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1. Background

Let X ~ F,Y ~ G and suppose (X, Y) ~ H.
Sklar's Theorem states that one can always write
H(x,y) =Pr(X < x,Y <y) = C{F(x),G(y)}
for some choice of function C : [0, 1] — [0, 1] called a copula.
When F and G are continuous, this copula is unique. In fact,

(U, V) = (F(X),G(Y)) ~ C.



Copula models

A copula model for (X, Y') consists of assuming
Fe(F.), Ge(Gs), Ce(G)
in Sklar's representation, viz.
H(x,y) =Pr(X <x,Y <y) = C{F(x), G(y)}.

Such models allow for any choice of margins for X and Y.
The copula induces the dependence between them, e.g.,

XLY < C(u,v)=uv.



Rank-based inference

Assuming F and G are known and a random sample
(X1, Y1), ..., (Xn, Yn) ~H=C(F,G),

a random sample from C would be given by
Vieq,..np (Ui, Vi) = (F(Xi), G(Y7)),

failing which inference about C can be based on the pairs

vie{l ..... n} (0:', Ai) = (Fn(X,'), Gn(Y,)) = (& , i) )

n n

These are pairs of normalized ranks.



Theoretical justification

Consider the empirical distribution function

known as the empirical copula.

Suppose C is “sufficiently smooth”; see, e.g.,

» Riischendorf (1976);
» Fermanian, Radulovic & Wegkamp (2004);
» Segers (2012).



Fundamental result

As n — oo, .
\/E(Cn_ C) ~ (CC7

where

Cc(u,v):a(u,v)—% a(u,1) - 3%‘; Y) a(1,v).

and «a is a centered Gaussian random field on [0, 1]* with
covariance function

cov{a(u,v),a(v,v)} = Clund',vAv)— C(u,v)C(, V).



To study the dependence, get rid of the margins!

The pairs (R;/n, S;/n) are pseudo-observations from the
underlying copula that characterizes the dependence structure.

Samples of size 2000 from two distributions with the
same underlying Gumbel copula (7 = 1/2)



2. Extreme-value copulas

Extreme-value copulas are the asymptotic dependence
structures of component-wise maxima.

Modeling joint extremes is a key issue in risk management. A
classical example (McNeil 1997) is

» X: damage to buildings
» Y': loss to contents
» Z: loss of profits

from losses of 1M DKK to the Copenhagen Reinsurance
company arising from fire claims between 1980 and 1990.



Danish Fire Insurance Data
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Original data on the log-scale (top) and pairs of normalized
ranks (bottom)



Analytic form (Pickands 1981)

All extreme-value copulas are of the form

Clu,v) = exp {In(uv)A { lL”((UVV)) H :

where A : [0,1] — [0, 1] is convex and

vte[o,]_] maX(t, 1 - t) S A(t) S 1

The function A is called the Pickands dependence function.



A generic Pickands dependence function
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Its tail dependence coefficient:

A= m Pr{X > F Y(u)|Y > G }(u)} =2{1 — A(1/2)}.



Parametric examples

054

Symmetric and asymmetric Galambos extreme-value copulas



Focus of today's talk

Suppose (X1, Y1), ..., (X,, Ya) is a random sample from
H(x,y) = C{F(x), G(y)},

where F, G are continuous and C is a copula.

» How can one decide whether C is extreme-value?

» If an extreme-value copula model is appropriate, how can
A be estimated intrinsically?

That is, we want A,, to be convex and such that

Vecpa max(t,1—t) < A (t) < 1.



3. A new diagnostic tool: The A-plot

Consider the transformation T : (0,1)? — (0, 1) defined by

If C is an extreme-value copula, then

- e,



Transformation

Define the set

Sz{(t:M,A(t):M> :u,vE(O,l)}.

In(uv) In(uv)

When C is an extreme-value copula, the graph of S coincides
with the Pickands dependence function.

When C is not extreme, this relationship breaks down!



Plots of the graph of §

Galambos(3) vs Gaussian(0.7)



The A-plot: A diagnostic tool

Plot the pairs (T1, Z1), ..., (T, Z,), where for each
ie{l,...,n},

T, =

(%), (G0 V)
n(0v)" T mGV)

Extreme dependence appears reasonable if the points fall close
to a convex curve.

It is a helpful complement to formal tests of extremeness
(some of which are inconsistent, e.g., Ghoudi et al. 1998).



Example 1: Gumbel copula with 7 = .5




Example 2: Gaussian copula with 7 = .5




Example 3: Clayton copula with 7 = —.25
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Danish Fire Insurance Data
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Thresholding

The A-plot can be adapted to help see whether C is in the
max-domain of attraction of an extreme-value copula, i.e.,

lim C*(uY*, v = Gy(u, v).

f—00

This condition implies that for sufficiently large w € (0, 1),
Clu,v) =~ Cow(uﬁ, vh) = Go(u, v)

for all u,v > w; see, e.g., Ledford & Tawn (1996).



lllustration (Student t, with p = 0.7)

Threshold w € {0,.25,.5,.75}, n = 1000



[[lustration for the Danish data

Buildings-Contents  Buildings-Profits Profits-Contents

For all three pairs of risks, the probability that one loss
exceeds a high threshold, given that the other loss has
exceeded it, is about A\, ~ 1/2!



4. An intrinsic estimator based on B-splines

Many estimators of A have been proposed so far; see, e.g.,

>

Pickands (1981), Capéraa & Fougeres & Genest (1997),
Genest & Segers (2009)

Deheuvels (1991), Hall & Tajvidi (2000), Jiménez,
Villa-Diharce & Flores (2001), Segers (2007)

Zhang, Wells & Peng (2007), Gudendorf & Segers (2012)

Biicher, Dette & Volgushev (2011), Berghaus, Biicher &
Dette (2012)

Guillotte & Perron (2008), Guillotte, Perron & Segers
(2011), Guillotte & Perron (2012)

Ucer & Ahmadabadi (Bernstein polynomials, in progress)



A common limitation

Most of these estimators are not intrinsic “off the bat”, i.e.,
one of these conditions is violated:

» A,(0) = A, (1) =1,
> Ve max(t,1—t) <A, (t) <1,

~

» A, is convex.

One can resort, e.g., to projections (Fils-Villetard, Guillou &
Segers 2008), but this adds complexity.

Intrinsic estimators are not needed for diagnostics but essential
to simulate from the corresponding extreme-value copula.



The new procedure

Cormier et al. (2014) propose to estimate A by fitting a
B-spline of order m = 3 through the A-plot, viz.

m+k
An = E ﬁj¢j,mu
j=t
where (1, ..., Bmik are suitably selected scalars and

¢Lm7“'7¢m+hm

denote the B-spline basis of order m > 3 with k interior knots.



Cox—de Boor recursion formula

To construct the basis ¢1.m, ..., @mikm Of order m with
interior knots

0<Tmi1 < " < Tmak <1,

set71:~~~:7' :0 Tm+k+1:"':7—2m+k:1-

1. Forje{l,..., k+2m—1}, let ¢j1 =1} -,
2. ForEE{2,...,m},J6{1,...,k—|—2m (}, let

bra(t) = ——— gy, 1 (8) + ().

Tjte—1 — Tj Ti+¢ — Tj+1



lllustration: Third-order B-spline basis
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This basis has k = 4 equally-spaced interior knots and consists
of m+ k = 7 B-spline polynomials of degree m — 1 = 2.



Fitting procedure

Assume that for unknown 8 = (f1, ..., Bmik) .

m-+k
Viepa A(t) = Z Bidjm(t) = BT d(1),
j=1
where ®(t) = (¢1.m(t), -, Pmrk.m(t))".
View this as a regression E(Z) = 3" X for which we have data
(X1, Y1) = (®(T1), Z41), ..., (Xn, Ya) = (®(T,), Zn).

with T; = In(V;)/In(U:V;), Z; = In{ C,(U;, V;)}/In(U; V).



Penalized absolute-deviation (L;) criterion

Given the pairs (71, 21),...,(T,, Z,), find
B = argmingeg [|Z = BTO(T)[l1 + AT "],
where B is the set of vectors 8 € R™* such that
(A) BTo(0) =pTo(1) =1;
(B) BT®"(;) > 0 for every j € {1,... k};
(C) |AL(t)| €[0,1] at t =0 and 1.



Technical details

(A)—~(C) guarantee that A, is intrinsic if m € {3,4} because
A is then linear between the knots. Hence

Vie..m B7®"(1) >0 = Vo) Al(t) > 0.

The penalization term \,||3T ®”||~ is needed to make the
solution smooth when the knots are unknown (always!).

Minimization is performed over a large number of equally
spaced empirical quantiles derived from Ty,..., T,.



Bonus: Spectral distribution estimation

For the spectral distribution L of an extreme-value copula,
t
Alt)=1—-t+ 2/ Liw)dw <« A(t)=2L(t) -1
0

when A’ exists; see, e.g., Einmahl & Segers (2009).
Lo(t) = {Ay(t) +1}/2,  L(t) = Au(t)/2,

are easily computed and A’ (0) and A/ (1) estimate the
spectral masses at the end-points.



Computer implementation (m = 3)

v The procedure is coded in R using the “COBS” package.

v’ It is fully automated and only requires the user to define
the constraints and the number of knots.

v From experience, between 10 and 15 knots suffice to
capture the complexity of the data.

v The derivatives are calculated using the “FDA" package
after knot and coefficient abstractions from “COBS”.



Contrasting m =3 vs m=4

Little difference when estimating A only.
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Asymmetric logistic model with o = .3,  =.7, 6 =6
B-spline (solid), Pickands (dotted), CFG (dashed), n = 400



Contrasting m = 3 vs m = 4 (cont'd)

Bigger difference when estimating L, and especially L'.
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B-splines estimates of A’ (left) and A” (right)
m = 3 (dashed) and m = 4 (solid)
Same data, same set of knots



5. Simulation results and data illustration

The B-spline estimators of L with m = 3 and m = 4 were
compared to the estimator of Einmahl & Segers (2009).

v' 9 extreme-value and 5 other copulas;
v’ various degrees of asymmetry and dependence;

V" various sample sizes and N = 1000 repetitions.

Performance measure used:

Z{L — (T}



Clarifications and conclusions

v" The ES estimator uses thresholding; 20 values were used:
w = seq(10,88,4).

V" For fairness, the B-spline estimators were also applied to
thresholded data; 10 levels used: w = seq(0,.8,10).

V" In total: N = 1000 values of D, for 40 estimators:

20 ES, 10 CGN (m=3), 10 BGNS (m = 4).



Typical outcome (Asymmetric Gumbel)

\\\\\\\

ssssss

Conclusion: The CGN and BCJS estimators are typically

superior to the ES estimator.
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Thresholding and final estimates

Residual error
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Take-home message

v" The A-plot is useful for detecting extreme-value
dependence.

v" An intrinsic estimator of A can be based on B-splines.

v B-splines of order m = 3 are adequate for estimating A
(off-the-shelf solution with COBS and FDA packages).

v B-splines of order m = 4 yield better estimates of L and
L’ than the approach of Einmahl & Segers (2009).

v Asymptotic theory is available and non-extreme data can
be handled via thresholding (no asymptotics in support).
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