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What is the content of the talk

Valuation of financial derivatives

in stochastic market models

using (QMC-)simulation

and why it might be a good idea
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Black-Scholes model:

Share: St = S0 exp
((
µ− σ2

2

)
t + σWt

)
, t ∈ [0,T ],

µ is the (log)-drift
σ is the (log)-volatility

Bond: Bt = B0 exp(rt), t ∈ [0,T ],

r > 0 is the interest rate
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SDE-model (m-dimensional):

dSt = b(t,St)dt + a(t,St)dWt , t ∈ [0,T ],

S0 = s0

Black-Scholes model is special case of SDE models,
dSt = µStdt + σStdWt

Other popular SDE-model:

dBt = rBtdt

dSt = µStdt +
√

VtSt(ρdW 1
t +

√
1− ρ2dW 2

t )

dVt = κ(θ − Vt)dt + ξ
√

Vt dW 1
t

(B0, S0,V0) = (b0, s0, v0) .

for t ∈ [0,T ]. “Heston model”
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A contingent claim is a contract that pays its owner an
amount of money that depends on the evolution of the price
processes

more technically: a function that is F S
T -measurable

(Information generated by price processes)
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Examples:

European Call option on S1 with strike K and maturity T
pays max(S1

T − K , 0) at time T ;

Asian Call option on S1 pays max
(

1
T−T0

∫ T
T0

S1
t dt − K , 0

)
at

time T ;

an example of a Basket option pays max
(

1
d

∑d
k=1 Sk

T − K , 0
)

at time T ;

much more complicated payoffs exist in practice.
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Under technical “no arbitrage condition” and existence of a
“riskless” asset B = S j that we may use as a numeraire
we have a (not necessarily unique) price, the price at time 0 of the
claim C with payoff φ at time T can be written in the form

π0(C ) = EQ

(
B0B−1

T φ
)

where Q is a pricing measure.

Only in rare cases can this expected value be computed explicitely.
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Assume a Black-Scholes modell and suppose we want to price an
Arithmetic average option

φ = max

(
1

d

d∑
k=1

S k
d
T − K , 0

)

that is, the derivative’s payoff depends on ST
d
, . . . ,ST .

Let us compute its value, π0(φ) = EQ(exp(−rT )φ).
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Share price at time k
nT under pricing measure

S k
d
T = s0 exp

((
r − σ2

2

)k

d
T + σW k

d
T

)
d
= s0 exp

(r − σ2

2
)

k

d
T + σ

√
1

d
T

k∑
j=1

Zj

 ,

where Z1, . . . ,Zd are independent standard normals.

π0(φ) = EQ

(
ψ(Z1, . . . ,Zd)

)
=

∫
Rd

ψ(z1, . . . , zd) exp
(
− 1

2
(z2

1 + · · ·+ z2
d )
)

(2π)−
d
2 dz1 . . . dzd

where ψ is some (moderately complicated) function in d variables.
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That is, the price of the claim can be calculated as a
d-dimensional integral over Rd .
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Same argument can be made for SDE models and much simpler
payoff.
Solve SDE using, for example, Euler-Maruyama method with d
steps:

Ŝ0 = s0

Ŝ(k+1)T
d

= Ŝk T
d

+ µ(Ŝk T
d
,

k

d
T )

T

d
+ σ(Ŝk T

d
,

k

d
T )

√
T

d
Zk+1

k = 1, . . . , d .
Means that ŜT is a function of Z1, . . . ,Zd . Expectation over
payoff is again an integral over Rd .
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Remark

Let Φ be the cumulative distribution function of the standard
normal distribution, and let Φ−1 denote its inverse.
Then∫

Rd

ψ(z1, . . . , zd) exp
(
− 1

2
(z2

1 + · · ·+ z2
d )
)

(2π)−
d
2 dz1 . . . dzd

=

∫
(0,1)d

ψ
(
Φ−1(u1), . . . ,Φ−1(ud)

)
du1 . . . dud
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Suppose f : [0, 1)d −→ R is integrable and we want to know

I =

∫
[0,1)d

f (x)dx .

For small d we may use product rules with n nodes per coordinate.
For example, set xk = k

n and consider the one-dimensional rule

∫ 1

0
g(x)dx ≈ 1

n

n−1∑
k=0

g(xk)

Gunther Leobacher QMC methods in quantitative finance
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By Fubini’s theorem

I =

∫
[0,1)d

f (x)dx =

∫ 1

0
. . .

∫ 1

0
f (x1, . . . , xd)dx1 . . . dxd

and thus

I ≈ 1

n

n−1∑
k1=0

. . .
1

n

n−1∑
kd=0

f (xk1 , . . . , xkd ) .

doubling n in the one-dimensional integration rule multplies
the number of function evaluations in the product rule by 2d .

calculation cost increases exponentially in required accuracy

this is known as “Curse of dimension”
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Idea: I = E(f (U1, . . . ,Ud)), where U1, . . . ,Ud are independent
uniform random variables.

Consider an independent sequence (Uk)k≥0 of uniform random
vectors. Then

P

(
lim

N→∞

1

N

N−1∑
k=0

f (Uk) = I

)
= 1 ,

by the strong law of large numbers.
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If, in addition, σ2 := E(f (U1, . . . ,Ud)2)− I 2 <∞, we have by
Tchebychev’s inequality for every ε > 0

P

(∣∣∣∣∣ 1

N

N−1∑
k=0

f (Uk)− I

∣∣∣∣∣ > ε

)
≤ σ2

Nε2
.

Suppose we want an error less than ε with probability 1− α, or,
equivalently, an error greater than ε with probability α.

σ2

Nε2
≤α⇔ N ≥ σ2

ε2α

The number of integration nodes grows (only) quadratically in 1
ε .
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For a = (a1, . . . , ad) ∈ [0, 1]d

let [0, a) := [0, a1)× . . .× [0, ad).

Definition (Discrepancy function)

Let PN = {x0, . . . , xN−1} ∈ [0, 1)d . Then the discrepancy
function ∆PN

: [0, 1]d −→ R is defined by

∆PN
(a) :=

#{0 ≤ k < N : xk ∈ [0, a)}
N

− λd([0, a)) , (a ∈ [0, 1]d)

λd denotes d-dimensional Lebesgue measure
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Definition (Star discrepancy)

PN = {x0, . . . , xN−1} ∈ [0, 1)d . Then the star discrepancy
D∗(PN) is defined by

D∗(PN) := sup
a∈[0,1]d

|∆PN
(a)| = ‖∆PN

‖∞

Gunther Leobacher QMC methods in quantitative finance
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If U0,U1, . . . is a sequence of random vectors uniform in [0, 1)d ,
and PN = {U0, . . . ,UN−1}, then

lim
N→∞

D∗(PN) = 0 a.s.

“Low discrepancy sequences” are designed to
have this convergence as fast as possible
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For every dimension d ≥ 1 there exist a sequence (xn)n≥0 in

[0, 1)d , such that D∗(PN) = O
(

(log N)d

N

)
, where

PN = {x0, . . . , xN−1}

We call such a sequence with this property a low discrepancy
sequence

There exists a constant c > 0 such that for any sequence

x0, x2, . . . ∈ [0, 1) we have lim infN D∗(PN) ≥ c log(N)
d
2

N ,
where PN = {x0, . . . , xN−1}
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Idea: let a ∈ [0, 1)d . Let (xk)k≥0 be a low-discrepancy sequence.

We have seen that for some C∣∣∣∣#{0 ≤ k < N : xk ∈ [0, a)}
N

− λs([0, a))

∣∣∣∣ ≤ C
log(N)d

N

i.e. ∣∣∣∣∣ 1

N

N−1∑
k=0

1[0,a)(xk)−
∫

[0,1)d
1[0,a)(x)dx

∣∣∣∣∣ ≤ C
log(N)d

N
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We may have the hope that, for suitably behaved integrands, and a
low discrepancy sequence (xk)k≥0,∣∣∣∣∣ 1

N

N−1∑
k=0

f (xk)−
∫

[0,1)d
f (x)dx

∣∣∣∣∣ ≤ C
log(N)d

N

(For large N this convergence would be much faster than N−
1
2 .)

The Koksma-Hlawka states that this is true indeed.
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Theorem (Koksma-Hlawka inequality)

Let f : [0, 1)d −→ R and P = {x0, . . . , xN−1} ⊆ [0, 1)d . Then∣∣∣∣∣ 1

N

N−1∑
k=0

f (xk)−
∫

[0,1)d
f (x)dx

∣∣∣∣∣ ≤ V (f )D∗(P) ,

where V (f ) denotes the total variation of f in the sense of Hardy
and Krause.
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We have

V (f ) =
∑

u⊆{1,...,d}

∫
[0,1]|u|

∣∣∣∣∣∂|u|f∂xu
(xu, 1)

∣∣∣∣∣ dxu

if the mixed derivatives of f exist and are integrable.
Here, (xu, 1) denotes the vector ones obtains by replacing
coordinates with index not in u by 1

and ∂|u|f
∂xu

means derivative by every variable with index in u

Gunther Leobacher QMC methods in quantitative finance
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Double logarithmic plot:
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Suggests to use QMC for small to moderate dimensions only.
However, in the late 20th century, starting with work by Paskov
and Traub, “practitioners” started to observe the following
phenomenon
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This phenomenon frequently occured in applications from
mathematical finance, or, more concretely, in derivative pricing.

Where does this apparent superiority come from?
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Brownian motion is a process is continuous time

For numerical computation one usually only needs the
Brownian path at finitely many nodes t1, . . . , td
define a discrete Brownian path on nodes 0 < t1 < . . . < td as
Gaussian vector (Bt1 , . . . ,Btd ) with mean zero and covariance
matrix

(
min(tj , tk)

)d
j ,k=1

=


t1 t1 t1 . . . t1

t1 t2 t2 . . . t2

t1 t2 t3 . . . t3
...

...
...

. . .
...

t1 t2 t3 . . . td


Gunther Leobacher QMC methods in quantitative finance
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For simplicity we only consider the evenly spaced case, i.e.,
tk = k

d T , k = 1, . . . , d . And we specialize to T = 1.
Then the covariance matrix takes on the form

(
min(tj , tk)

)d
j ,k=1

=
1

d


1 1 1 . . . 1
1 2 2 . . . 2
1 2 3 . . . 3
...

...
...

. . .
...

1 2 3 . . . d


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Three classical constructions of discrete Brownian paths:

the forward method, a.k.a. step-by-step method or piecewise
method

the Brownian bridge construction or Lévy-Ciesielski
construction

the principal component analysis construction (PCA
construction)
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Forward method:

given a standard normal vector X = (X1, . . . ,Xd)

compute discrete Brownian path inductively by

B 1
d

=

√
1

d
X1 , B k+1

d
= B k

d
+

√
1

d
Xk+1

Using that E(XjXk) = δjk , it is easy to see that (B 1
d
, . . . ,B1)

has the required correlation matrix

simple and efficient: generation of the normal vector plus d
multiplications and d − 1 additions.

Gunther Leobacher QMC methods in quantitative finance
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Brownian bridge construction: allows the values B 1
d
, . . . ,B d

d
to be

computed in any given order

Lemma

Let B be a Brownian motion and let r < s < t.
Then the conditional distribution of Bs given Br ,Bt is N(µ, σ2)
with

µ =
t − s

t − r
Bs +

s − r

t − r
Bt and σ2 =

(t − s)(s − r)

t − r
.

Gunther Leobacher QMC methods in quantitative finance
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Bs

µ

Bt

tr

Br = µ+ σZ

s
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Discrete path can be computed in time proportional to d ,
given that factors are precomputed

typical order of construction B1,B 1
2
,B 1

4
,B 3

4
,B 1

8
, . . . (for

d = 2m)

Gunther Leobacher QMC methods in quantitative finance
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PCA construction:

exploits the fact that correlation matrix Σ of (B 1
d
, . . . ,B d

d
) is

positive definite

can be written Σ = VDV−1 for a diagonal matrix D with
positive entries and an orthogonal matrix V

D can be written as D = D
1
2 D

1
2 , where D

1
2 is the

element-wise positive square root of D

now compute

(B 1
d
, . . . ,B d

d
)> = VD

1
2 X .

X a standard normal random vector

matrix-vector multiplication can be done in time proportional
to d log(d) (Scheicher 2007)
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Why do we need more than one construction?

Consider the problem of valuating an average value option in
the Heston model.

Use Euler-Maruyama method to solve SDE

Test the different approaches numerically:

model parameters: s0 = 100, v0 = 0.3, r = 0.03, ρ = 0.2,
κ = 2, θ = 0.3, ξ = 0.5,
option parameters: K = 100, T = 1.
d = 64
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Can we explain this behavior?

QMC seems to perform better if some of the variables are
more important than the others

alternative construction often help to put more weight on
earlier variables
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notion of effective dimension

tries to explain why problem behaves low-dimensional w.r.t.
QMC
uses concept of ANOVA decomposition of a function into
lower-dimensional components

alternative concept: weighted Korobov- or Sobolev spaces

give Koksma-Hlawka type inequalities with weighted
norm/discrepancy
sequence need not be as well-distributed in coordinates that
are less important

both concepts have some connections
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But caution is in order
“Ratchet” Option: (Papageorgiou 2002) Same example model, but
different payoff:

f (ST
d
,S 2T

d
, . . . ,ST ) =
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d
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Whether a path construction is ”good” or not depends on the
payoff as well

before we continue with asking why QMC is good when
combined with some pairs of payoffs/constructions

we want a general framework for the constructions
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Cholesky decomposition of Σ(d): Σ(d) = SS>, where

S = S (d) :=
1√
d


1 0 0 . . . 0
1 1 0 . . . 0
1 1 1 . . . 0
...

...
...

. . .
...

1 1 1 . . . 1

 .

Note that Sy is the cumulative sum over y divided by
√

d ,

Sy =
1√
d

(y1, y1 + y2, . . . , y1 + . . .+ yd)>
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Lemma (Papageorgiou 2002)

Let A be any d × d matrix with AA> = Σ and let X be a standard
normal vector. Then B = AX is a discrete Brownian path with
discretization 1

d ,
2
d , . . . ,

d−1
d , 1.

Lemma (Papageorgiou 2002)

Let A be any d × d matrix with AA> = Σ. Then there is an
orthogonal d × d matrix V with A = SV . Conversely,
SV (SV )> = Σ for every orthogonal d × d matrix V .
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orthogonal transform corresponding to forward method is idRd

Brownian bridge construction for d = 2k , with order
B1,B 1

2
,B 1

4
,B 3

4
,B 1

8
,B 3

8
,B 5

8
, . . ., is given by the inverse Haar

transform

for the PCA, the orthogonal transform has been given
explicitly in terms of the fast sine transform

many orthogonal transforms can be computed using
O(d log(d)) operations (L. 2012)

Examples include: Walsh, discrete sine/cosine, Hilbert,
Hartley, wavelet and others

orthogonal transforms have no influence on the probabilistic
structure of the problem
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Consider functions on [0, 1]d and the following norm:

‖f ‖2 =
∑

u⊆{1,...,d}

∫
[0,1]|u|

∣∣∣∣∣∂|u|f∂xu
(xu, 1)

∣∣∣∣∣
2

dxu

Here, (xu, 1) denotes the vector one obtains by replacing
coordinates with index not in u by 1

and ∂|u|f
∂xu

means derivative by every variable with index in u
(the corresponding 1-norm, if defined and finite, equals the
variation in the sense of Hardy and Krause)
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Sloan & Woz̀niakowski (1998) indroduced a sequence of weights
γ1 ≥ γ2 ≥ . . . > 0 and defined a weighted norm instead

‖f ‖2 =
∑

u⊆{1,...,d}

γ−1
u

∫
[0,1]|u|

∣∣∣∣ ∂f

∂xu
(xu, 1)

∣∣∣∣2 dxu

where γu =
∏

k∈u γk

For example, if
∑∞

k=1 γk <∞, this makes contributions of larger
indices bigger
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Rephrased: higher dimensions need to be less relevant to
make norm still small

Sloan & Woz̀niakowski (1998) present corresponding weighted
discrepancy and weighted Koksma-Hlawka inequality

Requirements on discrepancy more relaxed =⇒ have better
dependence on dimension

Sloan & Woz̀niakowski (1998) only show existence of good
integration nodes

for example, if
∑∞

k=1 γk <∞, then we can make the
integration error small, independently of dimension!!
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Since then deviation from “One-size-fits-all approach” for
construction of QMC point sets and sequences

(Fast) Component-by-component constructions of point sets
for given weights Dick & L. & Pillichshammer, Cools &
Nuyens, Kritzer & L. & Pillichshammer, Dick & Kritzer & L.
& Pillichshammer

Many different norms/spaces and equi-distribution measures

Main tool: reproducing kernel Hilbert space,
that is,
a Hilbert space of functions for which function evaluation is
continuous
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Thus, the problem was solved
The end
Or is it ?
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Not quite!

Transformation of financial problems to unit cube usually
leads to infinite (weighted) norm

there is no guarantee that finite norm with respect to one
path construction gives finite norm in another
directions of coordinate axes are special

no or very few means to find “optimal” construction
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Idea by Irrgeher & L.(2015): find a class of reproducing kernel
Hilbert spaces

of functions on the Rd

with a weighted norm

that is continuous w.r.t. orthogonal transforms of the Rd

and allows for tractability/complexity discussions
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φ(x) := 1√
2π

exp(− x2

2 ), x ∈ R

L2(R, φ) = {f : measurable and
∫
R |f |

2φ <∞}
(H̄k)k . . . sequence of normalized Hermite polynomials

(i.e. H̄0, H̄1, H̄2, . . . is the Gram-Schmidt

orthogonalization of 1, x , x2, . . . in L2(R, φ)

(H̄k)k . . . forms Hilbert space basis of L2(R, φ), i.e.

f =
∑
k≥0

f̂ (k)H̄k in L2(R, φ)
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Theorem (Irrgeher & L. (?))

Let (rk)k≥0 be a sequence with

rk > 0∑
k≥0 rk <∞

If f : R→ R is continuous,
∫
R f (x)2φ(x)dx <∞, and∑

k≥0 r−1
k |f̂ (k)|2 <∞ then

f (x) =
∑
k≥0

f̂ (k)H̄k(x) for all x ∈ R

Gunther Leobacher QMC methods in quantitative finance



Derivative pricing
MC and QMC methods

Generation of Brownian paths
Weighted norms
Hermite spaces

One-dimensional Hermite space
d-dimensional Hermite space
Example
Examples regression algorithm
Conclusion

Hermite spaces
One-dimensional Hermite space

Fix some positive summable sequence r = (rk)k≥0

Introduce new inner product:

〈f , g〉her :=
∞∑
k=0

r−1
k f̂ (k)ĝ(k)

and corresponding norm ‖.‖her := 〈., .〉1/2,

‖f ‖2
her :=

∞∑
k=0

r−1
k f̂ (k)2
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Theorem (Irrgeher & L.(2015))

The Hilbert space

Hher(R) := {f ∈ L2(R, φ) ∩ C (R) : ‖f ‖her <∞}

is a reproducing kernel Hilbert space with reproducing kernel

Kher(x , y) =
∑
k∈N0

r(k)H̄k(x)H̄k(y)

(Can compute function evaluation by inner product
f (x) = 〈f (.),K (x , .)〉her, ∀x ∈ R)
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There are indeed some interesting functions in Hher(R):

Theorem (Irrgeher & L.(2015))

Let rk = k−α, let β > 2 be an integer, and let f : R −→ R be a β
times differentiable function such that

(i)
∫
R |D

j
x f (x)|φ(x)1/2dx <∞ for each j ∈ {0, . . . , β} and

(ii) D j
x f (x) = O(ex

2/(2c)) as |x | → ∞ for each j ∈ {0, . . . , β − 1}
and some c > 1.

Then f ∈Hher(R) for all α with 1 < α < β − 1.

(derivatives up to order β > α+ 1 exist, satisfy an integrability and
growth condition)
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For a d-multi-index k = (k1, . . . , kd) define

H̄k(x1, . . . , xd) :=
d∏

j=1

H̄kj (xj)

defines Hilbert space basis of L2(Rd , φ)

write fk := 〈f , H̄k〉 =
∫
Rd f (x)H̄k(x)φ(x)dx
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We consider

Hher,γ(Rd) := Hher(R)⊗ . . .⊗Hher(R).

with the inner product

〈f , g〉her,γ =
∑
k∈Nd

0

r(γ, k)−1f̂ (k)ĝ(k)

where the function r(γ, .) : Nd
0 −→ R is given by

r(γ, k) =
d∏

j=1

(δ0(kj) + (1− δ0(kj))γ−1
j rkj )

i.e. r(γ, k) =
∏d

j=1 r̃(γj , kj) where

r̃(γ, k) :=

{
1 k = 0

γ−1rk k ≥ 1
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“Canonical” RK:

Kher,γ(x, y) :=
∑
k∈Nd

0

r(γ, k)H̄k(x)H̄k(y)

With this Hher,γ is weighted RKHS of functions on the Rd
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Integration:

I (f ) =

∫
Rd

f (x)φ(x)dx

Theorem (Irrgeher & L.(2015))

Integration in the RKHS Hher,γ(Rd) is

strongly tractable if
∑∞

j=1 γj <∞,

tractable if lim supd
1

log d

∑d
j=1 γj <∞.

Irrgeher, Kritzer, L., Pillichshammer (2015) study Hermite spaces
of analytic functions and find lower bounds on complexity
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Why are we interested in this kind of space?

Let f ∈Hher,γ and let U : Rd −→ Rd some orthogonal
transform, U>U = 1Rd

then f ◦ U ∈Hher,γ

also
∫
Rd f ◦ U(x)φ(x)dx =

∫
Rd f (x)φ(x)dx

but in general ‖f ◦ U‖her,γ 6= ‖f ‖her,γ
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Example from Irrgeher & L.(2015): compute E(exp(W1)), where
W is a Brownian path
Corresponds to integrating function a f : Rd → R, if W1 is
computed using the foirward construction

f ∈Hher,γ for a sensible choice of γ

‖f ‖her,γ ≥ ced for some c and all d ∈ N
‖f ◦ U‖her,γ ≤ C for some C , where U is the inverse Haar
transform
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norm of ‖f ◦ U‖ depends on U in a continuous fashion.

We can – in principle – use optimization techniques to find
best transform
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An earlier result/method by Irrgeher & L. is better understood
in the context of Hermite spaces

instead of minimizing the weighted norm of ‖f ◦ U‖, minimize
a seminorm which does not take into account all Hermite
coefficients

for example, only consider order one coefficients

method is termed linear regression method and generates
paths in linear time
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Average value option
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Average value basket option

0 2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

2

 

 

Forward

PCA

LT

Regression

Gunther Leobacher QMC methods in quantitative finance



Derivative pricing
MC and QMC methods

Generation of Brownian paths
Weighted norms
Hermite spaces

One-dimensional Hermite space
d-dimensional Hermite space
Example
Examples regression algorithm
Conclusion

Average value barrier option
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We have provided a potential approach to explaining to
effectiveness of QMC for high-dimensional financial
applications

the approach enabled us to find a method that is practically
the best available at the moment

different lines of research:

construct point sets/sequences for those spaces
generalize regression method to higher oder approximations
make regression method more “automatic”
deal with “kinks”
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Thank you !
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