Versicolor and
Virginica Species of Iris are embedded in manifolds of dimension
< 4



Application II : Identifiability of MCMC output

We can use BNP - Hidalgo to estimate the ID of the path of an
MCMC chain to investigate the presence of identifiability issues in
the model
Let us consider the following Bayesian linear regression model:

M1) Yi = β0 + β1X1i + β2X2i + β3X3i + β4X4i + εi

and its ill posed version:

M2) Yi = β0 + β1 + β2X2i + β3X2i + β4X4i + εi

where Xj ∼ U [aj , bj ] on different intervals and εi ∼ N (0, 1)

We estimate the model using the Hamiltonian no u-turn sampler
(R package Rstan)
Every iteration of the Hamiltonian chain is treated as an
observation embedded in R5. After computing the corresponding
µi ’s, a MCMC sample of T = 2k iterations is collected after a
burn in of B = 2k steps



Identifiable Model

For each observation µi , we obtain a MCMC of Intrinsic
Dimensions dt , t = 1, . . . ,T
The distribution of the posterior medians is



Not Identifiable Model

For each observation µi , we obtain a MCMC of Intrinsic
Dimensions dt , t = 1, . . . ,T
The distribution of the posterior medians is

Our approach detects that two dimensions out of five are actually
redundant



Application on Simulated Data

We also apply BNP-HIDALGO to the same simulated data on
which the finite-dimensional version of HIDALGO was first
evaluated

We adopted the same setting to favor the reproducibility of the
results and the comparison between the two methods

Benchmark dataset:
1000 observation from a 4-dimensional Gaussian,
1000 observations from a 5-dimensional Gaussian,
both with unitary variance
The centroids are chosen to be at a distance from each other of
0.5, challenging the model with overlapping data



We set the number of neighbors q = 3
After a Burn-in period of 20k iterations, 10k samples are retained
for posterior inference:







We decide to assign one observation to the dimension d̂i equal to 4
or 5 following this criterion: for every observation, we collect the
MCMC sample for d , namely d t

i , with t = 1, . . . , 10000.
We then compute the median over the iterations d̃i . Then

d̂i =

{
4 if d̃i < 4.5

5 if d̃i ≥ 4.5

We end up with the following confusion matrix:

d̂i vs di 4 5

4 994 6
5 11 989



A more challenging setting: 1000 observations generated from 5
Gaussian distributions of dimensions 1, 2, 4, 5 and 9, partially
overlapping
Here they are projected on the first three dimensions:



The model is able to estimate the IDs that are in the dataset
The red lines denote the MLE estimates in every subgroup
The green lines denote the actual ID



BNP Hildago: Application to Basketball data
Joint work with E. Santos-Fernandez and K. Mergensen

SportVU NBA player tracking technology: captures (at 25 frames per
second) the coordinates of each player (x , y) and the ball (x , y , z)
In this analysis, we use the locations of the players and the ball when
each shot was taken with a potential outcome (scored or missed)



BNP Hildago: Application to Basketball data
Joint work with E. Santos-Fernandez and K.Mergensen

We are applying our methodology to undercover potential patterns in the
IDs of the “configuration” on the field of the players when a shot is taken.
Example: Golden State Warriors (home - 89) vs Cleveland (away - 83)



BNP Hildago: Application to Basketball data
Joint work with Edgar Santos-Fernandez and Kerrie Mergensen

Results on 15 games from the NBA season 2015-16
RHS: ID of the winning teams



The path to Hidalgo

• The problem of clustering led us to the problem of density
estimation

• The problem of density estimation led us to the problem of ID
estimation

• We developed a reliable ID estimator, TWO-NN, that limits
the issue of density variations

• We realized that often the ID is not constant in the dataset:
we extended the statistical framework of TWO-NN to comply
with this case

• We developed Hidalgo, a method that finds groups of points
(manifolds) of different ID

• Applications of Hidalgo to real datasets reveal that the
topological information given by the ID discriminates points
differing in important features
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