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linguists have a bad reputation

Every time | fire a linguist,
the performance of the speech recognizer goes up.

(F. Jelinek)



research strategies for linguistics

1. dismiss the results from engineering as irrelevant
or

2. take the units of deep convolution networks
to be the true representations of sound units (phonemes) and
minimal meaning-bearing units (morphemes)
(the heritage of the logic tradition in linguistics)

or

3. set aside the traditional "hidden” constructs of linguistics
and take a fresh look at how language might work



overview

1. word learning in baboons
2. auditory word recognition

3. inflecting Latin verbs



modeling tool

» discrimination learning with simple two-layer networks

> incremental multivariate multiple regression



the bandwagon of deep learning

Grainger et al. (Science, 2012)

French baboons doing lexical decision in English learn up to 300 words

TORE EFTD WEND ULKH BANG BANG ULNX TORE PSHA AHMF
BOOR KRBA KRBO WEND BANG KRBU IMMF BANG PSMI OHMF



TORE



EFTD



WEND



a deep convolution network
letters and letter pairs ‘emerge’ on hidden layers

(51) 20 feature maps (C1)20feature maps  (S2)SOfeaturemaps  (C2)50 feature maps 500 units

ffffff convolution -===== sub-sampling -===== Full connectivity



problems

1. pigeons can also do the task — with very different brains

2. the data was never properly analysed,
yet strong claims were put forward, for instance,

baboons are supposed to learn letter pairs and triplets,
but not words




a GAMM (mgcv) for baboon learning over time

e binom(exp(n:)/{1+exp(n:)}, 1) where 1 = Bo+5(t) 42z s)

Zw(t) ™~ N(Oa 02)

Response ~ s(t, k = 200) + s(word, bs = "re")

Parametric coefficients:
Estimate Std. Error z value Pr(>|z]|)
(Intercept) 1.3541 0.1004 13.48 <2e-16

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(t) 105.05 128.6 1813 <2e-16

s(word) 77.39 86.0 1646 <2e-16
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modeling with ‘wide’ learning

WC=T

Wi=wil4 A,

0 if ABSENT(c;, t)
Aj=1{ all- Do, o Wi ) if PRESENT(c;, t) & PRESENT(0), t)
al0— mem(ck,t) w; if PRESENT(c;, t) & ABSENT(oj, t)

(0 < 1)

Rescorla-Wagner learning rule (ndl; ndI2; pyndl)



blocking in learning

v

Pavlov's dog: trained to expects food when a bell rings

v

continue training with flashing a light while ringing the bell

v

then: flash the light, but don't ring the bell

v

will the dog drool?



blocking in learning

» Pavlov's dog: trained to expects food when a bell rings
> continue training with flashing a light while ringing the bell
> then: flash the light, but don't ring the bell

» will the dog drool?



blocking in learning

bell light
° g\ T T T T ° 7\ T — \777777\7
0 1000 2000 3000 4000 0 1000 2000 3000 4000
t t
0 if ABSENT(c;, t)
Aj=1{ all- Do, o Wi ) if PRESENT(c;, t) & PRESENT(0), t)

@ (0=2 .o W) if PRESENT(C;, t) & ABSENT(oj, t)



Rescorla-Wagner and Widrow-Hoff

incremental regression using the Widrow-Hoff learning rule

A, =n{alo—a’W)}.

Bernard Widrow & Marcian. E. Hoff (1960). Adaptive switching circuits,
1960 WESCON Convention Record Part IV, p. 96-104.



application to baboon word learning

TORE EFTD WEND ULKH BANG BANG ULNX TORE PSHA AHMF
BOOR KRBA KRBO WEND BANG KRBU IMMF BANG PSMI OHMF

. . "

log odds yes response

T T T T T T
0 10000 20000 30000 40000 50000

t

15,149 HOG cues x 2 outcomes



histograms of oriented gradients (HOG) features

Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human
detection. In 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), volume 1, pages 886—893 vol. 1.

OpenlmageR: HOG()



d baboon lexical accuracy

cross-correlation

baboon correct ——— model correct
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a less trivial task: auditory word recognition

Johnson (2004): Counts for English indicate that one out of 20 words is
spoken with at least one syllable from the canonical form missing, and
that up to 20% of the content words and up to 40% of the function
words have at least one phone missing.
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> hleres



a less trivial task: auditory word recognition
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a less trivial task: auditory word recognition
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a less trivial task: auditory word recognition
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a less trivial task: auditory word recognition

Johnson (2004): Counts for English indicate that one out of 20 words is
spoken with at least one syllable from the canonical form missing, and
that up to 20% of the content words and up to 40% of the function
words have at least one phone missing.

» hleres hilarious

> yeshay yesterdag

> win



a less trivial task: auditory word recognition

Johnson (2004): Counts for English indicate that one out of 20 words is
spoken with at least one syllable from the canonical form missing, and
that up to 20% of the content words and up to 40% of the function
words have at least one phone missing.

» hleres hilarious

> yeshay yesterdag

> wiin wiirden
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frequency band summary (FBS) features
bandlstartlmedian2minlmax4end2partl

lowest frequency band
first chunck

first intensity value = 1
median = 2

minimum = 1

maximum = 4

final value = 2

89,333 different FBS for the 20 hours of speech (246,625 word tokens)
in the GECO corpus

Arnold D. AcousticNDLCoder: Coding sound files for use with NDL;
2016. R package version 0.1.1



evaluation on random sample of 1000 (often reduced) words
» human performance
> 20% — 40%
» model performance

> 20-25%



Inflecting Latin verbs

SINGULAR PLURAL
1 2 3 1 2 3
PRESENT VOcoo vocaas vocat vocaamus vocaatis vocant
PAST vocaabam vocaabaas vocaabat vocaabaamus vocaabaatis vocaabant
PLUPERFECT vocaavissem vocaavissees vocaavisset VOC: VoC: is voc:




Latin inflectional classes

CLASS | CLASS 11 CLASS 11l CLASS IV tense voice mood
VOCOoo terreoo carpoo audioo present active ind
vocem terream carpiam audiam present active subj
vocor terreor carpor audior present passive  ind
vocer terrear carpiar audiar present passive  subj
vocaaboo terreeboo carpam audiam future active ind
vocaabor terreebor carpar audiar future passive  ind
vocaabam terreebam  carpeebam  audieebam past active ind
vocaarem terreerem carperem audiirem past active subj
vocaabar terreebar carpeebar audieebar past passive  ind
vocaarer terreerer carperer audiirer past passive  subj
vocaavii terruii carpsii audiivii perfect active ind
vocaaverim terruerim carpserim audiiverim perfect active subj
vocaaveram terrueram carpseram audiiveram pluperfect  active ind
vocaavissem  terruissem  carpsissem  audiivissem  pluperfect  active subj




Latin verb conjugations

class |
theme vowel a
future with exponent b
perfect with exponent v

class Il
theme vowel e
future with exponent b
perfect with u

class 11l

no theme vowel

future with exponent am

irregular past participle and perfect
class IV

theme vowel i

future with exponent am

perfect with exponent v



core idea

1. represent words' forms as numeric vectors
2. represent words' meanings as numeric vectors

3. use the mathematics of linear transformations
to move between form and meaning



1 2 2 —4
C=| —2 - S=| -4 4
-2 1 -4 -2

words’ forms: the row vectors of C
words’ meanings: the row vectors of S



numeric vectors for words’ forms

#i# #vo voc oco coo oo# oca caa aas as# cat at# aam

## vocoo 1 1 1 1 1 0 0 0 0
## vocaas
## vocat

## vocaamus
## vocaatis
## vocant
## clamoo
## clamaas

OO P, P KB P~
O O K = = =
O O O O O O O
O O O O O O O
O, O OO OO
OO P, Pk KB P~
O OO O -
R O O O O O
= O O O O O

binary vectors specifying which letter triplets (or triphones)
are present in a word (1) and which are absent (0)

0

O O O O O+~ O

0

O O O O O+~ O

O O O O OO O



numeric vectors for

##
#i#t
#i#
#i#
##
##
#i#
#Hit
#i#

S1
VOCO0O0 1.59
vocaas 6.35
vocat =il ()3
vocaamus 3.31
vocaatis 7.31
vocant -1.46
clamoo -6.23
clamaas -3.25

words’ meanings

S2

.92
.88
.01
.41
.45
.22
.66
.53

-17.
.26
.26
.43
.20

-11

=25
-20

-17.
-18.
-14.

S3
84

23
95
43

24.
.83
.58
.01
.60
.81
.46
.94

29
26
20
26
25
12
19

S4
26

S5

.73
.82
.95
.08
.30
.29
.20
.85

S6

.47
.08
.79
.16
.86
.89
.27
.02

S7

.35
.92
.97
.33
.89
.27
.42
.84

10

S

17
15

w o1 ©

S8

.07
.44
.85
.39
.33
.12
.25
LT7



constructing semantic vectors for complex words

red: v, blue: v + (-2, -5)

-4
1

-6

-2 -1 0 1 2 3 4 5

the semantic vector of an inflected word is defined as
the sum of the semantic vectors of its stem and affixal functions



evaluating comprehension accuracy

fis

cat og

select as recognized the word with the highest correlation
with the estimated semantic vector



comprehension accuracy
using simulated semantic vectors
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evaluation production accuracy

> a semantic vector is mapped onto a form vector

> the form vector assigns a weight to each trigram /triphone,
but by itself does not specify the ordering of these trigrams

» however, trigrams contain information on partial orderings
thanks to their overlap: ABC — BCD, ABC -» XYZ

» this makes it possible to set up a directed graph with trigrams as
vertices and edges between triphones that properly overlap



words are paths in a directed graph

sapiivisseemus



selecting the optimal path

» candidate paths are paths leading from an initial triphone (#AB) to
a final triphone (XY#)

» select for articulation that path
1. for which its corresponding estimated semantic vector is closest to
the semantic vector to be articulated, and
2. that has the smallest ratio R of path length to weakest link

_ Ffvertices

min(w) ’

where w is the vector of weights (activations) of all (non-initial)
triphones in a candidate's path generated by the mapping from
meaning to form



selecting the optimal path

> it sometimes happens that the algorithm finds a path
that better expresses the semantic vector
targeted for articulation than the form in actual use

> e.g., for our Latin dataset: curriaaris instead of curraaris
(the form appropriate for the 4th conjugation class)



production accuracy for simulated semantic vectors
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results for Biblical Hebrew

the Biblical Hebrew Corpus
> 271,299 words
» 19,339 unique inflected verb forms

» 23,834 unique nominal forms

accuracy
comprehension production
empirical simulated empirical simulated
verbs 0.721 0.949 0.414 0.970
nouns 0.766 0.966 0.280 0.931
verbs and nouns 0.896 0.901




why does wide learning work so well?

» Minsky & Papert (1972): two-layer networks can only solve
classification problems that are linearly separable

> so are ‘language problems’ basically simply linearly separable?

> or perhaps the claim of Minsky & Papert is too strong,
given that it is based on a specific geometric approach
to the problems they were interested in



classification example, defined in a Cartesian plane
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accuracy 0.96, F-score 0.81
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column identifiers X1, X2, ..., X50

GLM: Accuracy 0.95, F-score 0.76
GLM with LASSO: Accuracy 0.98, F-score 0.87
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. Y50

re-ordered row identifiers Y1, Y2,

glm

re-ordered column identifiers X1, X2, ...,

X50
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wide learning

re-ordered column identifiers X1, X2,

. X50



., Y50

re—ordered row identifiers Y1, Y2, ..

re—ordered column identifiers X1, X2, ..., X50

cues: is hub, is neighbor of hub, is not a hub, is not a neighbor of a hub

100% accurate
[m] = = =



deep learning and regression

1806.06850v1 [cs.LG] 13 Jun 2018

arXiv

Polynomial Regression As an Alternative to
Neural Nets

Xi Cheng
Department of Computer Science
University of California, Davis
Davis, CA 95616, USA xicheng@ucdavis.edu

Bohdan Khomtchouk Norman Matloff
Stanford University University of California, Davis
Stanford, CA 94305, USA Davis, CA 95616, USA
bohdan@stanford.edu matloff@cs.ucdavis.edu

Pete Mohanty
Stanford University
Stanford, CA 94305, USA
pmohanty@stanford.edu

June 19, 2018

Abstract

Despite the success of neural networks (NNs), there is still a concern among
many over their “black box” nature. Why do they work? Here we present
a simple analytic argument that NN are in fact essentially polynomial
regression models. This view will have various implications for NNs, c.g.
providing an explanation for why convergence problems arise in NNs, and
it gives rough guidance on avoiding overfitting, In addition, we use this
phenomenon to predict and confirm a multicollinearity property of NNs
not previously reported in the literature. Most importantly, given this




auditory comprehension revisited

> recent extensions and comparison with deep learning

» limitations of our approach



from NDL to NDL+

» a second network takes the output of the ndl network as input

> it is trained (by solving AF = T) to again predict the words
(using vectors with one-hot encoding)

Cross validation: NDL Recognition on single word tokens Cross validation: NDL+ Recognition on single word tokens
E [
g — B oo 7 -
£ — = .
. H 2 _ |

Corpus Corpus

Figure 1: Box-and-whiskers plots for the accuracy of word identification [%] across 10-fold cross-validation on five corpora for the
NDL model in isolation (left panel) and for the NDL+ model paired with NDL (right panel).



auditory word recognition with LDL

> route 1: map acoustic feature vectors directly onto semantic vectors
(word embeddings)

> route 2: first map acoustic feature vectors onto triphone vectors,
then map the triphone vectors onto semantic vectors

(59%, 13%) (93%, 93%)

40K 5K 4K



comparison with deep speech

> isolated word recognition

» Mozilla Deep Speech: 6% correct on isolated word recognition
(trained on thousands of hours of speech)

» LDL indirect route: 55% (13% under 10-fold cross-validation)
(10 hours of clean speech, American news broadcasts)

» recognition of continuous speech

> Mozilla Deep Speech works impressively well

> as yet unknown whether we can make LDL effective
for continuous speech recognition



addressing overfitting

(34%, 8%)

(55%, 13%)

(59%, 13%) (93%, 93%)

40K 5K 4K

» dimension reduction of the matrix with acoustic cues

» replace linear mapping with LSTM 7

» hypercube-based topological coverings?



hypercube-based topological coverings

A Constructive Approach for One-Shot Training of Neural Networks Using
Hypercube-Based Topological Coverings

arXiv:1901.02878v1 [cs.LG] 9 Jan 2019

W. Brent Daniel, Enoch Yeung

Abstract—Tn this paper we presented a novel constructive
approach for training deep neural networks using geometric
approaches. We show that a topological covering can be used
o deine a ctas of ditributed near matri imequalis, which
in turn directly specify the shape and depth of a neural network
architecture. The key insight is a fundamental relationship
between linear matrix inequalities and their ability to bound the
shape of data, and the rectified linear unit (ReLU) activation
function employed in modern neural networks. We show that
unit cover geometry and cover porasity are two design variables
in cover-constructive learning that play a critical role in defining
the complexity of the model and generalizability of the resulting
neural network classifier. In the context of cover-constructive
learning, these findings underscore the age old trade-off be-
tween model complexity and overfitting (as quantified by the
number of elements in the data cover) and generalizability on
test data. Finally, we benchmark on algorithm on the Iris,
MNIST, and Wine dataset and show that the constructive
algorithm is able to train a deep neural network classifier in
one shot, achieving equal or superior levels of training and test
dassification accuracy with reduced training time.

1. INTRODUCTION

Artificial neural networks have proven themselves to be
useful, highly flexible tools for addressing many complex
problems where first-principles solutions are infeasible, im-
practical, or undesirable. They have been used to addres
challenging classification problems ranging from wine typ-
ing to complex image analysis, voice recognition, language
translation, and beyond.

The same flexibility that allows neural networks to be
applied in such disparate contexts, however, can also lead to
ambiguity in their appropriate definition and training. Deep
neural networks, for example, are composed of multiple
hidden layers with each hidden layer containing many nodes,
cach completely connected to the nodes in the preceding
layer by a set of weights W Historically there has not been
a functional relationship or algorithmic approach that allows
researchers to define or derive a neural network’s structural
characteristics from cither the problem specification or the
associated training data. A neural network’s topology can be
optimized for a given problem, but this effectively results in
a nested series of with the outer

input parameters. Many algorithms, especially those that
rely on gradient information. can become stuck in local
minima, limiting the predictive quality of a network for a
given training instance. The result is that the same structural
topology and training data can yield neural networks with a
broad distribution of predictive qualities from one training
fun to the next. These stochastic effects can be most marked
when the volume of training data is relatively small, yield-
ing an optimization problem with relatively few constraints
compared to the dimensionality of the parameter space. Such
effects can be reduced by the choice of training algorithm,
its parameterization, or by repeated training restarts, but this

increases the complexity and
training time. Additionally. it's typically impossible to unam-
biguously specify a finite stop condition for training. This is
the result of three factors: the training process is stochastic,
the metric space has the potential for local minima, and the
global minimum value is unknown beforehand.

In this paper we introduce a constructive method for
the design of neural networks that rely on geometric rep-
resentation of the data. The algorithm directly addresses
the issues outlined above, including, 1) providing a concise
structural definition of the neural network and its topology.
2) assigning network connection weights deterministically.
3) incorporating approximations that allow the algorithm to
construct neural networks that in many cases have greater
mean accuracy and better precision than traditionally trained
networks, especially when training data is relatively sparse,
4) having a well-defined stop condition for training, and 5)
inherently providing a clear interpretation of what and how
information is encoded within the resulting neural network.

II. CONSTRUCTIVE LEARNING USING TOPOLOGICAL
COVERS
In what follows, we introduce a three-step approach for
constructive training of a ReLU neural network:
« One or more topological covering maps are defined
between a network’s desired input and output spaces;
+ These covering spaces are encoded as a series of linear

steps tasked with incrementally assessing the most effective
network topology [1].
Similarly, there has been no a priori way to specify

matrix and, finally,

The series of linear matrix inequalities is translated
into a neural network topology with corresponding
connection weights.



R packages

> ndl
» acousticNDLCoder
» WpmWithLdl (to go on CRAN in a couple of months)
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