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Operational Risk (introduced with Basel Il (< BIS (2004)))

( N
Definition (Operational risk)

Operational risk is defined as the risk of loss resulting from inade-

quate or failed internal processes, people and systems or from external
events. This definition includes legal risk, but excludes strategic and
reputational risk.

L )
Examples (legal risk and strategic risk are difficult to measure)

people: fraud (internal, external), “fat finger trades”

systems: ATM, computer (hardware, software)

external events: Kobe earthquake (1995-01-17), bankruptcy of Barings
bank (1995-02-26), 9/11, hurricane Katrina (mortgage
default due to lost houses; credit or an OpRisk event?)
reputational risk: CDOs for UBS
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Stylized facts

data scarcity for companies internally and research (ORX, ORIC)
loss frequencies vary over time (also: reporting bias)
loss severities are heavy tailed, often infinite-mean

losses can be assigned to different business lines (bl; typically 8) or
event types (et; typically 7)

..and how we model them

database of 1387 publicly reported events since 1980 (with 950 losses)
loss frequency: non-homogeneous Poisson process
loss severities: EVT-POT approach (GPD)

...depending on 10 bl as covariates (and time!)

Goal: Compute Value-at-Risk (VaR) and Cls depending on covariates
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EVT based modeling approach
The classical POT approach

iid — 1 L(t
" losses Xy, ..., Xy ~F, Fe RV°° (F=ua ¢L, Jim L((f)) =1)
" X;,...,X;, exceedances over u (hlgh enough)
m excesses Vi, = X, —u>0,1€{l,...,n}

(
Theorem (Leadbetter (1991))

1) The number of exceedances N; approximately follows a Poisson

process with intensity )\, that is, V; ~ Poi(A(¢)) with A(t) = At.
2) The excesses Yy, .. YtN over u approximately follow (indepen-

dently of N;) a GPD(£, J) for £ € R, B> 0 with

3 1 .

Ge () = 1-(1+¢&/8) ", !fﬁ#o,

1 —exp(—z/p), if £=0.

L
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If £ > 0 (most OpRisk loss models), the approximate likelihood is

L(\EBY) = ()\T?n exp(=AT) [] g¢,5(Yz)-
: =1

Therefore, the log-likelihood splits into the two parts

(NG BY) =6NY)+ LB Y),

where
LN Y ) = =AT + nlog(A) + log(T" /n!),
U&BY) = log ge p(Ya,)-
i=1

= Maximization can thus be carried out separately for 1) and 2).
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A dynamic/smoothing POT approach
® Homogeneity assumptions on A, &, 5 are often not realistic.
= Assume we have observed vectors z; = (i, zi,yt;), ¢ € {1,...,n}

(exceedance time, covariate, excess over u)

The model
1) Number of exceedances: a non-homogeneous Poisson process with
A= Az, t) = exp(fa(z) + ha(t))

where fy(z) is a constant for each covariate factor z, hy : [0,7] - R
a natural cubic spline. Rewriting leads to

log)\ = f,\(&?) + h)\(t),

a generalized additive model (GAM) with logarithmic link function
= Estimate f), and /), with mgcv::gam(..., family=poisson).
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2) Excess distribution: Similarly, but for convergence it is crucial that &
and (3 are orthogonal in the Fisher information metric
= Replace § by v =log((1 +£)/3) (see Cox and Reid (1987)).
The reparametrized log-likelihood is

reny)=o(69 >l ; Y).

Assume that £ and v are of the form
§ =¢&(z,1) = fe(z) + he(D),
v=v(z,t) = fi(z) + h(1),
Simultaneously estimating £ and v is not possible with mgcv: : gam.

® What we in fact have are vectors £ and v in R™ with ith components:

& = fe(wi) + he(ts),
v = fl/(xl) + hV(ti)‘
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® To obtain reasonably smooth functions h¢, h,, we use a penalized
log-likelihood approach. The penalized loglikelihood is

T T
C(fe he, fu, i z) = (&, viy) — 7&/ he (t)? dt — %/ hy(t)? dt
0 0
where ¢, vy, > 0 are smoothing parameters (larger = smoother curves).
" let0=s89 <581 < <S8y < Smi1 =1 denote the (ordered) distinct

values among {t1,...,t,}. For a natural cubic spline h,

T
/ R'(t)?dt = h"Kh
0

where h = (h(s1),...,h(sm)) and K is a symmetric m x m matrix of
rank m — 2 only depending on the knots s1, ..., sp,.

= (fe, he, fo i 2.) = (€, v3y) —vch{ Khe —yh] Kh,  with

. < exp(v;)
(& viy) =) L&, S Yt
& viy) ;1( ., )

+&i
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The backfitting algorithm for estimating (&, 3)

Algorithm (Updater gamGPDfitUp())

Let £) = (5 fn ) and (%) = (l/{k), e m(lk)) be given.

1) Setup: Speufy formulas xi.formula and nu.formula for gam()

for fitting & = fe(x;) + he(ts) and v; = fi(x;) + hy(t;).

2) Update ¢
2.1) Newton step: Compute (componentwise)

26,0 y)

e (€W, vB);y)

ENeWton _ S(k) -

2.2) Fitting: Compute £+ via

fitted(gam (€¥¥*"~xi . formula,... sweights=—/(;.)).
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3) Given £#+1), update v(*):
3.1) Newton step: Compute (componentwise)

b e, pW);y)
0, (€00, uW; y)

VNewton

:]/(

3.2) Fitting: Compute v+ via

Newton ~

fitted(gam(v nu.formula,...,weights=—/] )).

" gamGPDfit () iterates over this algorithm until convergence

= gamGPDboot () additionally computes (post-blackend) bootstrapped

confidence intervals

®  For more details, use demo (game)
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Descriptive analysis of the loss data
® 1387 OpRisk events collected from public media since 1980
(for the loss severity, we use the 950 reported losses)
" For each event, the following information is given:
used: business line, event type, year of the event, (gross) loss in
GBP (31.51% missing)
unused: reference number, organization affected, country of head of-
fice, country of event, type of insurance, net loss (97.55%
missing), regulator involved, source (newspapers, databases,
press releases, webpages), loss description
Not available is the company size.
= Most events happened in USA (44.34%), UK (26.03%), Japan (5.05%),
Australia (2.31%), and India (2.02%); China?
= 63.95% were (partially) insured; insurance cover unclear.
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Number of available losses and total available loss aggregated per year

over time (left). For each business line (right).
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" Frequency depends on the business line.

1985

= Both features our model can take into account.
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1990 1995 2000 2005 2010

Year

Increasing frequency probably due to reporting bias.
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= Losses are not identically distributed.
We will take this into account by in-
terpreting business lines and time as
covariates.

= Data pooling
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= Pooling is also suggested by the Basel matrix/vector:

IF EF EPWS CPBP DPA BDSF EDPM

2 1 0 12 0 0 3\ AS 18\ As
123 4 55 0 0 6 | AM 80 | AM
60 54 4 77 1 0 11 | cB 207 | cB
12 4 0 23 0 0 2 | cF 41 | cF
13 2 2 32 0 0 4 11 53 |1
10 3 0 38 2 0 9 | Ps 62 | ps

3 0 0 4 0 2 3 | RBa 12 | RBa
71 62 5 73 1 0 14 | RBr 226 | RBr
13 3 2 28 0 1 2 | T1s 49 | TS
60 2 20 107 0 3 10/ uBL 202 / uBL

Note: This is aggregated since 1980!
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Dynamic POT analysis

Goal: Use all losses from 1980 to 2013 which exceed the threshold u
of 11.02 M GBP (median) and compute the risk measure VaR 999
including 95% bootstrapped confidence intervals.

®  Graphical GoF test for the GPD model: If the model is correct,
R, = —log(1— G¢ 5 (1)) %" Exp(l), i€ {l,...,n}
= check with a Q-Q plot = threshold choice

» Given )\, é B (evaluated at z;'s and t;'s), an estimate of VaRy, is

- 405

®  Confidence intervals can be constructed with the post-blackend boot-
strap of Chavez-Demoulin and Davison (2005).
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Loss frequency

® We fit the following models for A\ using gam(..., family=poisson):
log A(z,t) = ¢x  (constant/classical model)
log A(z,t) = fa(z) (bl as covariate)
log A(x,t) = fa(x) + cat (bl and time [parametrically] as covariate)
Likelihood-ratio tests = dependence on bl and time.

= \We then compare log A(z,t) = fia(z) + cxt with models of the form
log A(z,t) = foa(z) + hg\Df)(t), Df € {1,...,8} (non-parametric)
AIC = selected model: log A(x, 1) = fi(x) fz(;)(f)

® The selected model shows that considering a homogeneous Poisson
process for the occurrence of losses (classical approach) is not adequate.
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intervals

asymplotic two-sided 95% confidenc
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Final model for \:
M, t) = exp(fr(x) + iAz/E\;;)(t))

(depends on business line and time)

95% confidence intervals
(bootstrapped)
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Loss severity

= We fit the following models for (£, ) using gamGPDfit ():

§(2,t) = c,

{(@,1) = fe(x),
§(z,t) = fe(x) + cet,
£(z,t) = fe(),
{(z,t) = fe(x),
E(z,t) = fe(),
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v(z,t) =cy,

v(z,t) =cy,

v(z,t) =cy,

v(z,t) = fy(z),

v(w,t) = fu(@) + o,
v(z,t) = fu(@) + h (1),
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» Results about £(x,t) = £(x) are similar to Moscadelli (2004) (right)
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= Hints at infinite-mean models (in 80%
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of the cases).
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M

« - ] ® Final model for S:
exp(fu(x) + é,t)
1+ &(x)

(depends on business line and time)

B(z,t) =
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VaRo.es with bootsirapped pointwise two-sided 95% confidence intervals
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® VaR( 999 estimates

(depending on time and business line)

95% confidence intervals
(bootstrapped)
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...and the residuals are. ..

Exp(1) Q-Q plot

= Qverall fine (asymptotically)

. Depends on the choice of the
threshold u (bias—variance trade-
off)

3
T

= Higher u (e.g. 90%) not possible
given the sample size

Quantiles of the selected model's residuals

Pointwise asymptotic 95% cc
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Theoretical quantiles
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