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CORE, Université catholique de Louvain

SKEMA Business School - Université de Lille
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Abstract

Markov-switching models are usually specified under the assumption that all the
parameters change when a regime switch occurs. Relaxing this hypothesis and be-
ing able to detect which parameters evolve over time is relevant for interpreting the
changes in the dynamics of the series, for specifying models parsimoniously, and may
be helpful in forecasting. We propose the class of sticky infinite hidden Markov-
switching autoregressive moving average models, in which we disentangle the break
dynamics of the mean and the variance parameters. In this class, the number of
regimes is possibly infinite and is determined when estimating the model, thus avoid-
ing the need to set this number by a model choice criterion. We develop a new Markov
chain Monte Carlo estimation method that solves the path dependence issue due to
the moving average component. Empirical results on macroeconomic series illustrate
that the proposed class of models dominates the model with fixed parameters in terms
of point and density forecasts.
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1



1 Introduction

Econometricians have developed models with changing parameters at least since Goldfled

& Quandt (1973) introduced the idea of Markov-switching (MS) to model the changes in

the parameters of a regression equation. This idea consists in enriching the regression with

a discrete latent variable process indexing the parameters so that they can switch from one

value to another. Hamilton (1989) updated the idea and introduced in particular a filtering

algorithm that enables a direct evaluation of the likelihood function. A few years later, Chib

(1998) proposed change-point (CP) models, where the transitions from one value to another

are not reversible, as a convenient way to model structural breaks at unknown break dates.

The estimation of all these models relies on algorithms that are not applicable to models

exhibiting path dependence, such as the autoregressive moving average (ARMA) and the

generalized autoregressive conditional heteroskedastic (GARCH) models. The difficulty

occurs because an unobservable variable at date t (the lagged error term in ARMA models,

the lagged conditional variance in GARCH) depends on the entire path of states that have

been followed until that date. The computational time thus exponentially grows with the

number of time-series observations (for the MS version) and is practically infeasible even

for relatively short series.1

Selecting the number of states (or regimes) in these models is an important issue.

This is typically done by using a model choice criterion after estimating the model with

different numbers of regimes. Bayesian inference by Markov chain Monte Carlo (MCMC)

is practical even though the evaluation of the likelihood function is infeasible due to path

dependence. Although several numerical tools are available for computing the marginal

likelihood (Ardia et al. (2009)), it still remains a tedious calculation for complex models

(see e.g. Bauwens et al. (2013)). The sticky infinite hidden Markov-switching (sticky IHMS)

modelling framework (Fox et al. (2011)) allows us to bypass this demanding computation by

assuming a Markov chain with a potentially infinite number of regimes, thus encompassing

any finite number of them. This setting has been successfully applied in genetics (Beal

1Several papers propose estimation methods for the MS and CP-GARCH models, either circumventing

the path dependence issue (e.g. Gray (1996), Klaassen (2002) Haas et al. (2004)) or tackling the issue

upfront (e.g. Francq & Zakoian (2008), Henneke et al. (2011), Bauwens et al. (2013)).
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& Krishnamurthy (2006)), visual recognition (Kivinen et al. (2007)), and economics, with

in the last area in particular autoregressive (AR) models (Song (2014), Jochmann (2015))

and volatility models (e.g. Jensen & Maheu (2010)).

With respect to this background, our contribution is threefold. To begin with, we pro-

pose a simple solution to relax the classical assumption of MS models, which states that

all the parameters must change whenever a break occurs. To do so, we separate the break

dynamics of the mean and variance parameters and use a hierarchical Dirichlet process to

drive each of them. Although not based on Dirichlet processes, similar approaches rely-

ing on finite-state Markov chains are proposed by Doornik (2013), Goutte (2014), and Eo

(2012). While the first two assume a fixed number of regimes, the latter uses the marginal

log-likelihood to select the optimal specification. This method is impractical for a large

number of regimes or of parameters. In comparison, we only need one estimation to de-

termine the optimal number of regimes. Moreover, our forecasts take the uncertainty of

the number of regimes into account without resorting to Bayesian model averaging. Our

empirical forecasting results indicate that this feature contributes positively to the predic-

tive performance of the proposed models. Our modeling approach therefore generalizes

the conventional MS approach in two related directions: an unbounded number of states

(as in existing IHMS-AR models) and a flexibility on the dynamics of the parameters, by

allowing different break dates in the parameters of the mean and of the variance.

Secondly, as our baseline model is an ARMA one, we need an estimation method that

operates for models subjected to path dependence. We develop a new MCMC algorithm

that solves this issue. In addition, the sampling of the ARMA parameters is performed with

the manifold Metropolis adjusted Langevin algorithm (MALA) introduced by Girolami &

Calderhead (2011).

As a third contribution, we introduce in the econometric literature the steppingstone

algorithm (see Xie et al. (2011)), which provides a new way to estimate the marginal

log-likelihood (MLL) from the MCMC output.

The rest of the paper is organised in six sections. The model is presented in Section

2 and the estimation procedure in Section 3. The steppingstone algorithm is exposed in

Section 4. The prior elicitation and the label switching problem are addressed in Section 5.
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Applications, including forecasting evaluations, are presented in Section 6. The last section

contains our conclusions. A supplementary appendix (SA) provides additional empirical

results.

2 MS-ARMA Models

We start by defining the model with a finite number of states in order to discuss its

limitations. In subsection 2.2, we present the Dirichlet process mixture model and the

related Dirichlet process. These processes are the building blocks of the infinite hidden

Markov-switching framework (IHMS) on which the IHMS-ARMA model class is built.

This model class is defined in subsection 2.3. For simplicity, the exposition is limited to

the ARMA(1,1) model, the term ARMA being used to designate shortly ARMA(1,1) in

the rest of the paper. Similarly, y1:T = {y1, ..., yT} denotes a generic time series.

2.1 The Model With a Finite Number of Regimes

The MS-ARMA model is defined by

yt = µst + βstyt−1 + φstǫt−1 + ǫt, (1)

ǫt ∼ N(0, σ2
st
), (2)

where µst ∈ ℜ, σ2
st
> 0, |βst| < 1 (for stationarity), |φst| < 1 (for invertibility) and

βst + φst 6= 0 (no root cancellation). The elements of the vector s1:T = {s1, ..., sT} take

integer values from 1 to K and denote which regime (also called state hereafter) is active

at each period of time. They are assumed to follow a first-order Markov chain with a

homogeneous transition probability matrix given by

PMS =















p11 p12 ... p1K

p21 p22 ... p2K

...

pK1 pK2 ... pKK















,

in which pij denotes the probability of moving from state i to j with the constraint that
∑K

j=1 pij = 1, ∀i ∈ [1, K]. This setting is similar to that of Hamilton (1989).
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Although flexible, the MS-ARMA model has two limitations that motivate our contribu-

tions in this paper. Firstly, the number of regimes K must be fixed before the estimation.

Indeed, the standard inference method consists in estimating the MS-ARMA model for

several a priori plausible values of K, and then choosing the optimal number of regimes by

using a model choice criterion. This approach requires several estimations that are tedious

when K is large. Moreover, it does not take the uncertainty on the number of regimes

into account. Secondly, at each regime switch, all the parameters change simultaneously.

However a break may affect only a subset of the parameters. As a consequence, the stan-

dard model may be over-parameterized, resulting in imprecise estimates, in particular of

the parameters of short regimes, and deteriorated forecast performance.

2.2 The Dirichlet Process Mixture Model

To address the two issues, we adopt a setting that potentially allows for an infinite number of

regimes and we disentangle the dynamics of the model parameters by allowing for different

break dates for the mean function parameters and for the variance. To do so, we rely on

the sticky IHMS framework of Fox et al. (2011) (see also Teh et al. (2006)) which is based

on the Dirichlet process (DP) introduced by Ferguson (1973). We introduce first the DP

and highlight its interest, before defining the complete model in the next subsection.

The Dirichlet process can be used as a non-parametric prior on model parameters. Its

most popular use is the DP mixture model. An example of this for an ARMA model is the

following:

yt = µ+ βyt−1 + φǫt−1 + ǫt, (3)

ǫt ∼ N(0, σ2
t ), (4)

σ2
t |G0 ∼ G0, (5)

G0|η,H ∼ DP (η,H). (6)

The Dirichlet process is denoted by DP(η,H), where η is a positive ‘concentration’ parame-

ter and H a continuous ‘base’ distribution (for example, an inverse-gamma in this context).

The DP expectation is given by H which indicates that any draw G0 of the process can be

seen as a distribution over the same support as H . The concentration parameter η controls
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its dispersion with respect to the base distribution. In particular, the larger is η, the more

similar are the distributions G0 and H .

To simplify the presentation, in the model (3)-(6), we only introduce the possibility of

breaks in the variance. A more general mixture model can be straightforwardly designed

by adding a DP layer to the mean function parameters (as we do in the next subsection).

Two useful properties, as well as two related representations, of the Dirichlet process are

worth mentioning.

Firstly, the DP non-parametric prior is parsimonious. Indeed, from its Pólya urn rep-

resentation that allows to integrate the DP (see Blackwell & MacQueen (1973)), the time-

varying variance σ2
t of (5) is distributed, conditionally on the previous realizations, as

σ2
t |σ

2
1, ..., σ

2
t−1 ∼

t−1
∑

i=1

1

η + t− 1
δσ2i +

η

η + t− 1
H, (7)

where δσ2i is the probability measure concentrated at σ2
i . This result shows that the prob-

ability of drawing a new value from H decreases as the time index grows. If we denote all

the ni identical values σ
2
i by σ̃2

i and assume that at time t, only K different variances have

been drawn, then the DP property saying that ’rich regime gets richer’ becomes transpar-

ent, since Equation (7) is equivalent to

σ2
t |σ

2
1, ..., σ

2
t−1 ∼

K
∑

i=1

ni
η + t− 1

δσ̃2i +
η

η + t− 1
H. (8)

The probability that σ2
t = σ̃2

i is given by ni/(η + t − 1) and increases with the number

of realizations that have already been assigned to regime i. This feature highlights the

time-varying nature of the model variance.

Secondly, the Dirichlet process is discrete, which is essential to build a Markov chain

with an infinite number of regimes. Sethuraman (1994) shows an alternative to the Pólya

urn to construct a Dirichlet process. From two independent sequences of i.i.d. random

variables {πi}
∞
i=1 and {σ2

i }
∞
i=1 built as follows

βi ∼ Beta(1, η), πi = βi

i−1
∏

l=1

(1− βl), (9)

σ2
i ∼ H, G0 =

∞
∑

i=1

πiδσ2i , (10)
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it turns out that G0 is distributed as a Dirichlet process with concentration parameter

η and base distribution H . The sequence {πi}
∞
i=1, conveniently written π ∼ Stick(η),

satisfies
∑∞

i=1 πi = 1 with probability one and therefore defines a distribution over the

positive integers. The explicit form of G0 highlights that the DP support is discrete. From

the stick-breaking representation (9)-(10), the conditional predictive density of the DP

mixture model (3)-(6) is given by

f(yt|y1:t−1, µ, β, φ, {σ
2
i }

∞
i=1, {πi}

∞
i=1) =

∞
∑

i=1

πifN(yt|µ+ βyt−1 + φǫt−1, σ
2
i ), (11)

where fN(x|a, b) stands for the Normal density function with expectation a and variance

b evaluated at x. The predictive density (11) shows that the Dirichlet process helps to

move to an infinite number of regimes but also highlights that the transition probabilities

to switch from one state to another are independent of time. Teh et al. (2006) were the

first to restore the Markovian property in the state transitions by introducing the infinite

hidden Markov-switching framework. Afterwards, Fox et al. (2011) developed the sticky-

IHMS setting that copes with the high regime persistence typical in a time series context.

2.3 The Model With an Infinite Number of Regimes

The sticky IHMS-ARMA model is defined as

yt = µt + βtyt−1 + φtǫt−1 + ǫt, (12)

ǫt ∼ N(0, σ2
t ), (13)

ψt ≡ {µt, βt, φt}|ψt−1, Gψt−1 ∼ Gψt−1 , (14)

Gψt−1 |G0 ∼ DP(αψ + κψ,
αψG0 + κψδψt−1

αψ + κψ
), (15)

G0|ηψ, Hψ ∼ DP (ηψ, Hψ), (16)

σ2
t |σ

2
t−1, Gσ2t−1

∼ Gσ2t−1
, (17)

Gσ2t−1
|G1 ∼ DP(ασ + κσ,

ασG1 + κσδσ2t−1

ασ + κσ
), (18)

G1|ησ, Hσ ∼ DP (ησ, Hσ), (19)

where δψt−1 and δσ2t−1
are probability measures concentrated at ψt−1 and σ2

t−1 respectively

and, as in the model with finite number of states, we impose |βt| < 1, |φt| < 1, and

βt + φt 6= 0 for all t. The parameters αψ, κψ, ηψ, ασ, κσ, ησ must be positive.
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Equations (12) and (13) correspond to an ARMA model with time-varying parameters.

To ensure tractability and to mimic the abrupt switches of the parameters in a Markov-

switching model, we use different Dirichlet processes as priors on the mean and the variance

parameters. Referring to the Pólya urn Equation (8), the model parameters at time t,

conditionally on the previous ones, can stay in or move to an existing regime, or switch

to a new one whose values are generated from the base distribution. The two structures,

(14)-(16) and (17)-(19), constitute two hierarchical Dirichlet processes. To differentiate

them from the Pólya urn Equation (8), as the model parameters are now driven by several

distributions (instead of one in the DPM model) coming from multiple Dirichlet processes,

the probabilities of moving from one state to another become time-varying and directly

depend on the previous parameter. Additionally, as the discrete distribution G0 is shared

among the different Dirichlet processes of Equations (15), the distributions of the mean

function parameters share the same possible states. The same comment holds for the

variance parameters as the base distribution G1 is also common to the Dirichlet processes,

see Equation (18). The sticky hierarchical Dirichlet framework suggested by Fox et al.

(2011) can account for the persistence in the regimes compared to the hierarchical Dirichlet

structure proposed by Teh et al. (2006). This is done by introducing the parameters κψ

and κσ that generate the persistence in the regimes by increasing the probability of picking

the parameter of the previous state (hence the qualifier ‘sticky’).

Using the stick-breaking formulation of the sticky IHMS framework (see Fox et al.

(2011)) leads to the following way to formulate the sticky IHMS-ARMA process:

yt = µ
s
ψ
t
+ β

s
ψ
t
yt−1 + φ

s
ψ
t
ǫt−1 + ǫt, (20)

ǫt ∼ N(0, σ2
sσt
), (21)

sψt |s
ψ
t−1, {p

ψ
i }

∞
i=1 ∼ pψ

s
ψ
t−1

, (22)

pψi |π
ψ ∼ DP (αψ + κψ,

αψπ
ψ + κψδi

αψ + κψ
), (23)

πψ ∼ Stick(ηψ), (24)

ψ
s
ψ
t
≡ {µ

s
ψ
t
, β

s
ψ
t
, φ

s
ψ
t
} ∼ Hψ, (25)

sσt |s
σ
t−1, {p

σ
i }

∞
i=1 ∼ pσsσt−1

, (26)
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pσi |π
σ ∼ DP (ασ + κσ,

ασπ
σ + κσδi

ασ + κσ
), (27)

πσ ∼ Stick(ησ), (28)

σ2
sσt

∼ Hσ, (29)

where sψt , s
σ
t are discrete random variables that can take any positive integer value. Let

us define Θ = {{µi}
∞
i=1, {βi}

∞
i=1, {φi}

∞
i=1, {σi}

∞
i=1} and Ft−1 = {y1:t−1,Θ, {p

ψ
i }

∞
i=1, {p

σ
i }

∞
i=1}.

From the above representation of the IHMS-ARMA model, we can obtain the following

predictive densities:

f(yt|Ft−1, s
ψ
1:t−1, s

ψ
t , s

σ
1:t−1) =

∞
∑

j=1

psσt−1j
fN(yt|µst + βstyt−1 + φstǫt−1, σ

2
j ), (30)

f(yt|Ft−1, s
ψ
1:t−1, s

σ
1:t−1) =

∞
∑

i=1

p
s
ψ
t−1i

[

∞
∑

j=1

psσt−1j
fN (yt|µi + βiyt−1 + φiǫt−1, σ

2
j )
]

.(31)

Equation (30) highlights that the conditional distribution given the current state of the

mean function parameters is an infinite mixture of Normal distributions with time-varying

probabilities. When we integrate over the current mean state value (sψt ), Equation (31)

emphasizes that the model is equivalent to a MS-ARMA model with an infinite number

of regimes for the mean function parameters and for the variance. This avoids the two

drawbacks of the MS-ARMA model with finite number of states mentioned at the end of

subsection 2.1.

Due to the DP assumptions (23) and (27), the expected values of the i-th rows (pψi and

pσi ) of the infinite dimensional transition probability matrices are given by

E(pψi |αψ, π
ψ, κψ) =

αψπ
ψ + κψδi

αψ + κψ
, E(pσi |ασ, π

σ, κσ) =
ασπ

σ + κσδi
ασ + κσ

. (32)

These formulas show that the expected self-transition probability is inflated compared to

the probability of moving to another state thanks to the positive sticky parameters κψ and

κσ. We therefore have an infinite dimensional Markovian structure encouraging regime

persistence.

Regarding the base distributions Hψ and Hσ – see (25) and (29)– a third hierarchical

layer is introduced in Section 5 in order to update them with information stemming from

the active regimes. As advocated by Song (2014), this layer improves the birth of new
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regimes by drawing realistic parameters from the common distributions. The types and

hyper-parameters of these and all other prior distributions are defined in Section 5.

The IHMS framework has been used in several empirical applications. Jochmann (2015)

and Song (2014) use it to model macroeconomic series with an autoregressive model (thus

without path dependence). In volatility modeling, Jensen & Maheu (2010), Jensen &

Maheu (2013), Jensen & Maheu (2014), Dufays (2015) and Jin & Maheu (2014) also apply

this kind of structure to GARCH, stochastic volatility and realized volatility processes. All

these papers provide empirical evidence in favour of IHMS models compared to the existing

alternatives. The proposed sticky IHMS-ARMA model makes no exception as shown by

the forecasting results reported in Section 6. Furthermore, we innovate in two directions

with respect to those papers. Firstly, the model relies on two sticky IHMS structures,

improving its flexibility. Secondly, we extend the model to include a MA component, thus

we face the complications due to the path dependence issue. Large sample properties of

time-varying ARMA parameters have been the focus of another strand of the literature

(Basawa & Lund (2001), Francq & Gautier (2004) among others). However, contrary to

Basawa & Lund (2001), our approach does not assume periodic changes in the ARMA time-

varying parameters. Our approach also departs from Francq & Gautier (2004) by relaxing

the assumption that changes in the mean and variance parameters are simultaneous. As a

final remark, the exposition has used an ARMA(1,1) specification with Normal errors, but

a higher order ARMA model or a different innovation distribution can be handled without

complications.

3 Estimation by MCMC

Two issues need to be addressed to estimate the IHMS-ARMA model: the path dependence

issue, and the infinite number of regimes revealed by the predictive distribution shown in

Equation (31). We deal with the former in the same way as Dufays (2015) proposed in the

GARCH context; for details, see Section 3.1. To tackle the second issue, one can rely on

the beam sampler (Van Gael et al. (2008)), which augments the posterior distribution with

a set of auxiliary variables that truncate the infinite number of states to a finite one. As the

posterior distribution marginalized with respect to the auxiliary variables corresponds to
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the targeted posterior one, the MCMC algorithm is correct. A simpler alternative consists

in truncating the infinite sum to a large number of states L without embedding auxiliary

random variables, a technique known as the degree L weak limit approximation (Ishwaran

& Zarepour (2002)). Despite the truncation, if the chosen number L is large enough, the

error is negligible, see Kurihara et al. (2007) and Fox et al. (2011). In this paper, we rely on

this approximation as it eases the algorithm implementation and its exposition. However,

with slight modifications, the MCMC scheme would also operate with the auxiliary variable

approach.

The estimation is based on the stick-breaking representation in Equations (20)-(29).

Under the degree L weak limit approximation, every row of each transition matrix is

truncated to a finite Dirichlet distribution (denoted by Dir), instead of being driven by a

Dirichlet process as in Equations (23) and (27). Thus, (23) and (27) are replaced by

pψi = {pψi1, p
ψ
i2, ..., p

ψ
iL}|π

ψ, αψ, κψ ∼ Dir(αψπ
ψ
1 , αψπ

ψ
2 , ..., αψπ

ψ
i + κψ, ..., αψπ

ψ
L),

pσi = {pσi1, p
σ
i2, ..., p

σ
iL}|π

σ, ασ, κσ ∼ Dir(ασπ
σ
1 , ασπ

σ
2 , ..., ασπ

σ
i + κσ, ..., ασπ

σ
L),

respectively. In the same spirit, the probability distributions πψ and πσ of the stick-breaking

representation are truncated to L elements following symmetric Dirichlet prior distributions

given the parameters (ηψ and ησ):

πψ = {πψ1 , π
ψ
2 , ..., π

ψ
L}|ηψ ∼ Dir(

ηψ
L
,
ηψ
L
, ...,

ηψ
L
),

πσ = {πσ1 , π
σ
2 , ..., π

σ
L}|ησ ∼ Dir(

ησ
L
,
ησ
L
, ...,

ησ
L
).

For notational ease, the sticky IHMS parameters α = {αψ, ασ}, κ = {κψ, κσ}, η = {ηψ, ησ}

are brought together in the set HDir = {α, η, κ} and the truncated transition matrices are

denoted by

P ψ =















pψ11 pψ12 ... pψ1L

pψ21 pψ22 ... pψ2L

...

pψL1 pψK2 ... pψLL















, P σ =















pσ11 pσ12 ... pσ1L

pσ21 pσ22 ... pσ2L

...

pσL1 pσK2 ... pσLL















.

Bayesian estimation is feasible by explicitly treating sψ1:T , s
σ
1:T as parameters. To sim-

ulate the posterior distribution, we use a Gibbs sampler that cycles between eight full
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conditional distributions, as summarised in Table 1, where µ̄, Σ̄, ē, f̄ are the parameters of

the base distributions Hψ and Hσ. Details about the prior distributions are provided in

Section 5.

Table 1: Sticky IHMS-ARMA Gibbs sampler

1. f(sψ1:T |Θ, P
ψ, sσ1:T , y1:T ) 5. f(Θ|µ̄, Σ̄, ē, f̄ , HDir, s

ψ
1:T , s

σ
1:T , y1:T )

2. f(P ψ|Θ, HDir, π
ψ, sψ1:T , y1:T ) 6. f(µ̄, Σ̄, ē, f̄ |Θ, HDir, s

ψ
1:T , s

σ
1:T , y1:T )

3. f(sσ1:T |Θ, P
σ, sψ1:T , y1:T ) 7. f(πψ, πσ|Θ, P ψ, P σ, HDir, s

ψ
1:T , s

σ
1:T , y1:T )

4. f(P σ|Θ, HDir, π
σ, sσ1:T , y1:T ) 8. f(HDir|P

ψ, P σ, πψ, πσ, sψ1:T , s
σ
1:T , y1:T )

Except in steps 1 and 5 in Table 1, the full conditional distributions can be directly

simulated, as detailed in Appendix 1. In the rest of this section, we concentrate on the

most challenging item of the sampler (step 1), and we expose how we sample the ARMA

parameters in subsection 3.2. For model comparisons based on forecasts, we detail how we

compute and evaluate the predictive density at any horizon in subsection 3.3.

3.1 Sampling the State Vector of the Mean Function Parameters

Sampling the state vector is usually done by a forward-backward algorithm (Rabiner (1989),

Chib (1998)). The algorithm is applicable if there is no path dependence, as in the case of

an AR model, but not of an ARMA model. In an AR model, the likelihood of observation

t only depends on the current state, while in the MA one, it depends on the whole path of

past states. The forward-backward method is then infeasible since the computations expo-

nentially grow with the time index t. For the ARMA model, we adapt the method of Dufays

(2015) and follow a two-step procedure. We first sample an entire state vector from an ap-

proximate model, which is a modified MS-ARMA model adapted from Klaassen (2002).

Such a model is free from the path dependence problem, so that the forward-backward al-

gorithm can be used to sample a state vector. We then implement the Metropolis-Hastings

(MH) step to accept or reject the draw. Although an approximate model is used to sample

the state vector, the MH step ensures that the targeted distribution remains the posterior

one of the IHMS-ARMA model.
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GARCH and ARMA models are closely related when tackling the path dependence

problem. Reliable approximations of the MS-GARCH process have been proposed by Gray

(1996), Klaassen (2002), and Haas et al. (2004). We adapt the approach of Klaassen (2002)

to the ARMA case. This replaces the unobserved error ǫt−1 in the ARMA equation by its

conditional expectation E
s
ψ
t−1

[ǫt−1|y1:t−1, s
ψ
t ,Θ, P

ψ, sσ1:t−1] denoted by ǫ̃
t−1,sψt

below. The

approximate model is

yt = µ
s
ψ
t
+ β

s
ψ
t
yt−1 + φ

s
ψ
t
ǫ̃
t−1,sψt

+ ǫt(s
ψ
t ),

where ǫ̃
t−1,sψt

=
∑L

i=1 ǫt−1(i)f(st−1 = i|y1:t−1, s
ψ
t ,Θ, P

ψ, sσ1:t−1) and ǫt−1(s
ψ
t−1) = yt−1 −

µ
s
ψ
t−1

− β
s
ψ
t−1
yt−2 − φ

s
ψ
t−1
ǫ̃
t−2,sψt−1

(see Appendix 2 for the computation of ǫ̃
t−1,sψt

). The

approximation eliminates the path dependence problem since the error term ǫt(s
ψ
t ) only

depends on the current state and not also on the past sequence of states.

We therefore sample a new state vector sψ
′

1:T from the MS-ARMA approximation em-

ploying the forward-backward algorithm. The proposed parameter is accepted according

to the MH ratio:

α(sψ1:T , s
ψ′

1:T |y1:T ,Θ, sσ1:T , P
ψ) = min{1,

f(sψ
′

1:T |y1:T ,Θ, sσ1:T , P
ψ)q(sψ1:T |y1:T ,Θ, sσ1:T , P

ψ)

f(sψ1:T |y1:T ,Θ, sσ1:T , P
ψ)q(sψ

′

1:T |y1:T ,Θ, sσ1:T , P
ψ)

}

= min{1,
f(y1:T |s

ψ′

1:T ,Θ, sσ1:T )f(s
ψ′

1:T |P
ψ)q(sψ1:T |y1:T ,Θ, sσ1:T , P

ψ)

f(y1:T |s
ψ
1:T ,Θ, sσ1:T )f(s

ψ
1:T |P

ψ)q(sψ
′

1:T |y1:T ,Θ, sσ1:T , P
ψ)

}

where q(sψ1:T |y1:T ,Θ, s
σ
1:T , P

ψ) is the proposal distribution of sψ1:T derived from the forward-

backward algorithm.

A proposed sψ1:T is very likely to be rejected if it is drawn as one block from the MS-

ARMA approximation. To ensure good MCMC mixing properties, we sample the state

vector in blocks of random sizes sampled from a uniform distribution with lower bound

equal to 40 and upper bound to 150 (see e.g. Jensen & Maheu (2010) in a stochastic

volatility context). This avoids situations where the MCMC algorithm always rejects the

proposed state vector and also enhances the acceptance rate. In our empirical applications,

the average of the acceptance rate over the random block sizes is always above 40%.
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3.2 Sampling the ARMA Parameters

Due to the unobserved lagged error term, the full conditional distribution of the ARMA

parameters cannot be simulated directly. Nevertheless, given the mean function parame-

ters and the state vectors, the full conditional distribution of the variances is a product

of (conditionally) independent inverse-gamma distributions if the base distribution Hσ is

itself an inverse-gamma (see Section 5 for prior densities and Appendix 1 for details). We

therefore split the block into two pieces and sample first the variances conditionally on

all the other parameters. Then the mean function parameters are drawn from their full

conditional distributions using an MH algorithm.

Focusing on the mean function parameters, we adapt the Riemannian Manifold Metropo-

lis Adjusted Langevin Algorithm (RMMALA) to define a proposal distribution (see Giro-

lami & Calderhead (2011) and its corrected version, Xifara et al. (2014)). The RM-

MALA algorithm is a discrete version of an Ito stochastic differential equation of the

Langevin diffusion, which exhibits the full conditional distribution as unique stationary

one. Focusing on the mean function parameters ψi = {µi, βi, φi} of the i-th regime

and denoting by log f(ψi|D) the logarithm of the full conditional density, where D =

{{ψj}
L
j 6=i,j=1, {σi}

L
i=1, µ̄, Σ̄, ē, f̄ , HDir, s

ψ
1:T , s

σ
1:T , y1:T}, the RMMALA proposal distribution,

given the current MCMC realization ψi, is defined by

ψ̃|ψi ∼ N(ξ(ψi, γ), γ
2G−1(ψi)),

where G(ψi) denotes the Hessian of minus the logarithm of f(ψi|D), γ is a discretization

tuning constant, and ξ(., .) stands for a function of the gradient, the Hessian and the third

derivative of minus the logarithm of f(ψi|D). If we assume that the curvature is locally

constant, the proposal distribution is simplified as follows:

ψ̃|ψi ∼ N(ψi +
γ2

2
G−1(ψi)∇ log f(ψi|D), γ2G−1(ψi)), (33)

where ∇ denotes the gradient operator. The proposal distribution (33) is called the sim-

plified manifold MALA (smMALA). Intuitively, the proposal expectation lies in a high

density area of the posterior distribution thanks to the gradient. Moreover, the translation

takes the local curvature into account through the Hessian matrix. Girolami & Calderhead
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(2011) provide several examples in which the proposal distribution (33) allows to update

strongly correlated parameters in one block.

Although very appealing, the proposal distribution requires the computation of the

Hessian, which can be negative definite. To circumvent the issue as well as to speed up the

Hessian computation, we use its Gauss-Newton approximation, as suggested by Vakilzadeh

et al. (2014). It is given by G(ψi) ≈ J ′(ψi)J(ψi) + C−1
prior, where J(ψi) is the Jacobian of

the standardized error terms and C−1
prior is the inverse of the covariance matrix of the prior

distribution.

The tuning constant γ has also an impact on the proposal density and therefore on

the MCMC mixing properties. If its value is too large, the MCMC sampler can be stuck

for long periods, while if it is too small, the proposed update is likely to be accepted but

the posterior support exploration is very slow. We solve this issue by adapting the rule of

Atchadé & Rosenthal (2005): at the r-th MCMC iteration, the constant γr is updated as

γr = max
(

ζ, γr−1 + (α−αopt)/(0.6
r)
)

, where ζ is a very small positive constant to avoid a

negative value of γr, α is the current acceptance rate of the MH algorithm, and αopt stands

for the user-defined one. In the empirical applications, αopt is set to 40% and ζ to 10−8.

3.3 Predictive Densities and the Continuously Ranked Probabil-

ity Score

The usefulness of a model can be assessed by its forecasting ability. We explain how to

obtain draws from the predictive density f(yT+h|y1:T ) where h is the forecast horizon. The

predictive density can be estimated by

f(yT+h|y1:T ) ≈
1

R

R
∑

r=1

f(yT+h|{Θ, P
ψ, P σ, sψ1:T+h, s

σ
1:T+h, yT+1:T+h−1}

r, y1:T ),

≈
1

R

R
∑

r=1

fN (yT+h|µ
r

s
ψ,r
T+h

+ βr
s
ψ,r
T+h

yrT+h−1 + φr
s
ψ,r
T+h

ǫrT+h−1, (σ
2
s
σ,r
T+h

)r),

where the R draws (indexed by the superscript r) come from the posterior distribution

f(Θ, P ψ, P σ, sψ1:T+h, s
σ
1:T+h, yT+1:T+h−1|y1:T ). Consequently, the computation of the predic-

tive density requires to sample future observations and states in the Gibbs sampler sketched
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in Table 1. To do that, we add a step in the sampler to draw the future states and obser-

vations. Table 2 documents how this is done.

Table 2: Sampling from f(yT+1:T+h−1, s
σ
T+1:T+h, s

ψ
T+1:T+h|Θ, P

ψ, P σ, sψ1:T , s
σ
1:T , y1:T )

For j = 1 to h− 1 Do

Sample sσT+j ∼ Mult(psσ
T+j−11

, psσ
T+j−12

, ..., psσ
T+j−1L

)

Sample sψT+j ∼ Mult(p
s
ψ
T+j−11

, p
s
ψ
T+j−12

, ..., p
s
ψ
T+j−1L

)

Sample ǫT+j ∼ N(0, σ2
sσ
T+j

)

Set yψT+j = µ
s
ψ
T+j

+ β
s
ψ
T+j

yT+j−1 + φ
s
ψ
T+j

ǫT+j−1 + ǫT+j

EndFor

Sample sσT+h ∼ Mult(psσ
T+h−11

, psσ
T+h−12

, ..., psσ
T+h−1L

)

Sample sψT+h ∼ Mult(p
s
ψ

T+h−11
, p

s
ψ

T+h−12
, ..., p

s
ψ

T+h−1L
)

‘Mult’ stands for Multinomial distribution.

The predictive density evaluated at the realized data is a prominent metric to assess the

predictive performance of a model but other loss functions exist and can provide additional

information about the performance of a model. For this purpose, we also use the mean

squared forecast errors (MSFE) and the continuously ranked probability score (CRPS)

popularized by Gneiting & Raftery (2007) in our empirical applications.

The CRPS is based on the Brier probability score and relies on the idea that any

density forecast f of a random variable Y induces a probability forecast for the binary

event {Y ≤ z} through its cumulative density function, i.e. F (z) =
∫ z

−∞
f(u)du. The

CRPS is defined as

S(f, y) =

∫ ∞

−∞

(F (z)− 1{y≤z})
2dz. (34)

The score function is strictly proper if the random variable Y has finite first moment and

goes to an infinite value otherwise. The value of the function (34) can be computed by

simulation since S(f, y) = EF (|Y − y|)− 1
2
EF (|Y − Y ′|), where Y and Y ′ are independent

random variables from the same distribution F (see, e.g., Gneiting & Raftery (2007)). The
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loss function assesses the forecast performance of a model through the distance between

the predictive cumulative distribution function of the chosen model and the empirical one.

In forecast evaluations, we are interested in the mean of the score function for the k-

ahead predictive density over a time window, i.e. S̄τk (f̂k+1:k+τ , yk+1:k+τ) =
1
τ

∑τ

t=1 S(f̂t+k, yt+k),

where f̂t+k denotes the value of the predictive probability density function and yt+k the

observed value of the time series. Gneiting & Ranjan (2011) emphasize two appealing

features of the mean of the CRPS. Firstly, the equation (34) becomes

S̄τk(f̂k+1:k+τ , yk+1:k+τ) =

∫ ∞

−∞

1

τ

τ
∑

t=1

(F̂t+k(z)− 1{yt+k≤z})
2dz. (35)

The term inside the integral can be plotted with respect to z in order to see where the

cumulative density function deviates from the empirical distribution.

Secondly, as in Amisano & Giacomini (2007), one can derive a statistical test to assess

if a model M1 produces a better score function than an alternative M2. The test consists

in comparing the mean of the score functions as follows:

tkτ =
S̄τk (f̂

M1
k+1:k+τ , yk+1:k+τ)− S̄τk (f̂

M2
k+1:k+τ , yk+1:k+τ)

√

σ2
τ/τ

→ N(0, 1), (36)

where σ2
τ =

1
τ
[
∑τ

t=1∆
2
t,k+2

∑k−1
j=1

∑τ−k−j
t=1 ∆t,k∆t+j,k] and ∆t,k = S(f̂M1

t+k, yt+k)−S(f̂
M2

t+k, yt+k).

In the predictive exercises, we apply this test to our three score functions.

4 Model Selection

In Bayesian inference, model comparison is often carried out through Bayes factors that

require the computation of the marginal likelihood (ML). In this section, we adapt the step-

pingstone sampling (see Xie et al. (2011)) used in phylogenetics to estimate the marginal

likelihood from a MCMC output. The approach relies on multiple importance sampling

steps and is actually a generalization of the bridge sampling algorithm (e.g. Fruhwirth-

Schnatter (2004)).

The ML is the normalizing constant of the posterior distribution and, gathering all the

random parameters of the model in Ψ, is defined as f(y1:T ) =
∫

f(y1:T |Ψ)f(Ψ)dΨ.

As this integration is intractable for most models, the importance sampling (IS) ap-

proach makes use of a proposal distribution defined on the support of Ψ to obtain an
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estimator of the marginal likelihood by simulation, as follows:

f(y1:T ) =

∫

f(y1:T |Ψ)f(Ψ)
q(Ψ|y1:T)

q(Ψ|y1:T)
dΨ, (37)

≈
1

N

N
∑

r=1

f(y1:T |Ψ
r)f(Ψr)

q(Ψr|y1:T )
, (38)

where the realizations {Ψr}Nr=1 constitute an ergodic sample from the proposal density

q(Ψ|y1:T ). The IS estimator defined above is almost surely consistent under conditions

stated by Geweke (1989). The precision of the IS estimator depends on the quality of

the proposal distribution, which should be a good enough approximation of the posterior,

so that the variance of the ratio of the posterior to the proposal is finite and as small as

possible. This is typically very hard to achieve if Ψ is of high dimension.

Instead of applying importance sampling using a single proposal candidate, the step-

pingstone algorithm considers a sequence of IS steps using tempered posterior distributions

as proposal ones. Let Φ(x) : [0, 1, ..., p] → [0, 1] with Φ(0) = 0 and Φ(p) = 1 be an increas-

ing function. The tempered posterior distributions are specified as

fx(Ψ|y1:T ) =
f(y1:T |Ψ)Φ(x)f(Ψ)

Zx
∝ f(y1:T |Ψ)Φ(x)f(Ψ),

where Zx =
∫

f(y1:T |Ψ)Φ(x)f(Ψ)dΨ stands for the normalizing constant (or the marginal

likelihood) of the tempered posterior distribution fx. When x = 0, the distribution coin-

cides with the prior one and when x = p, it coincides with the targeted posterior distri-

bution. The steppingstone method aims to build a sequence of bridging distributions from

the prior to the posterior. Note that the ML is given by
∏p

k=1(Zk/Zk−1) when the prior

distribution is proper (i.e. integrates to one, so that Z0 = 1). Then using the IS approach,

we have that

Zk
Zk−1

≈
1

N

N
∑

r=1

f(y1:T |Ψ
r)Φ(k)−Φ(k−1), (39)

where the realizations {Ψr}Ni=1 form an ergodic sample drawn from fk−1(Ψ|y1:T ). For a

given function Φ(x), Equation (39) provides a simple tool to sequentially compute the ML

of any model by MCMC. Indeed, one just needs to adapt the MCMC scheme in order to

obtain draws from the distribution fx(Ψ|y1:T ).

18



The steppingstone method is unsatisfactory in the sense that the accuracy of the es-

timator depends on a function Φ(x) that is model-dependent. In the literature, different

functions have been proposed (Xie et al. (2011) and Herbst & Schorfheide (2012)) and a

consensus has emerged to suggest that more IS steps should be devoted to very small values

of Φ. However, this does not help much to select the function. Instead of fixing it, we use the

Sequential Monte Carlo (SMC) theory to make the steppingstone algorithm function-free.

Indeed, although not recognized by their authors, the steppingstone algorithm is actually

an adaptation of the ML computation proposed in the SMC sampler (see Del Moral et al.

(2006)) to MCMC methods. We suggest therefore to build the tempered function from one

IS step to the next by using the effective sample size (ESS) criterion (see Doucet et al.

(2001)). The ESS is defined as N/
∑N

r=1W
2
r , where Wr is the normalised weight given by

Wr ∝ f(y1:T |Ψ
r)Φ(k)−Φ(k−1) in the present context. Hence, the ESS is a function of Φ(k)

and we set the value of Φ(k) by solving the following optimisation program:

Φ(k) = argmaxΦ(k)ESS(Φ(k)) s.t. ESS(Φ(k)) < 0.75.

This optimization is standard in the SMC literature (see Jasra et al. (2011) or Dufays

(2014)) and avoids the difficult choice of the tempering function.

As a final note, marginal likelihoods of Markov-switching models can be biased if com-

puted by the MCMC technique of Chib (1995). The issue coming from the label switching

problem is addressed in Fruhwirth-Schnatter (2004) where the bridge sampling method is

introduced. Nevertheless, the bridge sampling accuracy highly depends on an user-defined

proposal distribution and therefore can be difficult to use in practice, especially in high

dimension. The steppingstone sampling solves the problem as no extra distribution is re-

quired and as it does not fix the posterior distribution at a specific value of the parameters

as in Chib (1995).

5 Prior Elicitation and Label Switching Problem

Table 3 reports the prior distributions and their hyper-parameters. Regarding the sticky

IHMS parameter set HDir, the priors are conjugate, as suggested by Fox et al. (2011). Table

3 suggests two different values for the hyper-parameters of the persistence variables ρψ and
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ρσ. The first one (ωMS/CP = 10) implies a weak state persistence. The break dynamics

is likely to rapidly switch from one state to another, hence the name Markov-switching

type. The second value (ωMS/CP = 1000) induces high state persistence (hence the name

change-point type). The posterior results are likely to be easier to interpret as only few

changes will occur in the break dynamics. This value therefore induces a kind of change-

point behaviour. The two cases are considered in the empirical applications, and we can

discriminate between the two prior types by the marginal likelihood criterion.

The prior on the parameters of the ARMA mean function is a hierarchical Normal-

Wishart distribution that provides an additional layer on the base distributions of the

Dirichlet processes. The marginal prior density of the AR and MA parameters, taking into

account their truncation to the interval (-1,+1), is almost uniform on that interval (with

mean 0 and standard deviation 0.57). Gathering information of existing regimes, this

structure facilitates the birth of new regimes without complicating the MCMC simulation

(since the prior is conjugate). A similar idea is applied to the variances.

The posterior distribution is invariant to the label of the state vector. If a label switch

occurs in the state vectors during the MCMC simulation, the usual summary statistics

such as the posterior means and standard deviations are misleading. Indeed these statistics

depend on the label of the state. Different solutions exist to solve this issue. The prior

distributions can be chosen to rule out the label switching problem by constraining the

support of the parameters given the regimes. However, finding appropriate constraints to

preclude all the possible switches without truncating heavily the posterior distribution can

be difficult. Otherwise, as advocated by Geweke (2007), the label switching issue can be

completely ignored in the MCMC simulations. In this case, either a loss function is used to

sort the posterior draws in one specific label ordering (see e.g. Marin et al. (2005), Bauwens

et al. (2013)) or the reported summary statistics must be label invariant (see Song (2014),

Dufays (2015)). We apply the latter approach. For instance, the posterior draws deliver,

among other things, the probabilities of having a number of regimes for the mean function

parameters and the variance. From the MCMC sample, we can also compute the posterior

means and the confidence intervals of the model parameters as they evolve through time.

These summary statistics do not depend on a specific label and can therefore be reported
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Table 3: Prior distributions

Prior distributions of the Dirichlet parameters

For the Mean: ηψ ∼ G(1, 10) αψ + κψ ∼ G(1, 10)

ρψ =
κψ

αψ+κψ
∼ Beta(ωMS/CP, 1)

For the Variance: ησ ∼ G(1, 10) ασ + κσ ∼ G(1, 10)

ρσ = κσ
ασ+κσ

∼ Beta(ωMS/CP, 1)

Markov-switching type: ωMS/CP = 10 Change-point type: ωMS/CP = 1000

Prior distributions of the ARMA parameters

For each regime i: {µi, βi, φi} ∼ Hψ ≡ N(µ̄,Σ̄) δ{|βi|<1,|φi|<1}

Hierarchical parameter: µ̄ Hierarchical parameter: Σ̄

µ̄ ∼ N(µ,Σ) Σ̄−1 ∼ W(V ,v)

µ = {0, 0, 0}, Σ = 0.1I3 V = 1
5v
I3, v = 5

Prior distributions of the variances

For each regime i: {σ−2
i } ∼ Hσ ≡ G(ē,f̄)

Hierarchical parameter: ē Hierarchical parameter: f̄

ē ∼ Exp(ea) f̄−1 ∼ G(fa,fb)

ea = 2 fa = 10, fb = 1/5

G(a,b) stands the Gamma density with shape parameter a and scale b (see Appendix 1). W(S,ν)

stands for the Wishart density with scale matrix parameter S and shape parameter ν. Id stands

for the identity matrix of dimension d and δ{a>0} is the Dirac function taking the value one if the

constraint a > 0 holds and zero otherwise.
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without bothering about the label invariance issue.

6 Applications

In this section, several estimation and forecasting results for the sticky IHMS-ARMA model

are provided for the quarterly U.S. GDP growth rate and a monthly U.S inflation series.

Afterwards, a forecasting exercise on eighteen macroeconomic series is reported to com-

pare the performances of the sticky IHMS-ARMA and of the ARMA model with fixed

parameters. Regarding the MCMC implementation, the starting values are the maximum

likelihood estimates of the model without any break. The burn-in period uses 7,500 itera-

tions and the next 22,500 draws are stored to compute the posterior results. The number

L of the degree L weak limit approximation is fixed to ten. Additional results are provided

in the SA.

6.1 U.S. GDP Growth Rate

Hamilton (1989) applied the MS model using an AR mean function to the U.S. quarterly

GDP growth rate series. We revisit this example by using the sticky IHMS-ARMA model

and its AR version on the series from 1947Q2 to 2014Q1 (268 observations). The graph

of the series (visible in Figure 1) suggests that breaks should be taken into account, in

particular due to the well-known great moderation phenomenon.

Table 4 (see also Table 2 of the SA) provides overwhelming evidence (with increases by

at least 23 points of the MLL) in favour of the IHMS models compared to the ARMA model

with fixed parameters. Moreover, the IHMS models with prior hyper-parameters implying

weak regime persistence (MS-prior) slightly improve the fit over the models implying high

regime persistence (CP-prior), whatever the dynamic specification (AR or ARMA). The

differences of the MLL are equal to 1.53 and 1.23 respectively. Assuming prior odds equal to

unity, these values imply posterior probabilities of the models with short regime persistence

amounting to 0.82 and 0.77 compared to their CP alternatives. There is also similar

evidence that, in the IHMS class, the ARMA specification dominates the corresponding

AR one (with average improvements of 1.94 and 1.64 leading to posterior probabilities of
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Table 4: U.S. GDP: marginal log-likelihood values

ARMA(1,1) IHMS-AR(1) IHMS-ARMA(1,1)

CP MS CP MS

Average -378.57 -355.07 -353.54 -353.13 -351.90

Min. -378.73 -355.14 -353.76 -353.36 -352.50

Max. -378.53 -355.01 -353.37 -352.97 -351.45

CP and MS refer to the IHMS hyper-parameters: CP (MS) imply high

(weak) regime persistence. Average, minimum and maximum values are

computed from ten different estimations.

0.87 and 0.84 in favour of the ARMA function). Whatever the model, the MLL values of

the ten replications are very similar.

Focusing on the IHMS-ARMA model for the two kinds of prior, Table 5 reports the

posterior probabilities of the number of regimes for the mean function parameters and

the variance (see also Table 3 in the SA). As expected, the uncertainty on the number of

regimes is much more important for the MS-prior than for the CP-prior. With both types

of prior, there is no evidence of breaks in the mean function parameters. The variance

mainly evolves over time through two different states for the CP-prior while more regimes

are found for the MS one.

Figure 1 displays the series together with the probabilities of a break in the previous or

in the next year computed from the posterior samples. The probability of having a break

in the mean function parameters is null for the CP-prior. For the MS-prior, there are small

positive break probabilities in the beginning of the series, in 1971, at the beginning of the

great moderation era and during the financial crisis. Regarding the breaks in the variance,

the MS-prior leads to much more instabilities than the CP one. However, both priors agree

on a quiet period starting with the great moderation and ending at the financial crisis.

The corresponding estimated time-varying parameters are displayed on Figure 2, where

instead of showing the graph for the constant term (µt) of the ARMA equation, we show

the implied ‘unconditional’ expectation µt/(1 − βt). Overall, both types of prior deliver

similar results. The mean function parameters are relatively constant over time, especially
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Table 5: U.S. GDP: posterior probabilities of having a specific number of regimes

IHMS-ARMA with MS prior

# Regimes 1 2 3 4 5 6 7 8 9

µ, β, φ 0.62 0.20 0.06 0.07 0.03 0.01 0 0 0

σ2 0 0.06 0.19 0.26 0.23 0.15 0.07 0.03 0.01

IHMS-ARMA with CP prior

# Regimes 1 2 3 4 5 6 7 8 9

µ, β, φ 0.99 0.01 0.00 0 0 0 0 0 0

σ2 0 0.80 0.16 0.03 0.01 0 0 0 0

with the CP-prior. The variance evolves with changes that are smooth or sharp depending

on when they occur. As expected due to the differences between the priors, the variance

dynamics obtained with the CP-prior is close to a change-point model, as the level is more

or less constant before and after the great moderation, with a blip during the financial

crisis. On each figure the corresponding posterior median of the ARMA model with fixed

parameters is also shown. Obviously, the variance of this model cannot accommodate both

the high and low volatility levels of the error terms and therefore its posterior estimate

lies in between. For the mean function parameters, there are small differences between

the posterior estimates of the simple ARMA and IHMS-ARMA models, even if there is

no break in the mean function parameters of the latter. The occurrence of breaks in the

variance and the fact that the variance and the parameters of the mean functions are not

independent a posteriori is a reason for such differences.

We compare the out-of-sample forecast performances of the five models appearing in

Table 4, to which we add three models: an AR(16) model with fixed parameters, this lag

order resulting from the AIC criterion, and the restricted IHMS-ARMA models in which

the mean parameters jointly move with the variance one. The forecasts start in the first

quarter of 1987 (at 60% of the sample) and are computed until the end of the sample,

adding one new observation at a time. At each step, all models are re-estimated and

predictive densities as well as the CRPS are computed for different horizons. The mean
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Figure 1: U.S. GDP series and posterior probabilities of having a break in the previous

year or in the next year
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The left column corresponds to the CP-prior, the right one to the MS-prior. Break probabilities (right

vertical axis) over the past or the next year are in grey. First row: break probabilities of the mean function

parameters. Last row :break probabilities of the variance parameter.

squared forecast errors (MSFE) using the predictive means, the average values (over the

forecast period) of the predictive densities (APD), and the CRPS values evaluated at the

observed data are reported in Table 6. The main conclusions from these results follow.

• For each criterion and forecast horizon, all the IHMS models values dominate sub-

stantially the ARMA model with fixed parameters. The AR(16) model performs

better than this ARMA model but is still performing less well than the IHMS models

(with very few minor exceptions).

• Regarding the statistical test (36), for the APD and for the CRPS, the flexible IHMS
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Figure 2: U.S. GDP: posterior medians and 70% credible intervals
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Left column: CP-prior. Right: MS-prior. Thick horizontal line: posterior median of the ARMA model

with fixed parameters. Thin continuous and dotted lines: IHMS-ARMA posterior median and the limits

of the 70% posterior credible interval. Top row: long term mean µt/(1− βt). Second row: AR coefficient.

Third row: MA coefficient. Last row: variance.
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models statistically outperform the ARMA model at all horizons (except for APD in

the case of the four year horizon of the IHMS-ARMA model with MS prior), while for

MSFE, most tests are significant only for forecast horizons up to two years. Table 4 in

the SA contains the test results for comparing the flexible IHMS models with respect

to the AR(16) model and shows not surprisingly in view of the previous comment,

that there are of course less cases of significant differences than in the comparisons

with the ARMA model.

• Concentrating on the unrestricted IHMS models, the ARMA versions slightly dom-

inate their AR counterparts, and similarly the models with the CP prior dominate

those with the MS prior.

• Incorporating an MA term is more relevant than including a flexible dynamic struc-

ture for the breaks since the restricted IHMS-ARMA model with CP prior setting is

often the best competitor.

Going one step further, the integrand of Equation (35) is helpful to assess when a model

produces better forecasts than another. For example, a model could very well forecast

the growth rate when the U.S. economy is in expansion and could be a bad predictor in

recessions. To evaluate this, Figure 3 displays the integrand of Equation (35) with respect

to z for one-step ahead predictions. We observe that the integrand of the ARMA model

envelops the integrand of all the IHMS models meaning that whatever the state of the U.S.

economy, the distance between the cumulative density functions of the IHMS models and

the empirical one are always smaller than for the ARMA model.

Finally, Figure 4 shows the differences between the one-quarter ahead predictive den-

sities (without taking logarithms) of the IHMS-ARMA (CP-prior) model and the fixed

parameter ARMA one, both evaluated at the realized outcome. The gains are spread over

the entire period and cannot therefore be associated to a specific sub-period.

6.2 U.S. Inflation

The inflation measure is computed from the personal consumption expenditure deflator

and spans the period from February 1959 to November 2012 (646 observations). Table 7
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Table 6: U.S. GDP Growth Rate: APD, MSFE and CRPS

Forecast Horizons One quarter Two quarters One year Two years Three years Four years

APD

AR(16) 0.36 0.33 0.32 0.31 0.31 0.31

ARMA 0.33 0.30 0.28 0.27 0.27 0.27

Rest. IHMS-ARMA (CP) 0.46 0.44 0.40 0.39 0.38 0.39

Rest. IHMS-ARMA (MS) 0.45 0.42 0.38 0.35 0.34 0.34

IHMS-AR (CP) 0.46** 0.43** 0.39** 0.38** 0.37* 0.38*

IHMS-AR (MS) 0.43** 0.39** 0.36** 0.34** 0.33* 0.33*

IHMS-ARMA (CP) 0.47** 0.44** 0.40** 0.39** 0.38* 0.38*

IHMS-ARMA (MS) 0.44** 0.41** 0.37** 0.34** 0.33** 0.33*

MSFE

AR(16) 0.43 0.52 0.58 0.60 0.61 0.58

ARMA 0.40 0.53 0.68 0.78 0.82 0.82

Rest. IHMS-ARMA (CP) 0.36** 0.43** 0.52** 0.57* 0.61* 0.57

Rest. IHMS-ARMA (MS) 0.37** 0.45** 0.55** 0.64* 0.69 0.69

IHMS-AR (CP) 0.39 0.49** 0.60** 0.67* 0.70 0.68

IHMS-AR (MS) 0.40 0.52 0.64* 0.70* 0.73 0.73

IHMS-ARMA (CP) 0.37** 0.45** 0.56** 0.65* 0.69 0.68

IHMS-ARMA (MS) 0.38** 0.47** 0.60** 0.69* 0.73 0.73

CRPS

AR(16) 0.37 0.40 0.42 0.43 0.44 0.43

ARMA 0.37 0.42 0.47 0.50 0.51 0.51

Rest. IHMS-ARMA (CP) 0.33** 0.36** 0.39** 0.42** 0.42* 0.42

Rest. IHMS-ARMA (MS) 0.33** 0.37** 0.41** 0.44** 0.45* 0.45

IHMS-AR (CP) 0.34** 0.38** 0.42** 0.44** 0.45** 0.44*

IHMS-AR (MS) 0.35** 0.39** 0.43** 0.46** 0.47** 0.47*

IHMS-ARMA (CP) 0.33** 0.36** 0.41** 0.44** 0.45** 0.45*

IHMS-ARMA (MS) 0.34** 0.37** 0.42** 0.46** 0.47** 0.47

APD: average of predictive densities. MSFE: mean squared forecast error. CRPS:

continuous ranked probability score. CP and MS refer to the prior IHMS hyper-

parameters. Forecasts are from 1987Q1 to 2014Q1. Bold numbers identify the best

performing model. A star indicates that there exists a significant statistical difference

with respect to the ARMA model at the 10% level (two-sided test). A double star

denotes significance at 5%.

reports the MLL values of several models including the ARMAmodel with fixed parameters.

Additionally to these results, Table 5 of the SA includes the results of the random walk

process and the AR(12) chosen by the AIC but these models are dominated by the ARMA

process with fixed parameters. Like for the U.S. GDP growth rate, there is a strong evidence

in favour of the IHMS models with respect to the simple ARMA one (differences of MLL

larger than 62). Moreover, the models with the IHMS CP-type prior implying weak regime

persistence have the highest MLL (differences equal to 2.96 and 2.24 leading to posterior

probabilities of 0.95 and 0.9). The inclusion of MA terms in the IHMS models increases

slightly the average MLL (1.73 and 1.01) but this conclusion should be tempered (especially
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Figure 3: U.S. GDP growth rate: Integrands of Equation (35) for several models
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Horizontal axis: value of z in Equation (35). Vertical axis: value of the integrand in Equation (35) for

one-step ahead forecasts. In clockwise order starting from the upper-left plot, the dashed line corresponds

to the AR model, the restricted IHMS-ARMA (CP) one, the IHMS-ARMA (CP) model and the IHMS-AR

(CP) one, and the continuous line to the ARMA model.

for the model with MS-type prior) given the overlap of the min-max ranges.

Table 8 reports the posterior probabilities of the number of regimes of the restrictedIHMS-

ARMA models (see also Table 6 of the SA which includes the IHMS-ARMA models based

on a unique HDP). The mean function parameters and the variance clearly experience struc-

tural breaks. Furthermore, the uncertainty on the number of regimes is visible, especially

if the MS-prior is used. This highlights the limitation of the standard method consisting

in picking up the model with a fixed number of regimes exhibiting the highest marginal

likelihood. With the CP-prior, two regimes seem sufficient for each set of parameters, while
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Figure 4: U.S. GDP: difference between one-quarter ahead predictive densities of the IHMS-

ARMA (CP-prior) model and the fixed parameter ARMA model
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three to five seem useful with the MS-prior.

The estimated break probabilities over the past and the next year are displayed on

Figure 5. First of all, the IHMS model with a priori long-lasting regimes (CP-prior) only

detects one break for the mean function parameters, which happens in the early 2000’s. On

the contrary, many instabilities on the mean function parameters are visible for the IHMS

model with a priori weakly persistent regimes. Some of these changes correspond to known

historical episodes. For example, the breaks detected around 1973 and 1979 capture the oil

crisis era and the change of the monetary policy of the Fed, both marked by a rise of U.S.

inflation (see the top right graph). The break dynamics of the variance is more volatile in

both configurations. Even if less switches are detected by the IHMS model with a priori

high persistence, the two graphs do not show very different results. Two quiet periods

spanning from 1967 to 1973 and from 1991 to 1998 do not exhibit breaks.

Figure 6 documents the time-varying posterior medians of the model parameters along

with the 70% credible intervals. Interestingly, the mean function parameters and the vari-

ance do not exhibit the same dynamics, emphasizing the relevance of disentangling the two

sets of parameters. Obviously, these variations cannot be accommodated by the parame-

ters of the standard ARMA model, as highlighted by its posterior medians (thick lines).

The model with a priori high persistence (CP-prior) exhibits a change-point behaviour for

30



Table 7: U.S. Inflation: marginal log-likelihood values

ARMA(1,1) IHMS-AR(1) IHMS-ARMA(1,1)

CP MS CP MS

Average -1398.11 -1335.81 -1332.85 -1334.08 -1331.84

Min. -1398.25 -1336.31 -1333.36 -1334.77 -1332.51

Max. -1397.92 -1335.38 -1331.66 -1332.83 -1331.53

CP and MS refer to the IHMS hyper-parameters: CP (MS) imply high

(weak) regime persistence). Average, minimum and maximum are com-

puted from ten different estimations.

Table 8: U.S. Inflation: posterior probabilities of having a specific number of regimes

IHMS-ARMA with MS prior

# Regimes 1 2 3 4 5 6 7 8 9

µ, β, φ 0 0.08 0.28 0.27 0.20 0.13 0.03 0.01 0.00

σ2 0 0.11 0.22 0.26 0.20 0.13 0.06 0.02 0.00

IHMS-ARMA with CP prior

# Regimes 1 2 3 4 5 6 7 8 9

µ, β, φ 0 0.70 0.29 0.01 0 0 0 0 0

σ2 0 0.87 0.12 0.01 0.00 0.00 0 0 0

the mean function parameters, while the variance recurrently switches between two states.

The estimated mean function is close to a unit root process until the early 2000’s (with

the AR parameter slightly below 1); then until the end of the sample, it corresponds to a

weakly persistent ARMA process (with the AR parameter close to 0.2). The ARMA model

with fixed parameters obviously cannot capture the break. Its estimated AR coefficient is

also close to 1 over the entire sample (but slightly less than in the IHMS model during the

first regime of the latter). The MA coefficient of the IHMS model is clearly different from

zero in both regimes, with a strong negative value (around -0.75) during the first regime,

and a positive value (about 0.3) in the second regime. The estimated MA parameter of the
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Figure 5: U.S. Inflation series and posterior probabilities of having a break in the last year

or in the next year.
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The left column corresponds to the CP-prior, the right one to the MS-prior. Break probabilities (right

vertical axis) over the past or the next year are in grey. First row: break probabilities of the mean function

parameters. Last row: break probabilities of the variance parameter.

simple ARMA model (at 0.6) is dominated by the first regime.2

In the IHMS-ARMA model with a priori weak persistence (MS-prior), the AR and the

MA coefficients have broadly a similar time series evolution as for the CP-prior, but they

are much more instable. For instance, the AR coefficient is about equal to 0.4 at the start

of the sample, then it increases to about 0.95 between 1967 and 1983 (covering in particular

the stagflation period of the 70’s), then drops to its initial level, and after a short rebound,

2The results for the first regime of the IHMS-ARMA model with CP-prior are close to those of Stock

& Watson (2007). These authors find that the first difference of (quarterly) inflation is well captured by a

MA(1) model (with heteroskedasticity) on the period 1960-1983, with estimated MA coefficient of -0.25.
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Figure 6: U.S. Inflation: posterior medians and 70% credible intervals
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Left column: CP-prior. Right: MS-prior. Thick horizontal line: posterior median of the ARMA model
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of the 70% posterior credible interval. Top row: long term mean µt/(1− βt). Second row: AR coefficient.

Third row: MA coefficient. Last row: variance.
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gradually drops to 0.2 (as in the CP-prior graph). Not surprisingly, the 70% credible

intervals are wider when the MS-prior is used (since the MS-prior is less informative). The

MA parameter is time-varying and negative (around -0.4) until 1982, then increases until

2003 when it is around 0.2. Its 70% credible interval does not cover the value zero only

after 2003.

Finally, as for the U.S. GDP growth rate, we report the results of forecast comparisons

over the last 60% of the sample, starting the forecasts in April 1991. In addition to the

models considered in Table 7, the set of models includes a random walk (RW) process that

is sometimes considered to be relevant for this series, the AR(12) model, since this lag order

results from the AIC, and the restricted IHMS-ARMA models. Table 9 provides the APD,

MSFE and CRPS values for six forecast horizons and inspires the following comments.

• For each criterion and forecast horizon, the APD of the all the IHMS models values

are higher than those of the ARMA and AR(12) models with fixed parameters. For

the MSFE, the IHMS models are also performing better, with very few exceptions

for some of them at the horizons of one year and sixteen months. Concerning the

CRPS, their values are smallest for the IHMS models. On all criteria, the RW model

is clearly performing much less well than the other models, except for the APD at

forecast horizon of one month where its performance is less inferior than at the other

horizons. The RW model is particularly badly performing for the forecasts at large

horizons.

• The different IHMS models have about the same performance according to the APD

criterion. Judging by the MSFE, the best forecasting models have an AR mean

function at four horizons and an ARMA one at the other two horizons. For the

CRPS, the models with the AR mean function dominate at five horizons out of six.

• Regarding the statistical test (36), for the APD, the four flexible IHMS models sta-

tistically outperform the ARMA process at all horizons. For the MSFE, there are

less significant tests, but the IHMS-ARMA model with the MS prior outperforms the

ARMA model at all horizons except at one month. For the CRPS, the unrestricted

IHMS models statistically dominate the ARMA models except in three cases out of
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twenty-four. Table 7 in the SA contains the test results for comparing the flexible

IHMS models with respect to the AR(12) model and shows that there are less cases of

significant differences than in the comparisons with the ARMA model. The AR(12)

model has ten parameters more than the standard ARMA model. This contributes to

increase the denominator of the test statistic (36) and renders them less significant.

Table 9: U.S. Inflation: APD, MSFE and CRPS

Forecast Horizons One month Two months Four months Eight months One year Sixteen months

APD

RW 0.13 0.10 0.08 0.06 0.05 0.04

AR(12) 0.14 0.14 0.14 0.13 0.12 0.12

ARMA 0.15 0.14 0.14 0.13 0.12 0.12

Rest. IHMS-ARMA (CP) 0.16** 0.15** 0.15* 0.14* 0.13 0.13

Rest. IHMS-ARMA (MS) 0.16** 0.15** 0.15** 0.14** 0.14** 0.13*

IHMS-AR (CP) 0.16** 0.15** 0.15** 0.14** 0.14** 0.14**

IHMS-AR (MS) 0.16** 0.15** 0.15** 0.14** 0.14** 0.14**

IHMS-ARMA (CP) 0.16** 0.15** 0.15** 0.14** 0.13** 0.13**

IHMS-ARMA (MS) 0.16** 0.16** 0.15** 0.14** 0.13** 0.13**

MSFE

RW 6.65 10.26 10.33 12.10 12.99 9.94

AR(12) 6.58 6.73 6.95 6.87 7.01 6.62

ARMA 5.52 6.60 6.52 6.93 7.24 6.53

Rest. IHMS-ARMA (CP) 5.25 6.19 5.79 6.29 6.94 6.56

Rest. IHMS-ARMA (MS) 5.28 6.32 5.98 6.53 7.20 6.82

IHMS-AR (CP) 5.00* 6.09* 5.84* 6.15 6.55* 6.26

IHMS-AR (MS) 4.94** 6.04* 5.85* 6.17 6.51* 6.33

IHMS-ARMA (CP) 5.19 6.33 6.08* 6.56 7.13 6.62

IHMS-ARMA (MS) 5.26 6.32** 5.98* 6.35* 6.78** 6.12*

CRPS

RW 1.37 1.66 1.74 2.11 2.35 2.46

AR(12) 1.29 1.25 1.28 1.31 1.29 1.30

ARMA 1.19 1.28 1.24 1.34 1.37 1.33

Rest. IHMS-ARMA (CP) 1.16 1.22 1.18 1.25 1.32 1.30

Rest. IHMS-ARMA (MS) 1.16 1.24 1.20 1.28 1.34 1.33

IHMS-AR (CP) 1.13** 1.22* 1.19 1.25* 1.29** 1.27

IHMS-AR (MS) 1.12** 1.21* 1.18* 1.24* 1.28** 1.28

IHMS-ARMA (CP) 1.15* 1.24** 1.20** 1.28** 1.33 1.30

IHMS-ARMA (MS) 1.14** 1.22** 1.18** 1.27** 1.31** 1.27*

APD: average of predictive densities. MSFE: mean squared forecast error. CRPS:

continuous ranked probability score. CP and MS refer to the prior IHMS hyper-

parameters. Forecasts are from April, 1991 to November 2012. Bold numbers identify

the best performing model. A star indicates that there exists a significant statistical

difference with respect to the ARMA model at the 10% level (two-sided test). A

double star denotes significance at 5%.
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6.3 Comparison of predictive performance for other series

We extend our study of the IHMS-ARMA model by applying to other U.S. series the same

type of comparison of forecast performance as in the previous subsections. Table 10 lists

eighteen quarterly macroeconomic series (from 1959Q1 to 2011Q3) also used in Bauwens

et al. (2015). All series are transformed in logarithm and differenced once, except series 9.

The first series is the same as in subsection 6.1 but on a shorter period. The fourth one

is the quarterly version of the inflation series analysed in subsection 6.2. For each of these

series, the forecast implementation is the same as for the quarterly GDP growth series of

subsection 6.1, except that the forecast period starts in 1990Q3.

For each series, Table 11 reports the model that delivers the best APD, MSFE and

CRPS values. It also gives the percentage of improvement (or deterioration) with respect

to the fixed parameter ARMA model. The following conclusions emerge.

• Overall, the IHMS-ARMA model appears much more often than the three other ones.

• For the APD criterion, the IHMS-ARMA process is the best one in more than 56%

of the cases for each horizon.3

• For the MSFE criterion, the performance of the simple ARMA model and the re-

stricted IHMS-ARMA one gets better but these competitors are still dominated by

the flexible IHMS processes in more than 60% of the cases at horizon one. For farther

horizons, the restricted IHMS-ARMA model becomes as good as the most flexible

ones. This result can be explained by the new regimes created during the forecast

of the series. In particular, the parameters of the new regimes are sampled from the

hierarchical distributions and can therefore generate bad forecasts.

• Focusing on the CRPS, the IHMS-ARMA models dominate the other models in more

than 55% of the cases at all horizons.

• Considering the degree of improvement, the IHMS model drastically enhances the

APD and the MSFE for several series. For instance, the relative APD of GDP (series

3The results for the forecasts at horizons of three and four years are not reported, as they are very close

to those shown in Table 11.
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Table 10: Macroeconomic series for predictive performance comparison

Number Name

1 Real Gross Domestic Product

2 Personal Income

3 Real Personal Consumption Expenditures

4 Personal Consumption Expenditures: Chain-type Price Index

5 Real Gross Private Domestic Investment

6 Business Sector: Output Per Hour of All Persons

7 Real Imports of Goods and Services

8 Real Exports of Goods and Services

9 Real Change in Private Inventories

10 Real Government Consumption Expenditures and Gross Inv.

11 Compensation of Employees: Wages and Salary Accruals

12 Net Corporate Dividends

13 Personal Saving

14 Real Disposable Personal Income

15 Gross Domestic Product: Implicit Price Deflator

16 Nonfarm Business Sector: Unit Labor Cost

17 Private Residential Fixed Investment

18 Gross Saving

1), Real Imports and Exports of Goods and Services (series 7 and 8) and Private

Residential Fixed Investment (series 17) are between 32% and 62% for all horizons.

Similar conclusions hold for series 17 when we look at the MSFE. Finally, considering

the CRPS, the improvements are also high for the same series as in the APD. On the

contrary, when the ARMA model dominates the time-varying ones, the improvements

are rather modest. They stay below 6% for all the series, whatever the criterion.
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Table 11: Predictive performance of IHMS-ARMA with respect to ARMA and Restricted

IHMS-ARMA.

Forecast Horizons One quarter Two quarters One year Two years

Series APD

1 36.31 (CP) 33.78 (CP) 32.16 (CP) 33.05 (CP)
2 5.36 (R. CP) 1.77 (R. CP) 2.05 (MS) 2.57 (R. CP)
3 11.64 (CP) 10.53 (CP) 7.79 (CP) 7.63 (CP)
4 -0.44 (ARMA) 3.18 (MS) 3.91 (MS) 3.56 (MS)
5 20.54 (CP) 17.50 (CP) 17.35 (CP) 16.24 (CP)
6 9.29 (CP) 9.32 (CP) 10.16 (CP) 8.41 (CP)
7 58.84 (CP) 49.45 (CP) 42.09 (CP) 43.64 (CP)
8 62.45 (CP) 55.08 (CP) 54.89 (CP) 56.87 (CP)
9 -2.43 (ARMA) -2.35 (ARMA) -2.08 (ARMA) -1.01 (ARMA)
10 7.89 (MS) 6.18 (MS) 5.61 (CP) 5.61 (CP)
11 4.09 (R. CP) 2.87 (R. CP) 2.74 (MS) -0.54 (ARMA)
12 19.96 (R. CP) 2.03 (R. CP) -5.82 (ARMA) -4.15 (ARMA)
13 1.69 (R. CP) -0.11 (ARMA) -1.94 (ARMA) 1.61 (R. CP)
14 12.54 (R. CP) 6.56 (MS) 5.39 (MS) 5.77 (MS)
15 1.23 (MS) 1.15 (MS) 1.49 (MS) 1.25 (CP)
16 13.02 (R. MS) 14.58 (R. MS) 13.09 (R. MS) 10.49 (R. MS)
17 46.16 (CP) 40.94 (CP) 37.99 (CP) 35.09 (CP)
18 2.54 (MS) 2.94 (MS) 1.33 (R. CP) 0.52 (R. MS)

Perc. IHMS-ARMA 56 % 67 % 72 % 61 %
Series MSFE

1 -6.56 (CP) -7.23 (R. CP) -2.32 (R. CP) -2.62 (R. CP)
2 0.20 (ARMA) -2.81 (R. CP) 2.17 (ARMA) 2.95 (ARMA)
3 -1.89 (CP) -3.90 (CP) -0.06 (CP) -0.42 (MS)
4 -3.46 (MS) -5.86 (MS) -5.91 (MS) -4.35 (CP)
5 -7.80 (MS) -0.98 (R. CP) 4.84 (ARMA) -0.51 (MS)
6 -1.47 (R. CP) -0.39 (R. CP) 1.50 (ARMA) -1.27 (R. CP)
7 -30.64 (R. MS) -5.79 (R. CP) 3.67 (ARMA) 0.40 (ARMA)
8 -37.30 (R. MS) 5.98 (ARMA) 2.10 (ARMA) -0.06 (R. CP)
9 -2.16 (R. CP) -0.66 (R. CP) 4.75 (ARMA) 1.55 (ARMA)
10 -3.07 (MS) -5.22 (MS) -1.29 (CP) -1.69 (R. MS)
11 -1.00 (MS) -4.14 (MS) -6.65 (MS) -3.25 (MS)
12 -9.97 (R. MS) -3.74 (MS) 4.65 (ARMA) -0.64 (MS)
13 -8.54 (MS) -13.64 (CP) -7.47 (CP) -4.13 (R. CP)
14 -2.49 (MS) -2.04 (R. CP) -1.31 (R. CP) -2.48 (CP)
15 -1.42 (MS) -1.82 (R. CP) -3.41 (R. CP) -2.43 (R. CP)
16 -2.95 (MS) -7.09 (R. CP) -5.66 (CP) -5.68 (R. MS)
17 -14.71 (MS) -16.37 (MS) -15.25 (CP) -4.36 (MS)
18 0.59 (ARMA) -2.01 (MS) 2.18 (ARMA) 0.17 (ARMA)

Perc. IHMS-ARMA 61 % 39 % 39 % 39 %

Series CRPS

1 -7.51 (CP) -5.42 (MS) -2.51 (MS) -3.37 (CP)
2 -0.17 (MS) 0.93 (ARMA) -0.71 (MS) 0.55 (ARMA)
3 -1.49 (CP) -1.22 (CP) 1.07 (ARMA) -0.20 (R. CP)
4 -1.88 (MS) -3.48 (MS) -4.31 (MS) -1.87 (MS)
5 -8.29 (MS) -6.91 (R. CP) -3.43 (R. CP) -4.19 (MS)
6 -1.65 (R. CP) -2.66 (R. MS) -0.94 (R. MS) -1.03 (R. MS)
7 -20.62 (R. MS) -11.22 (CP) -7.72 (CP) -8.93 (CP)
8 -23.28 (R. MS) -8.93 (R. CP) -8.96 (R. MS) -9.37 (MS)
9 -2.77 (R. CP) -2.64 (R. CP) -2.27 (MS) -1.41 (MS)
10 -3.08 (MS) -3.70 (MS) -2.58 (MS) -3.59 (MS)
11 -1.06 (CP) -1.99 (MS) -4.46 (MS) -1.65 (MS)
12 -11.91 (MS) -7.01 (MS) -0.10 (MS) -0.75 (MS)
13 -8.00 (MS) -5.67 (MS) -3.12 (R. CP) -2.46 (MS)
14 -3.57 (R. CP) -0.17 (R. CP) -0.70 (MS) -2.64 (CP)
15 -1.07 (R. CP) -3.04 (MS) -2.32 (MS) -1.56 (R. MS)
16 -3.79 (MS) -2.45 (R. MS) -1.43 (R. MS) -1.73 (R. MS)
17 -15.43 (MS) -13.56 (MS) -10.78 (CP) -4.35 (R. CP)
18 -0.95 (R. CP) -1.89 (R. CP) -0.22 (R. CP) -0.10 (CP)

Perc. IHMS-ARMA 61 % 56 % 61 % 67 %

The Table reports the best model according to each criterion and the percentage

difference with respect to the ARMA model. ’Perc. IHMS-ARMA’ is the number of

times in percentage that the best model is the IHMS-ARMA one with the flexible

dynamic in the break.MS (CP) means IHMS-ARMA with MS (CP) prior and R. MS

(CP) stands for the restricted IHMS-ARMA with MS (CP) prior.
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7 Conclusions

The Markov-switching modelling framework is a powerful tool to capture occasional changes

in the parameter values of dynamic econometric models at a priori unknown dates. Such

models may suffer from a potential over-parameterization issue due to the assumption that

all the parameters must change when a break occurs. We propose a solution to this problem

by relying on the hierarchical Dirichlet process. The break dynamics of the mean function

parameters is separated from the one of the variance and thanks to the a priori infinite

number of states, only one estimation is sufficient to determine the number of regimes in the

two parameter structures. Consequently, the proposed IHMS framework extends the MS

class in two related directions as it both allows for an unbounded number of regimes and

a flexible dynamics for the model parameters. In addition to that, this modeling approach

is operational for complex models as we solve the path dependence problem due to the

moving average component of ARMA models. This is achieved by using a Metropolis-

Hastings step with a proposal density based on an approximate model inspired by the

solution that Klaassen (2002) proposed for the MS-GARCH model.

Empirical applications on the quarterly U.S. GDP growth rate and on the monthly U.S.

inflation rate highlight the relevance of allowing for the possibility of different structural

breaks in the mean and in the variance. In particular, for the U.S. GDP growth rate,

we find a structural break in the variance at the beginning of the great moderation era,

but no simultaneous break in the mean function parameters. The latter parameters are

therefore estimated from the entire sample. The inference on the U.S. inflation delivers

similar results as the breaks of the mean function parameters are different from those of

the variance. This example additionally highlights that assuming only two regimes for

a time series is not always satisfactory as the number of breaks in the mean and the

variance are larger than two when the prior information favours weakly persistent regimes.

A forecasting comparison on eighteen quarterly series illustrates that the IHMS-ARMA

models perform better than the ARMA one with fixed parameters for a majority of series,

in some case by a wide margin.

Future research could be devoted to relaxing the geometric duration of the regimes

implied by the Markov chains. We could also investigate if allowing a different break
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structure for each model parameter further improves the predictions. Another avenue of

research could be to extend the approach to VARMA and factor models.

Appendix 1: Sticky IHMS-ARMA Gibbs Sampler

Before detailing the implementation of the sampler, we introduce some notations. Sums

over one indices are denoted by dots: for instance
∑

a xa,b = x.,b and
∑

a

∑

b xa,b = x.,.. The

vector {x1, x2, ..., xr} is denoted by x1:r and is a row vector, while its transpose is denoted

by x′1:r. The symbol L stands for the number of regimes. If a positive random variable X

follows a Gamma distribution with positive parameters k (shape) and θ (scale), we write

that X ∼ G(k, θ), and the corresponding density function is written

f(x|k, θ) =
1

θkΓ(k)
xk−1e

−x
θ .

The vector Θ = {µ1, . . . , µL, β1, . . . , βL, φ1, . . . , φL, σ1, . . . , σL}
′ contains all the ARMA pa-

rameters of the IHMS-ARMA model of subsection 2.3 of the paper, and θj = {µj, βj, φj, σj}
′

the parameters of regime j.

One iteration of the Gibbs sampler algorithm sketched in Table 1 passes through be-

tween the following steps:

1. Sampling sψ1:T from f(sψ1:T |Θ, P
ψ, sσ1:T , y1:T ): see sub-section 3.1.

2. Sampling P ψ from f(P ψ|HDir, π
ψ, sψ1:T , y1:T ): for j = 1, ..., L, sample

pψj,1:L ∼ Dir(αψπ
ψ
1 + nψj,1, ..., αψπ

ψ
j + κψ + nψj,j, ..., αψπ

ψ
L + nψj,L), where n

ψ
j,k denotes the

number of transitions from state j to k observed in the state vector sψ1:T .

3. Sampling sσ1:T from f(sσ1:T |Θ, P
σ, sψ1:T , y1:T ) by the forward-backward algorithm (see

Chib (1996)).

4. Sampling P σ from f(P σ|HDir, π
σ, sσ1:T , y1:T ): for j = 1, ..., L, sample

pσj,1:L ∼ Dir(ασπ
σ
1 + nσj,1, ..., ασπ

σ
j + κσ + nσj,j, ..., ασπ

σ
L + nσj,L), where n

σ
j,k denotes the

number of transitions from state j to k observed in the state vector sσ1:T .

5. Sampling {αψ, κψ, ηψ} from f(αψ, κψ, ηψ|P
ψ, πψ, sψ1:T , y1:T ):
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(a) Introduce auxiliary variables:

• Sampling m: For j = 1, ..., L, and k = 1, ..., L. Set mj,k = 0. For i =

1, ..., nj,k sample xi ∼ Bernoulli(
αψπ

ψ
k
+κψ1{j=k}

i−1+αψπ
ψ
k
+κψ1{j=k}

) and increment mj,k = 0

if xi = 1.

• Sampling r: For j=1,...,L. rj ∼ Binomial(mj,j,
ρ

(1−ρ)πψj +ρ
) where ρ =

αψ
αψ+κψ

• Set m̄j,k = mj,k if j 6= k and m̄j,k = mj,k − rj if j = k.

• Set K̄ = 0, for k = 1, ..., L, if m̄.,k > 0 then increment K̄.

(b) Sampling αψ and κψ:

• Sample auxiliary variables: for i = 1, ..., L, qi ∼ Beta(αψ + κψ + 1, ni,.) and

si ∼ Bernoulli(
ni,.

ni,.+αψ+κψ
).

• Sample ρ =
κψ

αψ+κψ
∼ Beta(ρhyp1 + r., ρhyp2 +m.,.− r.) where ρhyp1 and ρhyp2

denotes the hyper-parameters of ρ (see Table 3).

• Sample αψ + κψ ∼ G(ahyp +m.,. − s., (
1

bhyp
− log q.)

−1) where ahyp and bhyp

denotes the hyper-parameters of αψ + κψ (see Table 3).

• Set αψ = (1− ρ)(αψ + κψ) and κψ = ρ(αψ + κψ).

(c) Sampling ηψ:

• Sample auxiliary variables: q̃ ∼ Beta(ηψ+1, m̄.,.) and s̃ ∼ Bernoulli( m̄.,.
m̄.,.+ηψ

).

• Sample ηψ ∼ G(ηψ,hyp1 + K̄− s̃, { 1
ηψ,hyp2

− log q̃}−1) where ηψ,hyp1 and ηψ,hyp2

denotes the hyper-parameters of ηψ (see Table 3).

6. Sampling {ασ, κσ, ησ} from f(ασ, κσ, ησ|P
σ, πσ, sσ1:T , y1:T ): similar to previous item.

7. Sampling πψ from f(πψ|P ψ, HDir, s
ψ
1:T , y1:T ) ∼ Dir(

ηψ
L
+ m̄.,1, ...,

ηψ
L
+ m̄.,L).

8. Sampling πσ from f(πσ|P σ, HDir, s
σ
1:T , y1:T ): similar to previous item.

9. For j = 1, ..., L, sampling σ−2
j from

f(σ−2
j |ē, f̄ , sψ1:T , s

σ
1:T , y1:T ) ∼ G(0.5nσ.,j + ē, (0.5

∑T

t=1 ǫ
2
t δ{sσt =j} +

1
f̄
)−1)

where δ{sσt =j} is the Dirac function equal to one if sσt = j and zero otherwise.

10. For j = 1, ..., L, sampling µj, βj , φj from f(µj, βj, φj|Θ\{µj, βj , φj}, µ̄, Σ̄, s
ψ
1:T , s

σ
1:T , y1:T )

using the MH algorithm described in subsection 3.2.
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11. Sampling µ̄, Σ̄ from f(µ̄, Σ̄|Θ):

• Drawing µ̄ from f(µ̄|Σ̄,Θ) ∼ N(µpost,Σpost) where Σpost = (Σ−1 +LΣ̄−1)−1 and

µpost = Σpost(Σ
−1µ+

∑L

j=1 Σ̄
−1θj).

• Drawing Σ̄−1 from f(Σ̄−1|µ̄,Θ) ∼ W((V −1 +
∑L

j=1(θj − µ̄)(θj − µ̄)′)−1, v + L).

12. Sampling ē, f̄−1 from f(ē, f̄−1|{σ2
1, ...σ

2
L}, y1:T ):

• Drawing ē from f(ē|f̄ , {σ2
1, ...σ

2
L}, y1:T ) by a MH step. The proposal distribution

is a random walk Normal one with variance equal to 0.5.

• Drawing f̄−1 from f(f̄−1|ē, {σ2
1, ...σ

2
L}, y1:T ) ∼ G(Lē+ fa, (

1
fb
+
∑L

j=1 σ
−2
j )−1).

Appendix 2: Approximate MS-ARMA Model

In this appendix, we provide the computation of ǫ̃
t−1,sψt

that is used in the approximate

model (see subection 3.1). By definition of the expectation,

E
s
ψ
t−1

[ǫt−1|y1:t−1, s
ψ
t ,Θ, P

ψ, sσ1:t−1] =
L
∑

i=1

ǫt−1(i)f(s
ψ
t−1 = i|y1:t−1, s

ψ
t ,Θ, P

ψ, sσ1:t−1),

where ǫt−1(i) = yt−1 − µi − βiyt−2 − φiǫ̃t−2,i.

The conditional probabilities f(sψt−1|y1:t−1, s
ψ
t ,Θ, P

ψ, sσ1:t−1) are given by

f(sψt−1|y1:t−1, s
ψ
t ,Θ, P

ψ, sσ1:t−1) =
f(sψt , s

ψ
t−1|y1:t−1,Θ, P

ψ, sσ1:t−1)

f(sψt |y1:t−1,Θ, P ψ, sσ1:t−1)

=
f(sψt−1|y1:t−1,Θ, P

ψ, sσ1:t−1)f(s
ψ
t |s

ψ
t−1, P

ψ)

f(sψt |y1:t−1,Θ, P ψ, sσ1:t−1)

=
f(sψt−1|y1:t−1,Θ, P

ψ, sσ1:t−1)f(s
ψ
t |s

ψ
t−1, P

ψ)
∑L

i=1 f(s
ψ
t−1 = i|y1:t−1,Θ, P ψ, sσ1:t−1)f(s

ψ
t |s

ψ
t−1 = i, P ψ)

.

From the last line of the above formula, the forward step of the forward-backward algorithm

provides all the quantities to compute at each time index the conditional distribution

f(sψt−1|y1:t−1, s
ψ
t ,Θ, P

ψ, sσ1:t−1).

42



References

Amisano, G. & Giacomini, R. (2007), ‘Comparing density forecasts via weighted likelihood

ratio tests’, Journal of Business and Economic Statistics 25, 177–190.

Ardia, D., Hoogerheide, L. & van Dijk., H. (2009), ‘To bridge, to warp or to wrap? A com-

parative study of Monte Carlo methods for efficient evaluation of marginal likelihoods’,

Tinbergen Institute Discussion paper TI 2009-017/4 .

Atchadé, Y. & Rosenthal, J. (2005), ‘On adaptive Markov chain Monte Carlo algorithms’,

Bernoulli 11(5), 815–828.

Basawa, I. V. & Lund, R. B. (2001), ‘Large sample properties of parameter estimates for

periodic ARMA models’, Journal of Time Series Analysis 22, 651–663.

Bauwens, L., Dufays, A. & Rombouts, J. (2013), ‘Marginal likelihood for Markov switching

and change-point GARCH models’, Journal of Econometrics 178(3), 508–522.

Bauwens, L., Koop, G., Koribilis, D. & Rombouts, J. (2015), ‘The contribution of struc-

tural break models to forecasting macroecomic series’, Journal of Applied Econometrics

30, 596–620.

Beal, M. J. & Krishnamurthy, P. (2006), Gene expression time course clustering with

countably infinite hidden Markov models, in ‘Proceedings of the Twenty-Second Confer-

ence Annual Conference on Uncertainty in Artificial Intelligence (UAI-06)’, AUAI Press,

Arlington, Virginia, pp. 23–30.

Blackwell, D. & MacQueen, J. (1973), ‘Ferguson distributions via Pólya urn schemes’,
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