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Incomplete Preferences

The classical utility theory assumes that the preferences are complete:
a decision maker is not allowed to be indifferent between different outcomes.

”It is conceivable -and may even in a way be more realistic- to allow for cases
where the individual is neither able to state which of two alternatives he prefers
nor that they are equally desirable.”
[von Neumann, Morgenstern 1947]

”Of all the axioms of utility theory, the completeness axiom is perhaps the most
questionable. Like others of the axioms, it is inaccurate as a description of real
life; but unlike them, we find it hard to accept even from the normative viewpoint.
Does ”rationality” demand that an individual make definite preference comparisons
between all possible lotteries (even on a limited set of basic alternatives)?”
[Aumann 1962]
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Incomplete Preferences

Incompleteness of Preferences:

Some outcomes might be incomparable for the decision maker.
[Ok, Dubra, Maccheroni 2004]: Vector valued utility representations

Indecisiveness on the likelihood of the states of the world.
[Bewley 1986, 2002]: Bewley’s model of Knightian uncertainty .

[Ok, Ortoleva, Riella 2012]: Under some assumptions an incomplete
preference relation accepts

either a single-prior expected multi-utility representation
or a multi-prior expected single-utility representation.

[Galaabaatar, Karni 2013]: Characterization of preferences that admits a
multi-prior expected multi-utility representation
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Utility Representations of Incomplete Preferences

(Ω,F ,P): finite probability space, L0(F ,Rd ): F-measurable Rd -valued random vectors,

M1(Ω): probability measures on Ω, C(Rd ): continuous functions on Rd .

Definition

A preference relation % on L0(F ,Rd) is said to admit a multi-prior expected
multi-utility representation if there exist U with ∅ 6= U ⊆ C(Rd) and Q with
∅ 6= Q ⊆M1(Ω) such that, for Y ,Z ∈ L0(F ,Rd), we have

Y % Z ⇐⇒ ∀u ∈ U ,∀Q ∈ Q : EQu(Y ) ≥ EQu(Z ).
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Multivariate Utility Functions:

Definition ([Campi, Owen 2011])

A proper concave function u : Rd → R ∪ {−∞} is a multivariate utility function if

(i) Cu := cl (dom u) is a convex cone such that Rd
+ ⊆ Cu 6= Rd ; and

(ii) u is increasing with respect to the partial order ≤Cu .

For complete preferences represented by a single utility function:

[Benedetti, Campi 2012]: Utility indifference buy and sell prices under
proportional transacation costs where pbj , p

s
j are defined in terms of a single

currency j ∈ {1, . . . , d}.
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Assumption

a) The preference relation admits a multi-prior expected multi-utility
representation where U = {u1, . . . , ur}; Q = {Q1 . . .Qs} for some r , s ≥ 1
with q := rs.

b) Any u ∈ U is a multivariate utility function.

Notation: U(·) : L0(F ,Rd)→ Rq

U(·) := (EQ1

u1(·), . . . ,EQs

u1(·), . . . . . . ,EQ1

ur (·), . . . ,EQs

ur (·))T .
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Utility Maximization Problem

maximize U(VT + CT ) subject to VT ∈ A(x),

x ∈ Rd : initial endowment;
A(x) ⊆ L0(FT ,Rd): wealth that can be generated from x ;
CT ∈ L0(FT ,Rd): some payoff that is received at time T .

Assumption

A(x) is a convex set for all x ∈ Rd .

Convex Vector Optimization Problem (CVOP).
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Convex Vector Optimization

maximize f (x) (with respect to ≤K ) (P)

subject to g(x) ≤ 0,

where

K ⊆ Rq is a solid, pointed, polyhedral convex ordering cone,

f : Rn → Rq is K -concave,

g : Rn → Rm is Rm
+-convex.
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Convex Vector Optimization

maximize f (x) (with respect to ≤K ) (P)

subject to g(x) ≤ 0.

X := {x ∈ X : g(x) ≤ 0} is convex.

P := cl (f (X )− K ) is called the lower image of (P).

x̄ ∈ X is a weak maximizer for (P) if f (x̄) ∈ bdP.

(P) is said to be bounded if there is y ∈ Rq with {y} − K ⊇ P.

Definition ([Löhne, Rudloff, U., 2014])

Let (P) be bounded. A finite subset X̄ of X is called a finite (weak) ε-solution
to (P) if it consists of only (weak) maximizers; and

conv f (X̄ )− K + ε{k} ⊇ P ⊇ conv f (X̄ )− K .

k ∈ intK is fixed.
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Convex Vector Optimization

maximize f (x) (with respect to ≤K ) (P)

subject to g(x) ≤ 0.

max
{
wT f (x) : g(x) ≤ 0

}
. (P(w))

Proposition

Let w ∈ K+ \ {0}. An optimal solution x̄ of (P(w)) is a weak maximizer of (P).

Theorem

If X ⊆ Rn is a non-empty closed set and (P) is a bounded problem, then for each
weak maximizer x̄ of (P), there exists w ∈ K+ \ {0} such that x̄ is an optimal
solution to (P(w)).
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Utility Maximization Problem

maximize U(VT + CT ) subject to VT ∈ A(x).

(Ordering cone is ≤Rq
+

.)

The lower image:

V (x ,CT ) := cl
⋃

VT∈A(x)

(
U(VT + CT )− Rq

+

)
.
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Buy and Sell Prices

For a buy price we need to ’compare’ V (x0 − pb,CT ) and V (x0, 0).

How to compare sets?

A 4 B :⇐⇒ B ⊆ A + Rq
+, A 2 B :⇐⇒ A ⊆ B − Rq

+.

Buying claim CT at price pb ∈ Rd is ’more preferred’ than not buying it if

V (x0, 0) 2 V (x0 − pb,CT ) ⇐⇒ V (x0, 0) ⊆ V (x0 − pb,CT )

holds. Then, pb is a buy price.

Similarly, if
V (x0, 0) ⊆ V (x0 + ps ,−CT ).

then ps ∈ Rd is a sell price.
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Buy and Sell Prices

Pb(CT ) := {p ∈ Rd | V (x0 − p,CT ) ⊇ V (x0, 0)}
Ps(CT ) := {p ∈ Rd | V (x0 + p,−CT ) ⊇ V (x0, 0)}

A(x) ⊆ L0(FT ,Rd): wealth that can be generated from x ;

Assumption

Let x , y ∈ Rd , λ ∈ [0, 1].

a. A(x) is a convex set.

b. If x ≤ y, then A(x) ⊆ A(y).

c. λA(x) + (1− λ)A(y) ⊆ A(λx + (1− λ)y).

d. If VT ∈ A(x), then VT + r ∈ A(x + r) for any r ∈ Rd .
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Buy and Sell Prices

Pb(CT ) = {p ∈ Rd | V (x0 − p,CT ) ⊇ V (x0, 0)}
Ps(CT ) = {p ∈ Rd | V (x0 + p,−CT ) ⊇ V (x0, 0)}

Proposition

Pb(CT ) is a convex lower set and Ps(CT ) is a convex upper set.

Pb(CT ) = Pb(CT )− Rq
+ and Ps(CT ) = Ps(CT ) + Rq

+

Proposition

Under the Assumptions on A(·), we have intPb(CT ) ∩ intPs(CT ) = ∅.
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Buy and Sell Prices

Pb(CT ) = {p ∈ Rd | V (x0 − p,CT ) ⊇ V (x0, 0)}
Ps(CT ) = {p ∈ Rd | V (x0 + p,−CT ) ⊇ V (x0, 0)}

Definition

The indifference price set for CT is

P(CT ) := cl
(
Rd \

(
Pb(CT ) ∪ Ps(CT )

))
.

Recovery of the standard case:
P(CT ) = [pb, ps ], where the preference relation is complete and d = 1.

Firdevs Ulus Utility Indifference Pricing under Incomplete Preferences Bilkent University



Buy and Sell Prices

Pb(CT ) = {p ∈ Rd | V (x0 − p,CT ) ⊇ V (x0, 0)}
Ps(CT ) = {p ∈ Rd | V (x0 + p,−CT ) ⊇ V (x0, 0)}

Definition

The indifference price set for CT is

P(CT ) := cl
(
Rd \

(
Pb(CT ) ∪ Ps(CT )

))
.

Recovery of the standard case:
P(CT ) = [pb, ps ], where the preference relation is complete and d = 1.

Firdevs Ulus Utility Indifference Pricing under Incomplete Preferences Bilkent University



Buy and Sell Prices

Pb(CT ) = {p ∈ Rd | V (x0 − p,CT ) ⊇ V (x0, 0)}
Ps(CT ) = {p ∈ Rd | V (x0 + p,−CT ) ⊇ V (x0, 0)}

Definition

The indifference price set for CT is

P(CT ) := cl
(
Rd \

(
Pb(CT ) ∪ Ps(CT )

))
.

Recovery of the standard case:
P(CT ) = [pb, ps ], where the preference relation is complete and d = 1.

Firdevs Ulus Utility Indifference Pricing under Incomplete Preferences Bilkent University



Buy and Sell Prices

Proposition

Pb(·) and Ps(·) are increasing with respect to the partial order ≤CU , in the sense
of set orders 2 and 4, respectively.

C 1
T ≤CU C 2

T =⇒ Pb(C 1
T ) ⊆ Pb(C 2

T ) and Ps(C 1
T ) ⊇ Ps(C 2

T )

Proposition

Pb(·) is concave with respect to 2; and Ps(·) is convex with respect to 4.

For C 1
T ,C

2
T ∈ L(FT ,Rd) and λ ∈ [0, 1] we have

λPb(C 1
T ) + (1− λ)Pb(C 2

T ) ⊆ Pb(λC 1
T + (1− λ)C 2

T );

Ps(λC 1
T + (1− λ)C 2

T ) ⊇ λPs(C 1
T ) + (1− λ)Ps(C 2

T ).
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How to Compute?

Pb(CT ) = {p ∈ Rd | V (x0 − p,CT ) ⊇ V (x0, 0)}

Both sets are lower images!!!

In the case of LVOPs, there are ways to compute this set exactly.

In the case of CVOPs, we can only approximate!
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How to Compute?

Using algorithms in [Löhne, Rudloff, U. 2014] we solve

maximize U(VT ) subject to VT ∈ A(x0).

We find a finite weak ε-solution V = {V 1, . . . ,V k} such that

convU(V)− Rq
+ + ε{c} ⊇ V (x0, 0).

We obtain a corresponding ’weight’ set W = {w1, . . . ,wk} ⊆ Rq
+ such that

v i := sup
VT∈A(x0)

(w i )TU(VT ) = (w i )TU(V i ).
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Outer Approximation

Pb(CT ) = {p ∈ Rd | V (x0 − p,CT ) ⊇ V (x0, 0)}.

If the utility functions are bounded, we have

Pb(CT ) = {p ∈ Rd | ∀w ∈ Rq
+ :

sup
VT∈A(x0−p)

wTU(VT + CT ) ≥ sup
VT∈A(x0)

wTU(VT )}.

W = {w1, . . . ,wk} is a ’representative’ weight set!

An outer approximation of Pb(CT ):

Pb
out(CT ) := {p ∈ Rd | ∀i ∈ {1, . . . , k} :

sup
VT∈A(x0−p)

(w i )TU(VT + CT ) ≥ sup
VT∈A(x0)

(w i )TU(VT )}.
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Outer Approximation

Pb(CT ) = {p ∈ Rd | ∀w ∈ Rq
+ : sup

VT∈A(x0−p)
wTU(VT + CT ) ≥ sup

VT∈A(x0)
wTU(VT )}.

An outer approximation of Pb(CT ):

Pb
out(CT ) := {p ∈ Rd | ∀i = 1, . . . , k : sup

VT∈A(x0−p)

(w i )TU(VT + CT ) ≥ v i}

Lower image of:

maximize p with respect to ≤Rd
+

subject to (w i )TU(V i
T + CT ) ≥ v i for i = 1, . . . , k;

V i
T ∈ A(x0 − p) for i = 1, . . . , k.
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Outer Approximation

An outer approximation of Ps(CT ):

Ps
out(CT ) := {p ∈ Rd | ∀i = 1, . . . , k : sup

VT∈A(x0+p)

(w i )TU(VT − CT ) ≥ v i}

Upper image of:

minimize p with respect to ≤Rd
+

subject to (w i )TU(V i
T − CT ) ≥ v i for i = 1, . . . , k;

V i
T ∈ A(x0 + p) for i = 1, . . . , k.

Firdevs Ulus Utility Indifference Pricing under Incomplete Preferences Bilkent University



Outer Approximation

An outer approximation of Ps(CT ):

Ps
out(CT ) := {p ∈ Rd | ∀i = 1, . . . , k : sup

VT∈A(x0+p)

(w i )TU(VT − CT ) ≥ v i}

Upper image of:
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Inner Approximation

Pb(CT ) = {p ∈ Rd | V (x0 − p,CT ) ⊇ V (x0, 0)}

convU(V)− Rq
+ + ε{c} ⊇ V (x0, 0), where V = {V 1, . . . ,V k}.

An inner approximation of Pb(CT ):

Pb
in(CT ) := {p ∈ Rd | V (x0 − p,CT ) ⊇ convU(V)− Rq

+ + ε{c}}

Lower image of:

maximize p with respect to ≤Rd
+

subject to U(V i
T + CT ) ≥ U(V i ) + εc for i = 1, . . . , k;

V i
T ∈ A(x0 − p) for i = 1, . . . , k.
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Inner Approximation

An inner approximation of Ps(CT ):

Ps
in(CT ) := {p ∈ Rd | V (x0 + p,−CT ) ⊇ convU(V)− Rq

+ + ε{c}}

Upper image of:

minimize p with respect to ≤Rd
+

subject to U(V i
T − CT ) ≥ U(V i ) + εc for i = 1, . . . , k;

V i
T ∈ A(x0 + p) for i = 1, . . . , k.
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Conical Market Model

(Ω,F , (F)Tt=0,P): a filtered finite probability space;

d assets traded over time, t = 0, 1, ...,T ;

(Kt)
T
t=0: polyhedral ’solvency cones’ (Rd

+ ( Kt 6= Rd);

(Vt)
T
t=0: self-financing portfolio process,

Vt − Vt−1 ∈ −Kt , P-a.s., for all t ∈ {0, 1, . . . ,T};

x0: initial endowment;

A(x0) := x0 − L0
n(F0,K0)− L0

n(F1,K1)− . . .− L0
n(FT ,KT ).
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Single Multivariate Utility - toy example

d = 2, T = 1;

Ω = {ω1, ω2}, FT = 2Ω and pi = P(ωi ) = 1
2 for i = 1, 2;

The generating vectors of the solvency cones K0,K1(ω1) and K1(ω2):

K0 =

[
1 −0.9
−0.9 1

]
, K1(ω1) =

[
2 −1.9
−1 1

]
, K1(ω2) =

[
1 −1
−2 2.1

]
;

x0 = 0 ∈ R2;

CT (ω1) = [1 0]T , CT (ω2) = [0 1]T ;

u(x) = 1− 0.5(e−x1 + e−x2 ), xi ≥ 0.
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v0 := supVT∈A(x0) Eu(VT )

Pb(CT ) = {p ∈ Rd | supVT∈A(x0−p) u(VT + CT ) ≥ v0}.

Ps(CT ) = {p ∈ Rd | supVT∈A(x0+p) u(VT − CT ) ≥ v0}.

Pb(CT ) is the lower image of

maximize p (with respect to ≤K0 )

subject to Eu(VT + CT ) ≥ v0,

VT ∈ A(x0 − p).

Ps(CT ) is the upper image of

minimize p (with respect to ≤K0 )

subject to Eu(VT − CT ) ≥ v0,

VT ∈ A(x0 + p).
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Question: Which pb ∈ Pb(CT ) and ps ∈ Ps(CT ) yield the smallest gap?

minimize
∥∥pb − ps

∥∥
subject to Eu(V b

T − CT ) ≥ v0,

Eu(V s
T + CT ) ≥ v0,

V b
T ∈ A(x0 − pb),

V s
T ∈ A(x0 + ps).
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Open Questions and Next Steps:

Can we bound the approximation error?

What if the utility functions are not bounded?

Some ’unbounded’ problems are known to be tractable.
Can we develop algorithms for them?
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