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1. Copulas

Copulas have found a variety of actuarial/financial applications:

e Life insurance - models for joint (dependent) lives
e Non-life insurance - loss distributions for multi-line insurance losses

e Risk aggregation - models for combining loss distributions in a
modular appproach to deriving risk capital

e Capital allocation - models for disaggregating overall capital into
contributions

e Market risk - models for asset returns

e Credit risk - multivariate survival models for times-to-default



Some Points in Favour...

e Copulas help in the understanding of dependence at a deeper level;

e They show us potential pitfalls of approaches to dependence that
focus only on correlation:;

e They allow us to define useful alternative dependence measures;

e They express dependence on a quantile scale, which is natural in
QRM;

e They facilitate a bottom-up approach to multivariate model
building;

e They are easily simulated and thus lend themselves to Monte Carlo
risk studies.



And Some Against...

Copulas are not universally popular among actuarial modellers; some
find they have little added value in the bigger picture of multivariate
stochastic models.

See | ] and | | for a lively
discussion. Main issues are:

e They are often applied very arbitrarily without justification for their
appropriateness.

e Too many choices - when do we use Gauss copulas t copulas,
Archimedean, or other copulas?

e Static representations of dependence that are not well connected
to the theory of multivariate stochastic processes.



What is a copula?

A copula is a multivariate distribution function with standard
uniform margins.

Equivalently, a copula if any function C : [0, 1]¢ — [0, 1] satisfying
the following properties:

1. C(u1,...,uq) =0 whenever u; = 0 for at least one : = 1,...,d.
2. C(1,...,1,u;1,...,1)=wu; foralli € {1,...,d}, u; € [0,1].

3. For all (a1,...,aq), (b1,...,bq) €[0,1]% with a; < b; we have:

2 2

Z . Z (—1)it -+ (... ugi) > 0,

=1 ig=1

where Uj1 = Q; and Ujo = bj for all 3 € {1, e ,d}



Sklar’s Theorem

Let F' be a joint distribution function with margins Fy, ..., Fy.
There exists a copula C' such that for all z1,...,z4 in [—00, 0]

F(xl, P ,SUd) — C(Fl(xl), c o ,Fd(ﬂfd)).

If the margins are continuous then C' is unique; otherwise C' is
uniquely determined on RanFj X RanFs... X RanFy.

And conversely, if C'is a copula and F1, ..., Fy are (arbitrary)
univariate distribution functions, then

C(Fl(il?l), ce 7Fd(xd)) — F(Cbl, ce ,CEd)

defines a d-dimensional multivariate df with margins Fy, ..., Fy.



Sklar’'s Theorem for survival functions

Let F' be a d-dimensional joint survival function with margins

Fi,...,F;. There exists a survival copula C such that for all
T1,...,Tq N |—00, 0C]
F(xy,...,xq) = C(Fi(1), ..., Fa(za)).

If the margins are continuous then C' is unique.

And conversely, if C'is a copula and Fi, ..., F; are (arbitrary)
univariate marginal survival functions, then

C(Fl(iljl), ce ,Fd(xd)) — F(xl, ce ,CEd)

defines a d-dimensional survival function with survival margins
i, ..., Fy.



The Fréchet-Hoeffding bounds

For every copula C'(uq,...,uq) we have the important bounds

d
maX{Zui—kld,O} < C(u) <min{uy,...,uq}. (1)
i=1

The upper bound is the df of (U,...,U). It represents perfect
positive dependence or comonotonicity and is often denoted M.

The lower bound is often denoted W but it is only a copula when

d = 2. It is the df of the vector (U,1 — U) and represents perfect
negative dependence or countermonotonicity.

d

The copula representing independence is C(uy,...,uq) = [ [,_; .



2. Archimedean copulas

A copula is called Archimedean if it can be written in the form

C(uh e 7ud) — ¢(¢_1(U1) T+ T ¢_1(Ud))

for some generator function ¢ and its inverse 1) ~1.

The generator 1 satisfies

e 1) :]0,00) — [0,1] with ¥)(0) =1 and lim,_, ¥(z) =0
e ) Is continuous

e 1) is strictly decreasing on [0, inf{u : ¥)(u) = 0}]

e Yy 10) = inf{u : ¢(u) = 0}



Clayton copula

1
Take ¢g(z) = (14 0x),° for 6 > —1-.
I I I I | o |

Generator and sample in case 0 = 1.
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Necessary and sufficient conditions

Ling (1965)

A generator 9 induces a bivariate copula if and only if 9 is convex.

[ ]

A generator 9 induces an Archimedean copula in any dimension if
and only if ¢ is completely monotone, i.e. ¥ € C°°(0,00) and
(—=D)kp)(2) >0 for k=1,....

[ ]

A generator 1 induces an Archimedean copula in dimension d if and
only if v is d-monotone, i.e. ¥ € C472(0,00) and (—1)¥yp*)(z) >0
forany k=1,...,d — 2 and (—1)972¢(?=2) is non-negative,
non-increasing and convex.
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Williamson Transforms and Simplex Distributions

1 is a d-monotone generator if and only if ¥ is the Williamson
d-transform of the df F' of a non-negative random variable R
satisfying F'r(0) = 0.

(1 - z) ! dFR(T)

r

() = WyFp(x) = /

(z,00)

The distribution of a non-negative random variable is uniquely given
by its Williamson d-transform. If ¢ = 2J,;Fr then

12



Relationship to Laplace Transform

lim WyFp(x) = dli_)ngo WeFr(r/d) = LI /r(T).

d— 00
Proof.

X

WaFir(x) = WeFRr (x/d) = /OOO (1 _ ﬁ) i‘l dFr(rT)

For fixed x > 0 and r > 0 we have that

| T\ d—1 €T
n(1-5)" ().
Jm (1) =ew ()

from which the result follows.
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Simplex distributions

Consider a non-negative random variable R with P(R =0) =0 and
a random vector S; independent of R and uniformly distributed on

Sdz{mGRi:xl—I—---—l—xdzl}

Then X d RS is said to have a simplex distribution.

Interpretation: R is a random amount of resources to be shared
out; S, represents random but equitable sharing; X are amounts
obtained by each individual.

14



Fundamental Theorem

(i) If X has a simplex distribution with radial distribution F'r satisfying
Fr(0) = 0, then X has an Archimedean survival copula with

generator ¢ = 0, F'i.

(ii)) If U is distributed as an Archimedean copula C with generator
), then (p=1(Uy), ... , 9 1(Uy)) has a simplex distribution with
radial distribution Fp = 20 1.

Proof sketch: (i) By direct calculation, survival function of X is
H(x) =(x1 + -+ x4) where ) = 0,FR is d-monotone
by | ]. X must have Archimedean survival copula.

(it) The survival function of (¢~ Y(U1), ..., HUy)) is also
H(x) = 9(x1 + - -+ x4), the survival function of a simplex

distribution. Must have (¢p=1(Uy), ..., v~ Y(Uy)) 4 RS, for some
R, and uniqueness of transform means F'r = Qﬁglw.

15



3. Examples

Gamma-simplex copulas.
Let R ~ Ga(f) with density fr(r) = r?~Lexp(—r)/T'(6).
This yields a copula family with generators

d—1 d—1—Fk d—1—Fk
Yo.qa(x) :;(d;1> (=1 r(0) I'k—d+60+1,x),

where I'(k,xz) = [ t*~le~!dt denotes the (upper) incomplete
gamma functlon

Special case.
When R ~ Ga(d) (an Erlang distribution) then 14 4 = exp(—z),
yielding the independence copula in dimension d.

16
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Examples Il

Inverse-gamma-simplex copulas.
Suppose 1/R ~ Ga(#) for some 6 > 0, so that R is inverse-gamma.

This yields

d—1 d—l—kxd—l—k
voatw) = 3= () a0 -k 117e),

where v(k,z) = ["t*"te~'dt denotes the (lower) incomplete
gamma function.

In this case § = d does not give independence.
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Examples Il

Pareto-simplex copulas.
If Fr(r)=1—r""forr > 1 and k > 0, we obtain

Vi.d(x) = k" "B(min(x, 1), K, d) ,

where B(x, «, ) denotes the incomplete beta function.

Inverse-Pareto-simplex copulas.
If fr(r) = kr®~! on the interval (0, 1], we obtain

Vr.ala Zf( ) Si:<<_1)f(2:')x z:#ﬁ;.
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The Frailty Subclass

Let v = 4 Fr for some random variable R satisfying Fir(0) =0
and let W, denote the class of completely monotone generators
(which generate copulas in any dimension). We may show that

beT, — R Z,/W

where W Is an almost surely positive random variable, independent
of Z4 ~ Erlang(d).

Proof

— If R d Zq/W we can show that Q,F'r = LFy which is
completely monotone by Bernstein's theorem.

— If b € U, then v = LFy for some W. If Z; ~ Erlang(d)
independent of W then ¢ = WyF; w. Since Wyl = WalFy, /w

the uniqueness of the Williamson transform implies R d Za/W .

21



The Frailty Subclass |l

e A d-dimensional copula with generator ¢y € V¥, Is known as a
frailty copula.

o Let R ~ Fg where Fr = Qﬂglw. Let W ~ Fy where Fy =
L7 1. The random vector X = RS, has a simplex distribution

: : : : d
with alternative stochastic representation X = Y /W where Y =
(Y1,...,Yy) is vector of iid unit exponential variables.

e This gives two ways of sampling the copula (using distribution of
R or distribution of W).

e The copula is the survival copula of any shared multiplicative frailty
model with frailty W.

22



Shared Frailty Model

Conditional on W = w assume that the lifetimes 17, ..., Ty are
independent with the hazard function for the ith individual given by
Ai(t,w) = wA;(t) for some underlying hazard \;(t). The lifetimes
(T1,...,Ty) are said to follow a multiplicative frailty model with
frailty W.

It is easily shown the survival copula of the distribution of
(T1,...,T;) is Archimedean with generator

Y(x) = LEFw(x) = E(exp(—axW).
e Widely used in multivariate survival analysis. | ]
e Application to survival of spouses.

e They have been used in CDO pricing models (“lifetimes” of
dependent bonds/credit risks).

23



4. Kendall’s tau

Apossible extension of Kendall's tau in dimension d > 2 is

2d
T(C) = 2d1_1/[O’l]dC’(ul,...,ud)dC(ul,...,ud) EETAEEET

[ ]

e Independence. When C'is the independence copula, [ CdC = 2—d
and 7(C') = 0.

e Comonotonicity. When C = M, the Fréchet-Hoeffding upper
bound copula, then [ MdM =271 and 7(M) = 1.

e Archimedean lower bound. Suppose C' = CCIZ‘, the survival copula
of Sy which has generator ¥¥(x) = (1 — x)‘fr_l. Then [ CdC =0
and 7(CY) = —1/(2¢71 —1).

24



New Formulas for Kendall’s tau |

Let C' be an Archimedean copula with generator 1 and radial part R.

24 1
Formula follows from observing that
24 1
where U = (Uy,...,Uy) ~ C.
_ _ d
C(U) =4~ (U1) + -9~ (Ua) = Y(R).

25



New Formulas for Kendall’s tau |l

Let Y = R/R* where R* is an independent copy of R.

7(C) =

2d

d—1
2d—1 _ 1E {(1 B Y)+ } S 2d-1_ 1

Follows from

E(1-Y) ! = /OOO /OOO (1-5) i_l AFn(s) dFn(r)

_ / " G(r) dFR(r) = EG(R)
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Kendall’s tau: Example

Kendall's tau depends on R through the ratio of radial variables Y:
Same formula for the gamma- and inverse-gamma-simplex copulas,
or for the Pareto- and inverse-Pareto-simplex copulas.

In latter case, for example, we obtain

2971k B(k,d) — 1

T(Ck.d) = Y

Both cases turn out to yield comprehensive families, giving all
correlations between the lower limit for Archimedean copulas
—1/(2971 — 1) and 1. Moreover they are negatively ordered (in
terms of Kendall's tau) by their parameter.

27



5. Liouville Copulas

Dirichlet distributions

Let Z = (Z4,...,Z4) be independent random variables such that
Z; ~ Gal(ay) for positive parameters s, ..., aq. Write a = Zle o,
1Z|| =3¢, Z; and D; = Z; /|| Z|| for 1 < i < d. Then

1. ||Z|| and (Dy,...,D4_1) are independent;

2. | Z]] ~ Ga(a);

3. the joint density of (D1,...,Dg4_1) is given by

ag—1
d—1 d

f(a:l,...,a:d_l) — CUaZ_l 1 —ZCI?] )
Hz 1 1,:1

where Zf:_lla:ig land x; >0fori=1,...,d— 1.

28



Liouville Distribution

Let Do, ..o, = (D1,...,Dg). The distribution of the random
vector (D1,...,Dg_1), or equivalently of D(,, . ), is known as a
Dirichlet distribution on the unit simplex &4, written

D(Oél,---,ad) ~ D(Ozl, e oey Ozd).

A random vector X on R% = [0, 00)? is said to follow a Liouville
distribution if it permits the stochastic representation

d
X — RD(Oél,...,Oéd)

where D, . o, ~ D(a1,...,aq) and R is a positive radial
random variable independent of D, . -

[ , ,
, , ]

The survival copula of X will be called a Liouville copula.

29



Liouville Distributions with Integer Parameters

Obviously simplex distributions are special cases of Liouville
distributions when oy = --- = ag = 1. So Archimedean copulas are
special cases of Liouville copulas.

If the parameters a, ..., g4 are positive integers then we can extend
the equitable resource sharing analogy to Liouville distributions. We
can think of individuals forming coalitions to pool their resources.

For example, suppose that X d RS3 and agents 1 and 2 form a
coalition and pool their resources. In effect we now consider the
random vector Y = (Y1,Y5), where Y7 = X7 + X5 and Yy = X,

which has the stochastic representation Y d RD 3 1).

30



Survival functions and Williamson Transforms

Let X be a Liouville distributed random vector with radial part R
and parameters (a1, ...,aq) such that a; e Nfori=1,...,d.

Furthermore, set o = Zle a; and Y(z) = W, Fr(x). Then the
survival function of X is given on x € Ri by

a1—1 ag—1 g
— Z e Z (—1)?31—|-"~—|—idw(11 7/d)(xl T CCd) H T
T IR
i1=0  iy=0 b tds =1

[ ]

If 1) is a-times differentiable then X has density

a;—1

d
() = (1)l [ =R
1=1

=

31



Marginal Distributions and Simulation

The marginal distributions are given by

=1, i ()
Hy(z)=1-)_ ( 1)333;,1& o) _ W, Y(x), =eRy.
j=0 |

Obviously, Liouville distributions are easy to sample. This means
that if we can compute the derivatives of the Williamson
a-transfrom of the radial part, we can generate samples from the
copula in the usual way:

1. Generate X = RD ... o,

2. Return (Hi(X1),..., Hy(X2)).

32



6. Examples

Gamma- and inverse-Gamma-Liouville copulas
Take R ~ Ga(f) or 1/R ~ Ga(0).
Clayton-Liouville

Let «q,...,aq be integer and consider a radial part whose
Williamson a-transform is given by

Yo(e) = WaFr(z) = (1+0z) /"

with § > —1/(a—1) and a = a1 + -+ + ag.

~

X := RS, has a a-dimensional simplex distribution with a Clayton
copula as survival copula and parameter 6. The Liouville random
vector X = RD ... .o, has a survival copula that we call a
Clayton—Liouville copula.
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Bivariate Clayton-Liouville Copula

Let a; = 1 and s = 2 and assume # > —1/2. Let R have
distribution function Fr = 205 "1y where 9p(x) = (1 + 0z)

The Liouville distribution of X = RD; 2y has survival function

H(z1,x2) = Yo(x1 + 22) (1 T 1+ H(ij T x2)>

The survival margins are

Hy(z) = vo(z)

and
Hy(x) = vg(x){1 +2/(1 + 6x)}.

~1/0
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Kendall’s tau

Kendall’s tau for Liouville copulas can be expressed in terms of the
ratio Y = R/R* between a radial variable R and an independent
copy R*. Consider bivariate case.

Let C' be a bivariate Liouville copula with radial part R and
parameters a; € N, 1 = 1,2. Let a = a1 + as. 7(C') is given by

a1—1 ag—1

j j (o E(Y 1_V .
1=0 7=0 1, Q2 Z']'F(&—Z—]) ( ) ( ) —

Example - Pareto-Liouville copulas. 7(C,; (4,.a,))

a1—1 as— 1

2/{;\7 B(ai + 1, a0 + 7)) (« )B(i+j—|—/<;,oz—z'—j)_1
B(ou, az)iljlT (v — i — j) |

1=0 7=0
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lllustrations
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Left plot shows 7(C\ (1,q)) as a function of \/x for
a €{1,2,3,4,5,10,15,20}; for fixed k the 7 values increase with «.

Right plot shows 7(C); (4.a)) as a function of /k for
a€ {1,2,3,4,5,6,7,8}; for fixed k the 7 values increase with a.
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