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1. Background

Let X ∼ F ,Y ∼ G and suppose (X ,Y ) ∼ H .

Sklar’s Theorem states that one can always write

H(x , y) = Pr(X ≤ x ,Y ≤ y) = C{F (x),G (y)}

for some choice of function C : [0, 1]2 → [0, 1] called a copula.

When F and G are continuous, this copula is unique. In fact,

(U ,V ) = (F (X ),G (Y )) ∼ C .



Copula models

A copula model for (X ,Y ) consists of assuming

F ∈ (Fα), G ∈ (Gβ), C ∈ (Cθ)

in Sklar’s representation, viz.

H(x , y) = Pr(X ≤ x ,Y ≤ y) = C{F (x),G (y)}.

Such models allow for any choice of margins for X and Y .
The copula induces the dependence between them, e.g.,

X⊥Y ⇔ C (u, v) ≡ uv .



Rank-based inference

Assuming F and G are known and a random sample

(X1,Y1), . . . , (Xn,Yn) ∼ H = C (F ,G ),

a random sample from C would be given by

∀i∈{1,...,n} (Ui ,Vi) = (F (Xi),G (Yi)),

failing which inference about C can be based on the pairs

∀i∈{1,...,n} (Ûi , V̂i) = (Fn(Xi),Gn(Yi)) =

(
Ri

n
,
Si

n

)
.

These are pairs of normalized ranks.



Theoretical justification

Consider the empirical distribution function

Ĉn(u, v) =
1

n

n∑
i=1

1(Ûi ≤ u, V̂i ≤ v)

known as the empirical copula.

Suppose C is “sufficiently smooth”; see, e.g.,

I Rüschendorf (1976);

I Fermanian, Radulovic & Wegkamp (2004);

I Segers (2012).



Fundamental result

As n→∞, √
n (Ĉn − C ) CC ,

where

CC (u, v) = α(u, v)− ∂C (u, v)

∂u
α(u, 1)− ∂C (u, v)

∂v
α(1, v).

and α is a centered Gaussian random field on [0, 1]2 with
covariance function

cov{α(u, v), α(u′, v ′)} = C (u ∧ u′, v ∧ v ′)− C (u, v)C (u′, v ′).



To study the dependence, get rid of the margins!

The pairs (Ri/n, Si/n) are pseudo-observations from the
underlying copula that characterizes the dependence structure.
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2. Extreme-value copulas

Extreme-value copulas are the asymptotic dependence
structures of component-wise maxima.

Modeling joint extremes is a key issue in risk management. A
classical example (McNeil 1997) is

I X : damage to buildings

I Y : loss to contents

I Z : loss of profits

from losses of 1M DKK to the Copenhagen Reinsurance
company arising from fire claims between 1980 and 1990.



Danish Fire Insurance Data
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Analytic form (Pickands 1981)

All extreme-value copulas are of the form

C (u, v) = exp

[
ln(uv)A

{
ln(v)

ln(uv)

}]
,

where A : [0, 1]→ [0, 1] is convex and

∀t∈[0,1] max(t, 1− t) ≤ A(t) ≤ 1.

The function A is called the Pickands dependence function.



A generic Pickands dependence function
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Its tail dependence coefficient:

λ = lim
u↑1

Pr{X > F−1(u)|Y > G−1(u)} = 2{1− A(1/2)}.



Parametric examples

Symmetric and asymmetric Galambos extreme-value copulas



Focus of today’s talk

Suppose (X1,Y1), . . . , (Xn,Yn) is a random sample from

H(x , y) = C{F (x),G (y)},

where F ,G are continuous and C is a copula.

I How can one decide whether C is extreme-value?

I If an extreme-value copula model is appropriate, how can
A be estimated intrinsically?

That is, we want Ân to be convex and such that

∀t∈[0,1] max(t, 1− t) ≤ Ân(t) ≤ 1.



3. A new diagnostic tool: The A-plot

Consider the transformation T : (0, 1)2 → (0, 1) defined by

T (u, v) =
ln(v)

ln(uv)
.

If C is an extreme-value copula, then

ln(v)

ln(uv)
= t ⇒ A(t) =

ln{C (u, v)}
ln(uv)

.



Transformation

Define the set

S =

{(
t =

ln(v)

ln(uv)
,A(t) =

ln{C (u, v)}
ln(uv)

)
: u, v ∈ (0, 1)

}
.

When C is an extreme-value copula, the graph of S coincides
with the Pickands dependence function.

When C is not extreme, this relationship breaks down!



Plots of the graph of S
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The A-plot: A diagnostic tool

Plot the pairs (T1,Z1), . . . , (Tn,Zn), where for each
i ∈ {1, . . . , n},

Ti =
ln(V̂i)

ln(Ûi V̂i)
, Zi =

ln{Ĉn(Ûi , V̂i)}
ln(Ûi V̂i)

.

Extreme dependence appears reasonable if the points fall close
to a convex curve.

It is a helpful complement to formal tests of extremeness
(some of which are inconsistent, e.g., Ghoudi et al. 1998).



Example 1: Gumbel copula with τ = .5
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Example 2: Gaussian copula with τ = .5
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Example 3: Clayton copula with τ = −.25
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Danish Fire Insurance Data
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Thresholding

The A-plot can be adapted to help see whether C is in the
max-domain of attraction of an extreme-value copula, i.e.,

lim
`→∞

C `(u1/`, v 1/`) = C0(u, v).

This condition implies that for sufficiently large w ∈ (0, 1),

C (u, v) ≈ C
1/`
0 (u`, v `) = C0(u, v)

for all u, v > w ; see, e.g., Ledford & Tawn (1996).



Illustration (Student t2 with ρ = 0.7)
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Illustration for the Danish data

Buildings-Contents Buildings-Profits Profits-Contents
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For all three pairs of risks, the probability that one loss
exceeds a high threshold, given that the other loss has
exceeded it, is about λu ≈ 1/2!



4. An intrinsic estimator based on B-splines

Many estimators of A have been proposed so far; see, e.g.,

I Pickands (1981), Capéraà & Fougères & Genest (1997),
Genest & Segers (2009)

I Deheuvels (1991), Hall & Tajvidi (2000), Jiménez,
Villa-Diharce & Flores (2001), Segers (2007)

I Zhang, Wells & Peng (2007), Gudendorf & Segers (2012)

I Bücher, Dette & Volgushev (2011), Berghaus, Bücher &
Dette (2012)

I Guillotte & Perron (2008), Guillotte, Perron & Segers
(2011), Guillotte & Perron (2012)

I Ucer & Ahmadabadi (Bernstein polynomials, in progress)



A common limitation

Most of these estimators are not intrinsic “off the bat”, i.e.,
one of these conditions is violated:

I Ân(0) = Ân(1) = 1;

I ∀t∈[0,1] max(t, 1− t) ≤ Ân(t) ≤ 1;

I Ân is convex.

One can resort, e.g., to projections (Fils-Villetard, Guillou &
Segers 2008), but this adds complexity.

Intrinsic estimators are not needed for diagnostics but essential
to simulate from the corresponding extreme-value copula.



The new procedure

Cormier et al. (2014) propose to estimate A by fitting a
B-spline of order m = 3 through the A-plot, viz.

Ân =
m+k∑
j=1

β̂jφj ,m,

where β̂1, . . . , β̂m+k are suitably selected scalars and

φ1,m, . . . , φm+k,m

denote the B-spline basis of order m ≥ 3 with k interior knots.



Cox–de Boor recursion formula

To construct the basis φ1,m, . . . , φm+k,m of order m with
interior knots

0 < τm+1 < · · · < τm+k < 1,

set τ1 = · · · = τm = 0, τm+k+1 = · · · = τ2m+k = 1.

1. For j ∈ {1, . . ., k + 2m − 1}, let φj ,1 = 1[τj ,τj+1).

2. For ` ∈ {2, . . . ,m}, j ∈ {1, . . . , k + 2m − `}, let

φj ,`(t) =
t − τj

τj+`−1 − τj
φj ,`−1(t) +

τj+` − t

τj+` − τj+1
φj+1,`−1(t).



Illustration: Third-order B-spline basis
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This basis has k = 4 equally-spaced interior knots and consists
of m + k = 7 B-spline polynomials of degree m − 1 = 2.



Fitting procedure

Assume that for unknown β = (β1, . . . , βm+k)>,

∀t∈[0,1] A(t) =
m+k∑
j=1

βjφj ,m(t) = β>Φ(t),

where Φ(t) = (φ1,m(t), . . . , φm+k,m(t))>.

View this as a regression E(Z ) = β>X for which we have data

(X1,Y1) = (Φ(T1),Z1), . . . , (Xn,Yn) = (Φ(Tn),Zn).

with Ti = ln(V̂i)/ln(Ûi V̂i), Zi = ln{Ĉn(Ûi , V̂i)}/ln(Ûi V̂i).



Penalized absolute-deviation (L1) criterion

Given the pairs (T1,Z1), . . . , (Tn,Zn), find

β̂n = argminB∈B ||Z − β>Φ(T )||1 + λn||β>Φ′′||∞,

where B is the set of vectors β ∈ Rm+k such that

(A) β>Φ(0) = β>Φ(1) = 1;

(B) β>Φ′′(τj) ≥ 0 for every j ∈ {1, . . . , k};

(C) |Â′n(t)| ∈ [0, 1] at t = 0 and 1.



Technical details

(A)–(C) guarantee that Ân is intrinsic if m ∈ {3, 4} because
Â′′n is then linear between the knots. Hence

∀j∈{1,...,m} β>Φ′′(τj) ≥ 0 ⇒ ∀t∈(0,1) Â′′n(t) ≥ 0.

The penalization term λn||β>Φ′′||∞ is needed to make the
solution smooth when the knots are unknown (always!).

Minimization is performed over a large number of equally
spaced empirical quantiles derived from T1, . . . ,Tn.



Bonus: Spectral distribution estimation

For the spectral distribution L of an extreme-value copula,

A(t) = 1− t + 2

∫ t

0

L(w)dw ⇔ A′(t) = 2L(t)− 1

when A′ exists; see, e.g., Einmahl & Segers (2009).

L̂n(t) = {Â′n(t) + 1}/2, L̂′n(t) = Â′′n(t)/2,

are easily computed and Â′n(0) and Â′n(1) estimate the
spectral masses at the end-points.



Computer implementation (m = 3)

X The procedure is coded in R using the “COBS” package.

X It is fully automated and only requires the user to define
the constraints and the number of knots.

X From experience, between 10 and 15 knots suffice to
capture the complexity of the data.

X The derivatives are calculated using the “FDA” package
after knot and coefficient abstractions from “COBS”.



Contrasting m = 3 vs m = 4

Little difference when estimating A only.
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Contrasting m = 3 vs m = 4 (cont’d)

Bigger difference when estimating L, and especially L′.
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5. Simulation results and data illustration

The B-spline estimators of L with m = 3 and m = 4 were
compared to the estimator of Einmahl & Segers (2009).

X 9 extreme-value and 5 other copulas;

X various degrees of asymmetry and dependence;

X various sample sizes and N = 1000 repetitions.

Performance measure used:

Dn =
1

n

n∑
i=1

{L(Ti)− L̂n(Ti)}2.



Clarifications and conclusions

X The ES estimator uses thresholding; 20 values were used:
w = seq(10,88,4).

X For fairness, the B-spline estimators were also applied to
thresholded data; 10 levels used: w = seq(0,.8,10).

X In total: N = 1000 values of Dn for 40 estimators:

20 ES, 10 CGN (m = 3), 10 BGNS (m = 4).



Typical outcome (Asymmetric Gumbel)

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●●
●
●●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●●●●

●

●

●
●

●

●

●

●

●

●

●
●●
●
●

●

●

●

●

●●

●

●●

●

●●
●
●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●
●●
●● ●

●

●

●
●

●

●
●
●

●
●

●

●

●
●
●

●

●

●

●

●
●●

●●●

●

●●●
●

●

●

●

●

●●
●

●

●
●●● ●

●

●

●

●

●

●●
●
●
●●●

●
●●

●

●●●●

●

●

●

●●

●

●

●

●●●●●

●

●●
●
●

●

●●

●

●●●●

●

●
●
●

●●

●
●

●

●●●●

●

●

●

●●●●●
●●

●

●
●●
●

●●
●●●●

●

●●

●
●

●
●

●

●●●

●

●
●●

●

●

●
●
●
●

●

●●
●●

●

●
●●●

●

●
●
●
●
●

●

●

●●●
●
●
●
●

●

●●●

●
●
●

●
●
●
●

●

●

●●

●

●

●

●

●
●●
●

●

●

●
●
●●

●●

●

●

●
●●
●●
●

●
●●
●

●●

●

●

●●●●●

●
●

●●●●

●

●●
●

●

●
●

●
●

●●

●

●

●

●

●●●●●●●
●●
●
●

●

●●●
●●

●

●

●
●

●
●●
●

●

●
●

●
●●
●

●

●

●

●
●
●●
●

● ●
●●
●●
●
●●●●
●

●
●●●
●●
●●
●●
●
●●

●●●
●
●
●●●●
●●

●
●●●

●

●●
●

●
●
●●●

●
●
●●
●●

●

●
●●
●
●

●

●
●
●●

●
●●
●

●●

●●●●

●●●
●●●

●

●
●
●
●
●

●

●●
●
●
●
●

●●

●

●

●

●

●
●

●
●

●●

●●
●●●●●

●

●●
●
●●●●●

●●

●
●●●●●
●
●
●

●

●
●

●

●●

● ●
●
●●

●●
●●●

●●

●●●
●

●

●
●
●
●●

●

●●●
●●
●●●●

●

●●

●

●
●●●●●

●
●
●

●●

●

●●●
●

●
● ●

●●

●
●
●●
●

●

●
●●

●

●

●●
●
●●
●
●

●

●●
●
●
●●
●

●
●

●
●●
●
●
●
●

●
●
● ●●

●
●
●●●
●
●

●●

●

●

●
●●
●●●

●
●●
●
●
●●●

●
●
●
●
●

●

●

●
● ●

●●
●●●

●

●
●
●●
●●

●

●

●

●

●●

●

●●
●●●●●

●

●

●

●●●

●●

●●●

●

●●●

●
●●●

●

●

●

●
●●

●● ●●

●

●

●

●

●
●
●●
●
●

●

●
●
●
●

●

●

●

●
●●●●
●●●●●
●

●●
●

●
●

●●

●
●●●
●

●●

●

●●
●

●●
●

●

●●

● ●
●●

●
●

●

●

●

●
●

●

●
●●●

●

●

●
●
●

●

●

●

●

●

●

●
●
●

●

●
●●
●
●●

●

●

●

●
●
●

●

●●

●

●
●●

●

●●
●●

●
●●●
●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●●

●

●

●
●
●

●

●

●
●

●●

●●

●
●

●

●
●
●
●

●

●

●●

●

●

●●

●●

●

●

●
●●●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●●

●
●●

●

●

●

●
●
●

●

●●●

●

●

●

●

●

●●●●

●

●

●●
●

●
●●●●

●

●
●
●●

●
●●
●

●

●
●

●

●

●
●

●
●
●
●●●●
●
●
●
●

●●●
●

●

●●
●
●●

●●
●
●
●
●
●
●
●

●
●
●

●

●●

●

●

●

●●

●

●

●●●
●●
●

●

●
●
●●●●
●
●●

●●

●

●
●

●

●●●

●

●

●●
●
●●●
● ●

●●●●●●
●●
●

●●●
●●
●●

●

●●

●
●
●

●

●●●
●●
●

●●

●

●●●
●
●●

●
●●
●●●

●

●

●
●

●
●●●
●

●●
●

●●● ●●
●
●

●●

●
●
●

●

●

●

●
●
●●●

●

●●

●

●
●●●

●

●
●

●

●

●
●

●●
●

●
● ●

●

●
●
●
●●
●●
●
●

●
●
●●

●●

●

●

●●
●
●

●

●●●●●●

●

●

●●

●

●

● ●
●

●●●

●

●
●

●●
●●

●

●●

●

●

●
●
●
●
●
●

●

●●●●
●●●

●
●

●●●●

●

●●●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●●
●●
●

●

●
●
●

●

●

●

●

●

●
●

●
●
●

●

●
●●●

●

●
●

●●●
●
●

●

●

●
●

●

●
●

●

●●
●

●

●

●●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●●
●
●

●

●
●
●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●
●
●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●
●

●●
●

●●●
●
●

●

●

●●

●●

●

●

●

●

●

●

●

0.
00

0.
01

0.
02

0.
03

Asymmetric Gumbel (0.4,0.8,2)

ES CGN spline

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●●
●
●●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●
●
●●
●●
●
●

●
●
●●

●●

●

●

●●
●
●

●

●●●●●●

●

●

●●

●

●

● ●●

●

●

●

●

●
●
●●
●
●

●

●
●
●
●

●

●

●

●
●●●●
●●●●●
●

●●
●

●
●

●●

●
●●●
●

●●

●

●●
●

●●
●

●

●●

●

ES CGN spline

0.
00

0.
01

0.
02

0.
03

Asymmetric Gumbel (0.4,0.8,2)

Conclusion: The CGN and BCJS estimators are typically
superior to the ES estimator.



Danish Fire Insurance Data
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Thresholding and final estimates

0.0 0.2 0.4 0.6 0.8 1.0

0
.0
0

0
.0
1

0
.0
2

0
.0
3

0
.0
4

Threshold

R
e

s
id

u
a

l 
e

rr
o

r

0.0 0.2 0.4 0.6 0.8 1.0

0
.0
0
0
.0
2
0
.0
4
0
.0
6
0
.0
8
0
.1
0
0
.1
2
0
.1
4

Threshold

R
e

s
id

u
a

l 
e

rr
o

r

0.0 0.2 0.4 0.6 0.8 1.0

0
.0
0
1

0
.0
0
2

0
.0
0
3

0
.0
0
4

0
.0
0
5

Threshold

R
e

s
id

u
a

l 
e

rr
o

r

0.0 0.2 0.4 0.6 0.8 1.0

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

t

A
(t
)

0.0 0.2 0.4 0.6 0.8 1.0

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

t

A
(t
)

0.0 0.2 0.4 0.6 0.8 1.0

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

t
A
(t
)

(X ,Y ), (X ,Z ), (Y ,Z )



Take-home message

X The A-plot is useful for detecting extreme-value
dependence.

X An intrinsic estimator of A can be based on B-splines.

X B-splines of order m = 3 are adequate for estimating A
(off-the-shelf solution with COBS and FDA packages).

X B-splines of order m = 4 yield better estimates of L and
L′ than the approach of Einmahl & Segers (2009).

X Asymptotic theory is available and non-extreme data can
be handled via thresholding (no asymptotics in support).
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