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aim and contents

Hidden Markov models (HMM) are popular tools for time series analysis,
speech recognitions, ...

Observable process (Yt) and latent process (θt). Assume

• (θt) is a Markov chain with state space {ξ1, . . . , ξk},
• and conditionally on the θt’s, the Yt are independent:

Yt | θt = ξi
indep∼ f(y | ξi)

A general problem in HMMs is how to choose the number of states.

A Bayesian nonparametric approach offers an interesting solution, which
allows to generate states as the need occurs.

Furthermore, efficient computational tools are available, which exploit the
predictive construction of nonparametric priors.
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aim and contents

In recent years, there has been an impressive explosion of Bayesian
nonparametric methods, in the statistical literature and in other areas, such as
machine learning.

This talk is an overview of some of these constructions, and gives theoretical
insights on connections across apparently unrelated literature

• urn processes (Polya, Hoppe, .. see Feng, 2010) and reinforced urn
processes (or random walk on graphs: Coppersmit & Diaconis(1987),
Pemantle (1988), Diaconis & Rolles (2006), Muliere, Secchi, Walker
(2000), ...)

• many recent proposals in machine learning, such us hierarchical Dirichlet
Processes (Teh et al., 2006), infiniteHMM (Beal, Ghahramani,
Rasmussen, 2002), sticky infiniteHMM (Fox et al., 2007) Indian Buffet
(Griffiths & Ghahramani, 2006), ...)

Here these methods are used for BNP: predictive construction of nonparametric

priors for exchangeable and Markov exchangeable sequences.
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• Introduction: predictive construction of nonparametric priors

• Exchangeability.

Dirichlet process and Hoppe’s urn

• Markov exchangeability

Reinforced urn processes.

• Nonparametric priors for HMMs
• Hierarchical Hoppe’s urns
• Infinite HMMs

• Related processes and extensions
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1. Exchangeability

Consider first an exchangeable sequences (Yi) with probability law P .
From de Finetti representation theorem, there exist a unique probability
measure (prior) on P(Y) such that

Yi | F
i.i.d∼ F, F ∼ π.

The random d.f. F is the weak limit of the sequence of empirical distributions
F̂n = 1

n

∑n
i=1 δYi , but it is also the limit of the sequence of predictive

distributions

Pn(y) = P (Yn+1 ≤ y | y1, . . . , yn), n = 1, 2, . . . .

In a predictive approach, rather than specifying the model and the prior, one
wants to construct them starting from predictive assumptions, i.e., assigning a
sequence of predictive distributions Pn, that characterize a law P for (Yi) that
is exchangeable.

Then, at least in principle, one has characterized the random F , i.e. the model

and the prior.



Dirichlet process

Suppose (Yi) is exchangeable, and assume that Y1 ∼ F0 and for any n ≥ 1

Pn(y) ≡ P (Yn+1 ≤ y | y1, . . . , yn) =
α

α+ n
F0(y) +

n

α+ n

n∑
i=1

1

n
δyi ,

a weighted average of a prior guess F0 and the empirical d.f. 1
n

∑n
i=1 δyi .

Blackwell and McQueen (1973) showed that the Polya sequence (Yn) so
defined is exchangeable, more specifically

• Pn ⇒ F , a.s.;

• F is discrete a.s. and F ∼ DP (αF0)

• Yi | F
i.i.d∼ F .

One can show that F =
∑∞
j=1 wjδξj where the atoms ξj

i.i.d∼ F0 and the
weights (wj) have a stick-breaking prior(α), independently on the (ξj).
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DP and random partitions

The discrete nature of the DP is at the basis of many applications to BNP
mixture models and clustering.
For understanding the implications of the predicitve rule in terms of random
partitions, and thus the potentiality in clustering and more, it is useful to use
an urn representation, proposed by Hoppe (1984).

Hoppe’s urn (Hoppe, 1984). Urn with α black balls.
Pick a ball: if black, return it together with a ball of new color; if colored,
return 2 balls of the same color.

Initially, we pick a black ball, generate a color and set S1 = 1.

Then, we pick a ball: if colored, we set S2 = 1; if black, generate a new color,

and set S2 = 2, and so on.
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Hoppe’s urn

By construction, S1 = 1 ,

S2 | S1 = 1 ∼
{

= 2 with prob. α
α+1

= 1 with prob. 1
α+1

and for n ≥ 1, denoting by k the number of colors discovered in (S1, . . . , Sn)
and by nj the frequency of color j

Sn+1 | S1, . . . , Sn =

{
= k + 1 with prob. α

α+n

= j with prob.
nj

α+n
, j = 1, . . . , k

The sequence (S1, . . . , Sn) defines a random partition of {1, 2, . . . , n}.
For example, for n = 6, (S1, . . . , Sn) = (1, 2, 1, 1, 3, 2) gives the partition

({1, 3, 4}, {2, 6}, {5}).
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colored Hoppe’s urn

The sequence (Sn) is not exchangeable

However, if we color (Sn) with colors ξi
i.i.d∼ p0, the resulting sequence of colors

(Xn) is a Polya sequence

Yn+1 | y1, . . . , yn ∼
α

α+ n
p0 +

1

α+ n

k∑
j=1

njδy∗j

thus it is exchangeable and its de Finetti measure is a DP (αp0).



Applications in mixture models
This clustering property is often used at the second stage of Bayesian
hierarchical models. Consider

Yi | θi
indep∼ f(y | θi)

θi | G
i.i.d∼ G

G ∼ π

Integrating the θi out, we obtain a mixture model

Yi | G
i.i.d∼

∫
f(y | θ)dG(θ).

If we assume G ∼ DP (αG0), then

• G is a.s. discrete, G =
∑∞
j=1 wjδξj , thus the model reduces to a

countable mixture

Yi | G
i.i.d∼

∞∑
j=1

wjf(y | ξj).

• the predictive structure implies a prior on the random clustering of
(θ1, . . . , θn).
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Markov exchangeability

Let us now consider Bayesian inference for a Markov chain (Yt), with state
space {1, . . . , k}.
We assume that (Yt) is a Markov chain conditionally on the unknown transition
matrix Π = {πi,j} and we should assign a prior on Π.

Again, we can take a predictive approach: define predictive distributions Pn
such that (Yn) is Markov exchangeable and recurrent. This characterizes the
prior on the transition matrix Π.

Fortini and Petrone (2013) give necessary and sufficient conditions on the

predictive rules Pn, n ≥ 1 so that they characterize a law P for (Yn) such that

(Yn) is recurrent and Markov exchangeable.
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Markov exchangeability

exchangeability ⇔ mixture of i.i.d.
?? ⇔ mixture of Markov chains

If (Yn) is recurrent, “??” is Markov exchangeability
(Diaconis+Freedman, 1980).

(Yn, n ≥ 0), Yi ∈ I countable.

(Yn) is recurrent if P (Yn = Y0 for infinitely many n) = 1.

Two sequences y = (y1, . . . , yn) and x = (x1, . . . , xn) are equivalent, y ∼ x iff
they start from the same state and have same transitions counts e.g.:
y = (1, 3, 2, 1, 2) and x = (1, 2, 1, 3, 2).

(Yn) is Markov exchangeable if y ∼ x implies

P (Y1 = y1, . . . , Yn = yn) = P (Y1 = x0, . . . , Yn = xn).
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de Finetti theorem for Markov chains

Theorem
Suppose (Yn) is recurrent. Then (Yn) is Markov exchangeable iff it is a mixture
of Markov chains,

P (Y0 = y0, . . . , Yn = yn | Y0 = y0) =

∫ n∏
i=1

Π(yi | yi−1) dµ(Π | y0).

The prior µ is uniquely determined.

In other words: (Yn) | Π is Markov, with state space I and transition matrix Π,

and Π ∼ µ.



An equivalent definition

Zabell (1995) and Fortini, Ladelli, Petris, Regazzini (2002) give an equivalent
characterization of mixtures of Markov chains.

successors matrix S: ith row (Xi,n, n ≥ 1) successors of state i.

Theorem
(Xn) is a mixture of Markov chains iff each state that is visited has an infinite
number of successors, and the successor matrix S is partially exchangeable by
rows.

The prior on the the ith row of the transition matrix is the de Finetti measure
of the exchangeable sequence of the successors of state i.

Remark: this is useful in urn schemes where draws from urn Ui represent the

successors of state i. If recurrent and Markov exchangeable, one can also

characterize the prior and the dependence across the rows of Π.
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Interpretation of Π

• From Diaconis and Freedman (1980), Π is the limit of the matrix of
transition counts

Ti,j(X1, . . . , Xn)

Ti+(X1, . . . , Xn)
→ Πi(j), a.s.P

• From Fortini et al. (2002), it is the limit of the sequence of empirical
distributions of the successors:

(

∑n
k=1 δX1,k

n
,

∑n
k=1 δX2,k

n
)→ (Π1,Π2) ∼ µ1,2(·, ·)

• Theorem (Xn) recurrent and Markov exchangeable. Then it is a mixture
of Markov chains, where the mixing distribution µ is the law of the limit
of the sequence of predictive distributions.
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Predictive construction of nonparametric
priors for Markov exchangeable processes

Aim: Construct a process (Yn), with Yi ∈ I = {1, . . . , k}, k ≤ ∞, through a
collection of Hoppe’s urns.

We first consider Bayesian inference for Markov chains, then for hidden Markov

models



Reinforced Hoppe’s urns

state space I = {1, . . . , k}, k ≤ ∞.
For any i, associate a Hoppe urn Ui with α black balls, and discrete color
distribution p0 on I.

Fix Y0 = y0, and pick a ball from urn Uy0 .
Since it is black, a color is sampled from p0 and added in the urn, together
with the black ball.
If y1 is the sampled color, we set Y1 = y1 and move to Hoppe’s urn Uy1 , and
so on.

Thus at time n

Pn(j) ≡ P (Yn+1 = j | y1, . . . , yn = i) =
αi p0,i(j) + Ti,j(y1:n)

αi + Ti,+(y1:n)
.

Call the process of colors (Yn) so defined a reinforced Hoppe’s urn process

(Hoppe RUP).
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Hoppe RUP

The Hoppe RUP (Yn, n ≥ 0) is not Markov. It is defined through the predictive
rule.

We can prove that:

• (Yn) is Markov exchangeable.

• Infinitely many black balls are drawn, thus we sample an infinite sequence

of colors ξi
i.i.d∼ p0.

• (Yn) is recurrent.

• The draws from urn Ui are the successors of state i, and they are
independent through the different urns.

Each urn is visited infinitely often. By construction, the draws from urn
Ui are sampled through a Hoppe scheme, thus they are exchangeable and
their de Finetti measure is a DP (αp0).

Thus we have proved

Proposition. The reinforced Hoppe RUP (Yn) is conditionally Markov, given

the transition matrix Π, and the prior on Π is such that Πi
indep∼ DP (αp0).
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Hierarchical Hoppe RUP

Consider a hierarchical extension of the Hoppe RUP.

• (1) Known colors.

Colors are drawn from an oracle Hoppe urn, with γ black balls and
discrete, known distribution q on {1, 2, . . .}.

• (2) Unknown state space (HMM).

As before, colors are drawn from an oracle Hoppe urn, with γ black balls.
But now we have a diffuse color distribution q.



Hierarchical Hoppe RUP - 1. known colors

If the color distribution of the oracle urn q is discrete on {1, 2, . . . , k}, k ≤ ∞,
only these colors can be drawn. Thus the state space of (Yn) is {1, 2, . . . , k}.

lemma. The oracle urn is visited infinitely many times, a.s..

Thus the colors (ξi) from the oracle urn are an infinite, exchangeable sequence,

thus ξi | p
i.i.d∼ p, with p ∼ DP (γq).

Therefore, conditionally on p, we are back to the previous case, and we have

(Yn) | Π, p is a Markov chain with state space I and transition matrix Π; the
prior on Π is such that the rows are conditionally independent, with a
hierarchical DP prior, namely

Πi | p
indep∼ DP (αp)

p ∼ DP (γq)
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2. diffuse q – infinite HMM

If q is diffuse, each time we visit the oracle urn we create a new color
ξ∗i ∼ q.

Thus the state space of (Yn) is {ξ∗1 , ξ∗2 , . . .}. We have Y1 = ξ∗1 , then Y2
can be of color ξ∗1 or a new color ξ∗2 , etc: colors are created when needed!

But this is what we need as a prior for HMMs!

in HMMs, the Markov process is latent, thus also the state space
{ξ∗1 , ξ∗2 , . . .} is unknown.
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ξ∗i ∼ q.

Thus the state space of (Yn) is {ξ∗1 , ξ∗2 , . . .}. We have Y1 = ξ∗1 , then Y2
can be of color ξ∗1 or a new color ξ∗2 , etc: colors are created when needed!

But this is what we need as a prior for HMMs!

in HMMs, the Markov process is latent, thus also the state space
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Hierachical Hoppe RUP with diffuse q

lemma. The oracle urn is visited infinitely many times, a.s..

Thus the colors (ξi) from the oracle urn are an infinite, exchangeable sequence,

thus ξi | p
i.i.d∼ p, with p ∼ DP (γq).

Therefore the above results hold conditionally on p, and we have

(Yn) | Π, p is a Markov chain with state space given by the support ξ∗1 , ξ
∗
2 , . . .

of p, and transition matrix Π. The prior on Π is such that the rows are
conditionally independent, with a hierarchical DP prior:

πξ∗j | p =

∞∑
j=1

wjδξ∗j
indep∼ DP (αp)

p ∼ DP (γq)
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HMMs

In a HMM (Yn, θn), we can construct the latent sequence (θn) as a
hierarchical Hoppe reinforced urn process.

The results show that (θn) is conditionally Markov, and the prior on the
unknown transition matrix is a hierarchical Dirichlet process.

The predictive scheme used to construct the prior is usefully exploited for
computations.



Further examples and developments

• Sticky infinite HMMs: each Hoppe urn Ui has α black balls, and M balls
of color i, so we put more mass on πi,i (Fox et al.).

• The Indian buffet process (Griffiths and Ghahramani, 2006) is also based
on an urn scheme

•
• Other examples: Hoppe RUP with random reinforcement. The number Yn

of balls added at time n is random, with Yn independent on
(X1, . . . , Xn−1).

• Covariate-dependent transition matrix

Urns indexed by color and covariate value.

(Xn) is partially Markov exchangeable.

• mixture of Markov chain observed at random time points

• · · ·



summary

This was an overview of some predictive constructions, based on urn schemes,
for characterizing mixtures of Markov chains.
Hoppe RUPs and hierarchical Hoppe’s RUPs shed light on theoretical
properties and connections between RUP, infinite HMM and hierarchical DP.

The predictive construction is exploited for efficient computational algorithms,
with a huge number of applications....

Developments:
Further nonparametric constructions for Markov exchangeable sequences (e.g.
using extensions of Hoppe’s urn (Feng and Hoppe, 1998; two-parameters
Poisson-Dirichlet)
and extensions to more general exchangeability structures (row-column
exchangeability, network data)

thank you for your attention!
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