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Summary. Lake Champlain is a natural freshwater lake that straddles the Canada-US border in8

Eastern North America. In the spring of 2011, its water level was at a record high, and heavy rainfall9

occurring in several streaks of consecutive days caused massive floods in the surrounding valley and10

along the Richelieu River (Québec, Canada). Extreme-value analysis of this unprecedented event11

thus requires a model for clusters of high precipitation. One such modelling strategy is proposed12

here. It relies on a decomposition of clusters into polar coordinates. An extreme-value distribution13

is used to model the radial component, while the model for the angular component is based on14

a 1-inflated mixture of scaled Beta distributions. It is shown that the new model gives a more15

sensible estimate of the return period of the precipitation that triggered the 2011 Richelieu Valley16

flood than other existing extreme-value models that take clustering of extremes into account.17

Keywords: Clusters of extremes; High precipitation; Peaks-Over-Threshold; Time series18

extremes19

1. Introduction20

Lake Champlain is a natural freshwater lake located primarily in the Eastern United States,21

whose only outlet is the Richelieu River (Québec, Canada). In the spring of 2011, the lake22

level reached an unprecedented high, leading to a major flood in its surroundings and in23

the Richelieu Valley. The flood stage was reached on April 14 and continued for over two24

months, forcing the evacuation of thousands of citizens and causing an estimated 100 million25

USD in damages (International Joint Commission, 2013). The Richelieu River’s 2011 peak26

discharge of 1542m3/s was far beyond its mean annual peak discharge of 920m3/s.27

Around 90% of the Richelieu River’s streamflow comes from the Lake Champlain wa-28

tershed, and hence the river’s discharge is strongly correlated with the lake’s water level.29

Riboust and Brissette (2015) showed that the lake’s water level measured at the gage station30

in Burlington, Vermont, is a particularly suitable proxy for the Richelieu River discharge.31

Figure 1 shows the annual maximum water level of Lake Champlain as measured since 190732

at this station. To see whether the 2011 historical high of 31.45m could be predicted from this33

record, one could fit a generalized extreme-value distribution (GEV) to the annual maxima34

from the period 1907–2010, spanning 104 years.35
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Fig. 1: Lake Champlain annual water level maxima recorded at the Burlington gauge station.

Recall, e.g., from the books of Coles (2001) or Beirlant et al. (2004), that the GEV36

distribution function Hµ,σ,ξ with location parameter µ ∈ R, scale parameter σ > 0 and37

shape parameter ξ ∈ R is given by38

Hµ,σ,ξ(z) =


exp

{
−
(
1 + ξ

z − µ
σ

)−1/ξ}
whenever 1 + ξ(z − µ)/σ > 0 if ξ 6= 0,

exp
{
− exp

(
− z − µ

σ

)}
whenever z ∈ R if ξ = 0.

The maximum likelihood estimates of these parameters are (µ̂, σ̂, ξ̂) = (30.2, 0.392, −0.440).39

The fact that ξ̂ is negative means that the fitted GEV distribution has a finite upper end-40

point, estimated at µ̂ + σ̂/ξ̂ = 31.1m. The 2011 peak water level thus lies outside of the41

support of the fitted GEV distribution. In other words, this classical GEV analysis deems42

the 2011 event impossible, a situation which is sometimes referred to as a Black Swan.43

In view of this simple analysis, it is not surprising that the return period for the 201144

event has proven hard to estimate from historical data. Clearly, it is insufficient to consider45

only the lake’s annual water level maxima. Although daily water levels at the Burlington46

station are available, this time series is difficult to handle statistically as it shows substantial47

seasonality and autocorrelation; this is apparent from the bottom panel of Figure 2.48

As an alternative, we propose to focus on daily precipitation as measured at Burlington49

(Vermont) during the critical period of snowmelt in the spring when large precipitation50

events can trigger a flood. Using a hydrological model, Riboust and Brissette (2016) showed51

that it is indeed precipitation that has the most critical influence on floods for this watershed.52

Although the spring freshet in northern watersheds is generally the result of the snowmelt53

and concurrent precipitation, the snowpack seems to have played a minor role in the 201154

Richelieu Valley spring flood. For example, the largest snowpack was actually recorded55

during the spring of 2008, and yet it was a normal year for the annual water level maximum56

(see Figure 1). More importantly, Riboust and Brissette (2016) combined the 2008 snowpack57

observations with the 2011 precipitation series in their hydrological model and found that58
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Fig. 2: Daily precipitation at Burlington Airport (VT) and the daily Lake Champlain water
levels for the spring of 2011

the simulated flood was not much larger than the actual 2011 flood. They also noted that59

the spring temperature did not play a major role. Additional evidence in favour of using60

precipitation as an explanatory variable for the Lake Champlain water level is provided61

in Figure 3, which shows a boxplot of the spring rainfall accumulations recorded at the62

Burlington Airport station from 1884 to 2011. The 2011 value is marked by a cross.63

The 2011 spring daily precipitation recorded at the Burlington Airport station is shown64

in the top panel of Figure 2. The red dashed line is the 95th centile of nonzero precipitation65

for the months of April to June for the years 1884–2016, which constitutes the entire record.66

It can be seen that in 2011, eight threshold exceedances occurred during this 4-month period.67

An important stylized fact of this series is that the threshold exceedances mainly occur in68

clusters. In fact, there were 261 exceedances in the entire series, but only 51 of these were69

single-day events with no rain on the previous day or on the next. All other exceedances70

occurred in streaks of consecutive rainy days. In Spring 2011, six clusters were observed;71

these are identified in red in Figure 2. From the bottom panel of that figure, one can also see72

that the lake level rose sharply following the 4-day cluster which cumulated a total of 103mm73

of precipitation, and only began to sink gradually after the heavy spring rains passed.74

To assess the flood risk properly, it is thus crucial to take entire clusters of extreme75

precipitation into account, as the total accumulation per cluster can be much larger than76

the cluster maximum. The classical Peaks-Over-Threshold (POT) model alone does not77

suffice to compute the return period of the extreme seasonal rain accumulation observed in78
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Fig. 3: Spring rainfall accumulations from 1884 to 2011 at Burlington, Vermont

2011, marked by a cross in Figure 3. The latter only considers the frequency and severity of79

cluster maxima, while in this application, rain accumulation in each cluster is needed.80

In this article, we propose a novel extension of the POT model that does account for81

cluster precipitation totals. In this new model, which we call the random scale model, each82

cluster maximum is scaled up by an independent random factor. This is done carefully so83

that the extremal behaviour of the cluster sum is preserved. This approach is simple to84

implement, and can be justified through multivariate regular variation. As we demonstrate,85

it works very well for the Burlington precipitation data and leads to a realistic estimate of86

the return level of the 2011 flood, which other models have hitherto failed to provide.87

The rest of the article is organized as follows. In Section 2, we give a detailed description88

of the Burlington precipitation data, define clusters of high precipitation, and model the89

severity and frequency of cluster maxima using the classical POT approach. The new random90

scale model is then presented in Section 3, and justified theoretically through multivariate91

regular variation. The Burlington precipitation data are then analyzed using this model in92

Section 4. Various diagnostic plots show that the model fit is good. In the same section, we93

also present a calculation of the return period of the 2011 spring events. Relationships with94

the M3 process and alternative models based on the conditional approach of Heffernan and95

Tawn (2004) are discussed in Section 5. Conclusions are presented in Section 6.96

2. Data description and classical POT analysis97

2.1. Data description98

In this article, we consider daily precipitations in mm for the months of April to June,99

for the period 1884–2016. A majority of the measurements were recorded at the weather100

station located at the Burlington Airport, Vermont. The station is still active today and101

the period of record began in 1940. Another station located in Burlington, 3km from the102

airport, recorded daily precipitation from 1884 to 1943. The two station records were pooled103

to provide a longer dataset: the data prior to 1943 come from the Burlington station and104
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Fig. 4: Daily precipitation series at Burlington Airport, Vermont. The threshold u = 21.6mm
is indicated by a red dashed line.

the remaining data from the Burlington Airport station. The homogeneity assumption in105

extreme values of the pooled dataset was checked (not shown). In particular, 1943 is not a106

change-point in the pooled series of the annual maxima. Both sub-series of annual maxima107

are stationary according to the Mann–Kendall stationary test (p-value = 0.53 and 0.24 for108

the first and second sub-series, respectively). The entire pooled series of spring precipitation109

can also be assumed stationary (p-value = 0.52). These data are freely available from the110

NOAA’s National Climatic Data Center website (https://www.ncdc.noaa.gov/).111

2.2. The classical POT model112

In what follows, it will be convenient to define a cluster of high precipitation as the streak113

of consecutive rainy days containing at least one exceedance above a high threshold u. Each114

cluster is thus separated from any other by at least one day without rain. This definition of115

clusters differs from the classical runs method (O’Brien, 1987; Smith and Weissman, 1994),116

which puts threshold exceedances in the same cluster unless they are separated by at least117

r nonexceedances.118

Using the 95% centile of nonzero daily precipitation amounts as the threshold u =119

21.6mm, 233 exceedances were recorded in the period 1884–2010. The series is displayed in120

Figure 4, along with the threshold. There were 220 clusters of high precipitation; 51 of these121

were of length 1 day and 20 contained more than one exceedance. By comparison, the runs122

method with r = 1 identifies 222 clusters. The cluster maxima obtained by the two methods123

are essentially the same, however; in two instances only, two clusters identified by the runs124

method ended up being merged into a single cluster of high precipitation.125

LetM1, . . . ,M220 be the maxima pertaining to the 220 clusters of high precipitation, and126

letM1−u, . . . ,M220−u be the corresponding excesses above the threshold u. In the classical127

POT approach, these excesses are modelled with the Generalized Pareto (GP) distribution128

https://www.ncdc.noaa.gov/
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Fig. 5: QQ-plot of the GP distribution fitted to the 220 cluster maxima

with scaling parameter σ > 0 and shape parameter ξ ∈ R, i.e., for each i ∈ {1, . . . , 220},129

Pr(Mi − u ≤ z |Mi > u) ≈
{

1− (1 + ξz/σ)−1/ξ whenever 1 + ξz/σ > 0 if ξ 6= 0,
1− exp (−z/σ) whenever z ∈ R if ξ = 0.

Assume an improper prior given, for all σ > 0 and ξ ∈ R, by f(σ,ξ)(σ, ξ) ∝ 1/σ. Note that130

this prior yields a proper posterior as long as the sample size is greater than 2 (Northrop131

and Attalides, 2016), which is the case here. Bayesian estimates and associated 95% credible132

intervals for the parameters are then given by133

σ̂ = 8.6086 ∈ (7.1258, 10.2472), ξ̂ = 0.0630 ∈ (−0.0464, 0.2056).

The QQ-plot displayed in Figure 5, which is based on the Bayesian point estimates of σ134

and ξ, suggests an adequate fit.135

As for the frequency of clusters of high precipitation, it can be adequately modelled with136

a homogeneous Poisson point process with intensity λ > 0. If an improper prior fλ(λ) ∝ 1/λ137

is assumed, the posterior for λ is then a Gamma distribution, viz.138

f(λ|Y =y)(λ) = G(λ | 220; 11,557),

where 220 corresponds to the number of cluster maxima and 11,557 corresponds to the139

number of days of observations (127 years with 91 spring days per year). Here, G(· | a; b)140

denotes the gamma density function with mean a/b.141

Although the fit of the POT model seems adequate, the latter does not suffice to compute142

the return period for the events that triggered the 2011 flood. For example, the POT model143

can be used to estimate the return period for the extreme rainfall of 69.6mm that occurred144

on April 26, 2011 to be 66 years. This may seem low, but it does make good sense given that145
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rainfalls of similar (or even higher) magnitude were already recorded; see Figure 4. However,146

no flood was ever observed that matches the 2011 flood in magnitude. From Figure 3, it is147

rather the spring precipitation accumulation T of 510mm that was unusually high in 2011.148

Because the POT method only models the frequency and severity of cluster maxima, what149

happens within a cluster of high precipitation is unaccounted for. In particular, one cannot150

compute the probability of T > 510mm from the POT model.151

3. Random scale model for cluster accumulation152

We now propose a new, simple extension of the POT model to account for the total precipi-153

tation amount within each cluster of high precipitation. The idea consists of scaling up each154

cluster maximum M by an independent random factor in order to model the cluster sum S.155

3.1. Derivation of the random scale model156

Let Y1, Y2, . . . be a stationary time series of non-negative measurements. In the present157

context, the values Yj are daily precipitations. Suppose that n clusters of high precipitation,158

say C1, . . . , Cn, were identified using some high threshold u. For each i ∈ {1, . . . , n}, let159

Y i = (Yj : j ∈ Ci) be the vector of daily precipitation amounts corresponding to cluster Ci.160

Within this cluster, the distribution of the cluster sum161

Si =
∑
j∈Ci

Yj ,

could be deduced from a model for the entire vector Y i. This is cumbersome, however,162

particularly because the length Li of Y i depends on i, and also because Yj > u for at163

least one, but not necessarily all, j ∈ Ci. This means that one could not resort, e.g., to a164

multivariate extreme-value model such as the tail model of Ledford and Tawn (1996).165

Luckily, a full model for Y i is not needed here. Instead, for each i ∈ {1, . . . , n}, assume166

that the vector Y i of length Li = `i is multivariate regularly varying (Resnick, 1987). This167

implies that if ‖·‖∞ denotes the max-norm, there exists, for each i ∈ {1, . . . , n}, a real η > 0168

and a probability distribution ς on the unit simplex {x ∈ [0, 1]`i : ‖x‖∞ = 1} such that169

Pr(‖Y i‖∞ > yt,Y i/‖Y i‖∞ ∈ ·)
Pr(‖Y i‖∞ > t)  y−ης(·) (1)

for all y > 0 as t → ∞, where  denotes weak convergence. By Corollary 5.18 in Resnick170

(1987), Y i is in the domain of attraction of a multivariate extreme-value distribution. Fur-171

thermore, Eq. (1) implies that the cluster maximum Mi = ‖Y i‖∞ is in the domain of172

attraction of the Fréchet distribution with parameter η. More interestingly, if Mi > u173

for some high threshold u, Mi and Y i/Mi are nearly independent. Thus conditionally on174

Mi > u, one also has approximate independence between Mi and175

Pi = Mi∑
j∈Ci

Yj
= Mi

Si
.



8 Jalbert et al.

Now suppose that the threshold u is high enough that the independence between Mi176

and Pi can be assumed to hold, at least approximately. Because Ci is a cluster of high177

precipitation, the condition Mi > u is automatically satisfied. Thus, upon writing178

Si = Mi × (1/Pi), (2)

we propose to model Si by scaling up the cluster maximum Mi with an independent multi-179

plicative factor 1/Pi ≥ 1.180

Remark 1. Let Y in R` be a multivariate regularly varying random vector with non-181

negative components. Set M = max(Y1, . . . , Y`), and S = Y1 + · · ·+ Y`. Then there exists a182

Radon measure Q on R` \ {0} such that Pr(Y /t ∈ ·)/Pr(M > t)⇒ Q as t→∞, where ⇒183

refers to vague convergence. As shown, e.g., by Jessen and Mikosch (2006),184

lim
t→∞

Pr(S > t)
Pr(M > t) = κ ≡ Q{(x1, . . . , x`) ∈ (0,∞)` : x1 + · · ·+ x` > 1}.

It may happen that κ = 0 but if not, S andM are then tail equivalent; in fact, they are both185

in the domain of attraction of the Fréchet distribution with the same shape parameter. This186

tail equivalence between S and M is preserved in the random scale model S = M × (1/P ),187

where P and M are independent and P ≥ 1, provided that M is in the domain of attraction188

of the Fréchet distribution with shape parameter η and E(1/P η+ε) < ∞ for some ε > 0.189

This result, which follows from Breiman’s Lemma (Jessen and Mikosch, 2006, Lemma 4.2),190

holds in particular when P is bounded above.191

3.2. Choice of distributions192

In order to model cluster sums by scaling up cluster maxima through Eq. (2), one needs to193

choose distributions for Mi and 1/Pi for each i ∈ {1, . . . , n}. As already seen in Section 2,194

the POT model can be used to select a conditional distribution of Mi given Mi > u.195

To propose a suitable model for Pi, note first that the distribution of Pi depends on the196

cluster length Li. When Li = 1, one has Pi ≡ 1, i.e., the distribution of Pi is a Dirac mass197

at 1, denoted δ{1}. If Li > 1, one has Si ≤ LiMi, and hence Pi ∈ [1/Li, 1]. Thus given198

Li = `, a natural choice for the density of Pi would be defined, for all p ∈ (0, 1), by199

f(Pi|Li=`)(p) =
{
δ{1}(p) if ` = 1,
B∗(1/`,1) (p | α`−1, β`−1) if ` ∈ {2, 3, . . .}.

Here, B∗(θ,1)(p | α, β) denotes the density of the random variable (1− θ)X + θ, where X has200

a B(α, β) distribution. This approach, however, requires a model for the cluster length.201

We propose a simpler solution in that we use the scaled Beta distribution B∗(θ,1)(p | α, β),202

but make θ ∈ (0, 1) an additional parameter in the model. To account for clusters of length 1,203

we further inflate this scaled Beta distribution by placing mass ω ∈ (0, 1) at 1. The resulting204

1-inflated scaled Beta density for Pi is then given, for all p ∈ (0, 1], by205

IB(p | ω, θ, α, β) = ω δ{1}(p) + (1− ω)B∗(θ,1) (p | α, β) . (3)
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This proposal effectively pools together all clusters of length ` ≥ 2. As will be seen below, it206

is sufficiently rich to capture the key features of the Burlington Airport precipitation data.207

4. Application to the Burlington Airport precipitation data208

In this section, we apply the random scale model introduced in Section 3 to the precipitation209

series measured at Burlington (Vermont). We first examine the fit in Section 4.1 and then210

use it to compute the return period of the 2011 flood in Section 4.2.211

4.1. Fitting the random scale model212

The choice of threshold u and the resulting clusters of high precipitation remain as described213

in Section 2. As a preliminary step, the pairs (Si, Pi) are visualized in Figure 6. Displayed214

are the points (Si cos(Θi), Si sin(Θi)), where Θi = arccos(Pi) for every i ∈ {1, . . . , 220}.215

When the cluster length Li = 1, one has Θi = 0 so that the point lies on the x-axis. In216

contrast, a large angle Θi corresponds to Mi � Si. Because Pi ≥ 1/Li, a large value of Θi217

also indicates a large value of Li. Such a cluster would thus typically include several days218

of heavy precipitation. In this data set, there were 48, 65, 44, 16 clusters of length 1, 2, 3,219

4, respectively; the largest cluster was of size 14.220

The left panel of Figure 7 shows the rankplot of the pairs (M1, P1), . . . , (M220, P220). One221

can discern ties in the data, due in part to the fact that the angular component equals 1222

for the 48 clusters of size 1. As no association is apparent, the assumption of independence223

between Mi and Pi seems appropriate at threshold level u = 21.6mm. This conclusion is224

further supported by a p-value of 0.45 based on the test of independence for data with ties225

proposed in Genest et al. (2017).226
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Fig. 7: Rank plot of the cluster maxima and scaling factors (left panel) and QQ-plot of the
1-inflated scaled Beta distribution fitted to P1, . . . , P220 (right panel).

Next, the 1-inflated scaled Beta distribution given in Eq. (3) was fitted. To this end, it227

was first reparametrized by setting ν = α/(α + β) and γ = α + β, so that the following228

non-informative priors can be used:229

fω(ω) ∝ ω−1(1− ω)−1, for ω ∈ (0, 1); fθ(θ) = 1, for θ ∈ (0, 1);
fν(ν) ∝ 1, for ν ∈ (0, 1); fγ(γ) ∝ 1/γ, for γ ∈ (0,∞).

The posterior of the lower bound θ is insensitive to this choice of prior (not shown). The230

QQ-plot of the fitted 1-inflated scaled Beta distribution is displayed in the right panel of231

Figure 7. It suggests a good fit, particularly in the lower tail. This is important because low232

values of P typically correspond to long clusters with several days of heavy rain.233

4.2. Computation of the return period of the 2011 flood234

In the Lake Champlain watershed, the spring accumulation of precipitation is the main con-235

tributing factor in flooding. As mentioned before and illustrated in Figure 3, the value of T236

observed in 2011 was very high: 510mm. Because of the presence of extreme rainfall, we pro-237

pose to decompose T into the accumulation Z of non-extreme rainfall and the accumulation238

W of precipitation from the clusters of high precipitation, i.e., T = Z +W .239

For any given year k ∈ {1, . . . , 127} between 1884 and 2010, the observed value Zk is240

simply the total precipitation accumulation in year k minus the accumulation Wk of rain in241

clusters of high precipitation in that same year. Because Zk is a sum of variables, none of242

which is extreme, and given that the entire series is stationary, it seems reasonable to assume243

that Z1, . . . , Z127 form a random sample from the Gaussian distribution. This assumption244

was validated using a Shapiro–Wilks normality test (p-value ≈ 0.67). The predictive dis-245

tribution of the accumulation Z of non-extreme rainfall was found to be N (ζ, ρ2) with246
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ζ = 233.698 ∈ (221.487, 245.91) and ρ = 69.5384 ∈ (61.9103, 79.3274). These Bayesian247

estimates were obtained using Jeffreys’ improper prior defined, for all ρ > 0, by f(ζ,ρ) ∝ ρ.248

Using the random scaling model, the distribution of W can be approximated as follows249

by a Monte Carlo simulation. First, the number N of clusters of high precipitation in a given250

spring is drawn from the predictive distribution of the Poisson point process with intensity251

λ obtained from the POT model in Section 2. The latter is given, for all n ∈ N, by252

f(N |Y =y)(n) =
∫ ∞

0
P(n | 91λ)× f(λ|Y =y)(λ) dλ. (4)

This distribution models the number of cluster maxima in a period of 91 days, i.e., the253

months of April–June which constitute the spring season. Second, given the number N = n254

of clusters of high precipitation, the cluster maxima M1, . . . ,Mn are drawn independently255

from the predictive distribution obtained from the POT model given, for all z > 0, by256

f(M−u|Y =y,N=n)(z) =
∫ ∞
−∞

∫ ∞
0
GP(z | σ, ξ)× f[(σ,ξ)|Y =y](σ, ξ)dσdξ. (5)

Third, the proportions P1, . . . , Pn are drawn independently from the predictive distribution257

defined, for all p > 0, by258

f(P |Y =y,N=n)(p) =
∫ 1

0

∫ 1

0

∫ 1

0

∫ ∞
0
IB(p | ω, θ, ν, γ)× f[(ω,θ,ν,γ)|Y =y](ω, θ, ν, γ)dγdνdθdω. (6)

Then W = M1/P1 + · · ·+Mn/Pn is the total amount of rain within clusters of high precip-259

itation. This procedure is summarized in Algorithm 1.260

Algorithm 1 Generating a spring rainfall accumulation from clusters of high precipitation
1) Draw the number N = n of clusters of high precipitation from distribution (4).
2) Draw the cluster maxima M1 − u, . . . ,Mn − u from distribution (5).
3) Draw the proportions P1, . . . , Pn of from distribution (6).
4) Draw the accumulation of precipitation pertaining to clusters of high precipitation:

W = M1/P1 + · · ·+Mn/Pn.
5) Draw the accumulation Z of non-extreme rainfall from its predictive distribution.
6) Compute the total spring accumulation T = Z +W .

To estimate the probability that T surpasses the value observed in Spring 2011, viz.261

Pr(T > 510mm), (7)

The predictive distribution of R is displayed in the left panel of Figure 8 and the correspond-262

ing one-sided 95% credible interval is [231,∞). Thus while the heavy rain of 69.6mm recorded263

on April 26, 2011 is not particularly unusual, as seen in Section 2, the total Spring 2011264

rainfall accumulation does qualify as a rare event according to the random scale model.265

Spring 2011 was also atypical in that 5 clusters of high precipitation were recorded and the266

total rain accumulation in these clusters was 318mm. Based on the random scale model, the267
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Fig. 8: Predictive distribution of the return period estimated with the precipitation data
prior of 2011 (left panel) and with all the data (right panel).

probability of observing 5 or more clusters in a given spring is 3.62×10−2; the corresponding268

Bayesian estimate of the return period is 33 years, which is not so high. However, Pr(W >269

318mm) ≈ 3.13× 10−3, which corresponds to a return period of 302 years.270

Remark 2. Note that it is also possible to sample directly from the observed propor-271

tions P1, . . . , Pn in Algorithm 1 instead of modelling them with a 1-inflated scaled Beta272

distribution, which may make particularly good sense when a large data set is available.273

In the present application, however, the parametric and nonparametric approaches lead to274

practically the same predictive distribution of the return period.275

If we use all the data from 1884 to 2016, i.e., 133 years, the fit of the random scale276

model remains equally good. The probability that the spring accumulation of precipitation277

exceeds the 2011 level of 510mm is then of the order of 3.55× 10−3, based on a simulation278

using Algorithm 1. Thus even when the 2011 event is included, the return period of that279

year’s spring accumulation is still very large, estimated at 320 years; the one-sided 95%280

credible interval is [167,∞). The predictive distribution of the return period estimated with281

all the data is shown in the right panel of Figure 8. The estimated return level of a spring282

accumulation corresponding to the 100-year return period is 461mm ∈ (451, 470).283

5. Connection with existing models284

In this section, we briefly review existing approaches for the modelling of clusters of extreme285

events and explain why they appear less suitable for the Burlington precipitation series286

than the random scale model advocated here. In particular, we focus on the M3-Dirichlet287
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approach of Süveges and Davison (2012) in Section 5.1, and on the conditional exceedance288

model of Heffernan and Tawn (2004) in Section 5.2.289

5.1. The M3-Dirichlet model290

The article by Süveges and Davison (2012) studies a disastrous rainfall that occurred in291

coastal Venezuela in December 1999. Similar to the Burlington precipitation data, standard292

extremal models fail to account for this catastrophe because of the inadequate treatment of293

clusters of heavy precipitation. To model such clusters, Süveges and Davison (2012) propose294

to rely on the moving maximum process (M3) due to Smith and Weissman (1996).295

Recall that a univariate stationary time series (Yi : i ∈ Z) is said to be an M3 process296

if, for each i ∈ Z, one can write Yi = maxk∈Z max`∈N a`,kX`,i−k in terms of mutually297

independent unit Fréchet random variables (X`,k : ` ∈ N, k ∈ Z) and a so-called filter matrix298

A = (a`,k : ` ∈ N, k ∈ Z) of non-negative constants summing up to 1. It is typically assumed299

that a`,k > 0 only when ` ∈ {1, . . . , L} and k ∈ {1, . . . , K}. When normalized by the sum300

of its components, viz. (c`,1, . . . , c`,K) = (a`,1, . . . , a`,K)/(a`,1 + · · ·+ a`,K), the `th row of A301

is referred to as the signature of the `th cluster type.302

Süveges and Davison (2012) argue that when the threshold u is sufficiently high, any303

cluster (Yj : j ∈ C) of extremes, once normalized by the sum of its components, viz.304

W = (Wj : j ∈ C) = 1∑
k∈C Yk

× (Yj : j ∈ C), (8)

corresponds to a noisy version of one of the signatures. This intuition is rooted in a result of305

Zhang and Smith (2004) that if (Yi : i ∈ Z) is an M3 process, then for each ` ∈ {1, . . . , L},306

Pr
{ (Yt+1, . . . , Yt+K)
Yt+1 + · · ·+ Yt+K

= (c`,1, . . . , c`,K) infinitely often
}

= 1.

Therefore, Süveges and Davison (2012) propose (i) to transform the series so that its307

marginals are approximately unit Fréchet; (ii) to identify clusters of extremes of a fixed308

length K through an elaborate algorithm; and (iii) to model the normalized cluster profiles309

W with a finite Dirichlet mixture. The number of mixing components is larger or equal to310

L (a single signature could require more than one Dirichlet component) and an estimate of311

the filter matrix A is then obtained from the fitted Dirichlet parameters.312

To contrast the M3-Dirichlet model with the random scale model proposed here, consider313

an arbitrary cluster (Yj : j ∈ C) of high precipitation and the corresponding normalized314

cluster profile W defined in Eq. (8). In the M3-Dirichlet approach, the entire vector W is315

modeled; this requires all clusters to have the same fixed length. In contrast, the random316

scale model allows for variable cluster length and focuses exclusively on the variable P =317

max(Wj : j ∈ C) ∈ (0, 1], which is a lot easier to model than the vector W . Moreover, in318

order to model the total spring rain accumulation, the M3-Dirichlet model would need to be319

extended to account for the cluster sum, and this does not seem straightforward.320

When applying the M3-Dirichlet model to the Burlington precipitation data, the require-321

ment of a fixed cluster length proved to be a serious obstacle. The algorithm from Süveges322
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and Davison (2012, Section 2.3) identified unreasonably long clusters, often containing days323

with no rain (exact zeros); this phenomenon is a result of the fact that the cluster length is324

fixed and that, at the same time, overlaps between clusters must be avoided. Furthermore,325

the finite Dirichlet mixture did not fit the normalized profiles W well.326

5.2. The conditional exceedance model327

Another model that could be used for the Burlington precipitation data is the conditional328

exceedance model of Heffernan and Tawn (2004), along with the modifications later proposed329

by Keef et al. (2013a,b). Let Y be a d-dimensional random vector with Laplace margins and330

let Y −i denote its (d − 1)-dimensional margin obtained by leaving out the ith component.331

The conditional exceedance model accounts for the distribution of Y −i given Yi > u for332

some high threshold u, and is meaningful even under asymptotic independence scenarios.333

Of particular relevance for the application considered here is the work of Keef et al. (2009),334

where this approach is used to model temporal dependence, i.e., the distribution of Yt+τ335

conditionally on Yt > u, for some integer lag τ . This model was recently applied in Winter336

and Tawn (2016) to simulate clusters of extreme values.337

In the Burlington precipitation series, independence appears to hold at any lag τ > 1 and338

asymptotically when τ = 1 for the chosen threshold. We thus chose τ = 1 and used the runs339

method with r = 1 to identify the clusters. Each cluster was further enlarged by one day at340

each end. These clusters were then used to fit the conditional exceedance model. The return341

period of a spring precipitation accumulation of 510mm was then computed by Monte Carlo342

using 100,000 simulated spring scenarios. As in Section 4.2, a normal distribution was used343

to model the sum of precipitation occurring outside of the clusters of extreme precipitation.344

To simulate a cluster of extreme precipitation, the excess Yi − u was first simulated345

independently, and the conditional exceedance model was used to simulate the following346

day; the simulation continued until an observation dropped below u. In order to model the347

day preceding a cluster of extreme rainfall, we fitted a model with lag −1 only to the first348

exceedance of a cluster.349

Although the combined model appears to capture the observed cluster lengths and totals,350

its extrapolation is conservative. The return period of a spring accumulation of 510mm is351

1051 years, which is much longer than the estimate derived from the random scale model.352

One possible explanation for the conservative return level estimate using the conditional353

exceedance model is the fact that estimation of one of the model parameters still requires the354

assumption of Gaussian residuals via constrained maximum likelihood. For the Burlington355

precipitation data, the residuals are clearly not normal. In addition, as we are only using a356

lag of 1, this model does not have the flexibility required to simulate a cluster in which two357

threshold exceedances are separated by a day of moderate precipitation below the threshold.358

6. Conclusion359

In this paper, we used the precipitation recorded at Burlington, Vermont, to estimate the360

return period of the 2011 flood in the Lake Champlain watershed. For adequate estimation,361
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clustering of high precipitation needed to be taken into account. To this end, we proposed362

an extension of the classical POT model called the random scale model, in which the cluster363

maximum is scaled up by an independent random factor. In particular, this allows to model364

spring precipitation accumulation. Although the approach is tailored here for precipitation365

data, it could be used in other situations where cluster totals are of interest.366

The random scale model was seen to fit the Burlington precipitation data well. Through367

Monte Carlo simulations and using the whole observation period, it led to a high, yet real-368

istic, estimate of 320 years for the return period of the 2011 spring accumulation of 510mm.369

Assuming stationarity of the precipitation series, the probability of such an event occurring370

again thus remains small. In fact, the estimated 100-year return level of a spring accu-371

mulation is 446mm, which is 70mm less than the value observed in 2011. The estimate of372

the return period of the 2011 flood, provided here for the first time, should help the Inter-373

national Joint Commission on the Lake Champlain and the Richelieu River in identifying374

the causes and impacts of flooding, and in developing appropriate mitigation solutions and375

recommendations.376
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