Copula Families that Generalise the Archimedean Class

Alexander J. McNeil

(joint work with Johanna Nešlehová)

Department of Actuarial Mathematics and Statistics Heriot-Watt University, Edinburgh

A.J.McNeil@hw.ac.uk www.ma.hw.ac.uk/~mcneil

Wirtschaftsuniversität Wien, 14th June 2013

Contents

- 1. Copulas
- 2. Archimedean Copulas
- 3. Examples
- 4. Kendall's tau
- 5. Liouville Copulas
- 6. Examples

1. Copulas

Copulas have found a variety of actuarial/financial applications:

- Life insurance models for joint (dependent) lives
- Non-life insurance loss distributions for multi-line insurance losses
- Risk aggregation models for combining loss distributions in a modular appproach to deriving risk capital
- Capital allocation models for disaggregating overall capital into contributions
- Market risk models for asset returns
- Credit risk multivariate survival models for times-to-default

Some Points in Favour...

- Copulas help in the understanding of dependence at a deeper level;
- They show us potential pitfalls of approaches to dependence that focus only on correlation;
- They allow us to define useful alternative dependence measures;
- They express dependence on a quantile scale, which is natural in QRM;
- They facilitate a bottom-up approach to multivariate model building;
- They are easily simulated and thus lend themselves to Monte Carlo risk studies.

And Some Against...

Copulas are not universally popular among actuarial modellers; some find they have little added value in the bigger picture of multivariate stochastic models.

See [Mikosch, 2006] and [Genest and Rémillard, 2006] for a lively discussion. Main issues are:

- They are often applied very arbitrarily without justification for their appropriateness.
- Too many choices when do we use Gauss copulas t copulas, Archimedean, or other copulas?
- Static representations of dependence that are not well connected to the theory of multivariate stochastic processes.

What is a copula?

A copula is a multivariate distribution function with standard uniform margins.

Equivalently, a copula if any function $C:[0,1]^d \to [0,1]$ satisfying the following properties:

- 1. $C(u_1,\ldots,u_d)=0$ whenever $u_i=0$ for at least one $i=1,\ldots,d$.
- 2. $C(1,\ldots,1,u_i,1,\ldots,1)=u_i$ for all $i\in\{1,\ldots,d\}$, $u_i\in[0,1]$.
- 3. For all $(a_1, \ldots, a_d), (b_1, \ldots, b_d) \in [0, 1]^d$ with $a_i \leq b_i$ we have:

$$\sum_{i_1=1}^{2} \cdots \sum_{i_d=1}^{2} (-1)^{i_1+\cdots+i_d} C(u_{1i_1}, \dots, u_{di_d}) \ge 0,$$

where $u_{j1} = a_j$ and $u_{j2} = b_j$ for all $j \in \{1, \ldots, d\}$.

Sklar's Theorem

Let F be a joint distribution function with margins F_1, \ldots, F_d . There exists a copula C such that for all x_1, \ldots, x_d in $[-\infty, \infty]$

$$F(x_1, \ldots, x_d) = C(F_1(x_1), \ldots, F_d(x_d)).$$

If the margins are continuous then C is unique; otherwise C is uniquely determined on $\text{Ran}F_1 \times \text{Ran}F_2 \dots \times \text{Ran}F_d$.

And conversely, if C is a copula and F_1, \ldots, F_d are (arbitrary) univariate distribution functions, then

$$C(F_1(x_1),\ldots,F_d(x_d)) \equiv F(x_1,\ldots,x_d)$$

defines a d-dimensional multivariate df with margins F_1, \ldots, F_d .

Sklar's Theorem for survival functions

Let \bar{F} be a d-dimensional joint survival function with margins $\bar{F}_1,\ldots,\bar{F}_d$. There exists a survival copula \bar{C} such that for all x_1,\ldots,x_d in $[-\infty,\infty]$

$$\bar{F}(x_1, \dots, x_d) = \bar{C}(\bar{F}_1(x_1), \dots, \bar{F}_d(x_d)).$$

If the margins are continuous then $ar{C}$ is unique.

And conversely, if \bar{C} is a copula and $\bar{F}_1, \ldots, \bar{F}_d$ are (arbitrary) univariate marginal survival functions, then

$$\bar{C}(\bar{F}_1(x_1),\ldots,\bar{F}_d(x_d)) \equiv \bar{F}(x_1,\ldots,x_d)$$

defines a d-dimensional survival function with survival margins $\bar{F}_1, \ldots, \bar{F}_d$.

The Fréchet-Hoeffding bounds

For every copula $C(u_1, \ldots, u_d)$ we have the important bounds

$$\max \left\{ \sum_{i=1}^{d} u_i + 1 - d, 0 \right\} \le C(\mathbf{u}) \le \min \left\{ u_1, \dots, u_d \right\}. \tag{1}$$

The upper bound is the df of (U, \ldots, U) . It represents perfect positive dependence or comonotonicity and is often denoted M.

The lower bound is often denoted W but it is only a copula when d=2. It is the df of the vector (U,1-U) and represents perfect negative dependence or countermonotonicity.

The copula representing independence is $C(u_1, \ldots, u_d) = \prod_{i=1}^d u_i$.

2. Archimedean copulas

A copula is called Archimedean if it can be written in the form

$$C(u_1, \dots, u_d) = \psi(\psi^{-1}(u_1) + \dots + \psi^{-1}(u_d))$$

for some generator function ψ and its inverse ψ^{-1} .

The generator ψ satisfies

- $\psi:[0,\infty)\to[0,1]$ with $\psi(0)=1$ and $\lim_{x\to\infty}\psi(x)=0$
- ullet ψ is continuous
- ψ is strictly decreasing on $[0, \inf\{u : \psi(u) = 0\}]$
- $\psi^{-1}(0) = \inf\{u : \psi(u) = 0\}$

Clayton copula

Take
$$\psi_{\theta}(x) = (1 + \theta x)_{+}^{-\frac{1}{\theta}}$$
 for $\theta \ge -\frac{1}{d-1}$.

Generator and sample in case $\theta = 1$.

Necessary and sufficient conditions

Ling (1965)

A generator ψ induces a bivariate copula if and only if ψ is convex.

[Kimberling, 1974]

A generator ψ induces an Archimedean copula in any dimension if and only if ψ is completely monotone, i.e. $\psi \in C^{\infty}(0,\infty)$ and $(-1)^k \psi^{(k)}(x) \geq 0$ for $k=1,\ldots$

[McNeil and Nešlehová, 2009b]

A generator ψ induces an Archimedean copula in dimension d if and only if ψ is d-monotone, i.e. $\psi \in C^{d-2}(0,\infty)$ and $(-1)^k \psi^{(k)}(x) \geq 0$ for any $k=1,\ldots,d-2$ and $(-1)^{d-2} \psi^{(d-2)}$ is non-negative, non-increasing and convex.

Williamson Transforms and Simplex Distributions

 ψ is a d-monotone generator if and only if ψ is the Williamson d-transform of the df F of a non-negative random variable R satisfying $F_R(0)=0$.

$$\psi(x) = \mathfrak{W}_d F_R(x) = \int_{(x,\infty)} \left(1 - \frac{x}{r}\right)^{d-1} dF_R(r)$$

The distribution of a non-negative random variable is uniquely given by its Williamson d-transform. If $\psi = \mathfrak{W}_d F_R$ then

$$F_R(x) = 1 - \sum_{k=0}^{d-2} \frac{(-1)^k x^k \psi^{(k)}(x)}{k!} - \frac{(-1)^{d-1} x^{d-1} \psi_+^{(d-1)}(x)}{(d-1)!}.$$

[Williamson, 1956]

Relationship to Laplace Transform

$$\lim_{d\to\infty} \mathfrak{W}_d F_{dR}(x) = \lim_{d\to\infty} \mathfrak{W}_d F_R(x/d) = \mathcal{L} F_{1/R}(x).$$

Proof.

$$\mathfrak{W}_d F_{dR}(x) = \mathfrak{W}_d F_R(x/d) = \int_0^\infty \left(1 - \frac{x}{rd}\right)_+^{d-1} dF_R(r)$$

For fixed $x \ge 0$ and r > 0 we have that

$$\lim_{d \to \infty} \left(1 - \frac{x}{rd} \right)_{+}^{d-1} = \exp\left(-\frac{x}{r} \right) ,$$

from which the result follows.

Simplex distributions

Consider a non-negative random variable R with $\mathsf{P}(R=0)=0$ and a random vector \boldsymbol{S}_d independent of R and uniformly distributed on

$$\mathcal{S}_d = \left\{ \boldsymbol{x} \in \mathbb{R}^d_+ : x_1 + \dots + x_d = 1 \right\}$$

Then $X \stackrel{d}{=} RS_d$ is said to have a simplex distribution.

Interpretation: R is a random amount of resources to be shared out; S_d represents random but equitable sharing; X are amounts obtained by each individual.

Fundamental Theorem

- (i) If X has a simplex distribution with radial distribution F_R satisfying $F_R(0)=0$, then X has an Archimedean survival copula with generator $\psi=\mathfrak{W}_dF_R$.
- (ii) If U is distributed as an Archimedean copula C with generator ψ , then $(\psi^{-1}(U_1), \ldots, \psi^{-1}(U_d))$ has a simplex distribution with radial distribution $F_R = \mathfrak{W}_d^{-1}\psi$.

Proof sketch: (i) By direct calculation, survival function of X is $\bar{H}(\mathbf{x}) = \psi(x_1 + \dots + x_d)$ where $\psi = \mathfrak{W}_d F_R$ is d-monotone by [Williamson, 1956]. X must have Archimedean survival copula. (ii) The survival function of $(\psi^{-1}(U_1), \dots, \psi^{-1}(U_d))$ is also $\bar{H}(\mathbf{x}) = \psi(x_1 + \dots + x_d)$, the survival function of a simplex distribution. Must have $(\psi^{-1}(U_1), \dots, \psi^{-1}(U_d)) \stackrel{\mathsf{d}}{=} RS_d$, for some R, and uniqueness of transform means $F_R = \mathfrak{W}_d^{-1}\psi$.

3. Examples

Gamma-simplex copulas.

Let $R \sim \text{Ga}(\theta)$ with density $f_R(r) = r^{\theta-1} \exp(-r)/\Gamma(\theta)$. This yields a copula family with generators

$$\psi_{\theta,d}(x) = \sum_{k=0}^{d-1} {d-1 \choose k} \frac{(-1)^{d-1-k} x^{d-1-k}}{\Gamma(\theta)} \Gamma(k-d+\theta+1,x),$$

where $\Gamma(k,x)=\int_x^\infty t^{k-1}e^{-t}\,dt$ denotes the (upper) incomplete gamma function.

Special case.

When $R \sim \text{Ga}(d)$ (an Erlang distribution) then $\psi_{d,d} = \exp(-x)$, yielding the independence copula in dimension d.

Pictures

Left: gamma-simplex. Right: inverse-gamma-simplex. Upper copulas have $\theta=0.3$; lower pictures have $\theta=2$.

Examples II

Inverse-gamma-simplex copulas.

Suppose $1/R \sim \mathrm{Ga}(\theta)$ for some $\theta > 0$, so that R is inverse-gamma. This yields

$$\psi_{\theta,d}(x) = \sum_{k=0}^{d-1} {d-1 \choose k} \frac{(-1)^{d-1-k} x^{d-1-k}}{\Gamma(\theta)} \gamma(d+\theta-k-1,1/x),$$

where $\gamma(k,x) = \int_0^x t^{k-1} e^{-t} dt$ denotes the (lower) incomplete gamma function.

In this case $\theta = d$ does not give independence.

Examples III

Pareto-simplex copulas.

If $F_R(r) = 1 - r^{-\kappa}$ for $r \ge 1$ and $\kappa > 0$, we obtain

$$\psi_{\kappa,d}(x) = \kappa x^{-\kappa} B(\min(x,1), \kappa, d) ,$$

where $B(x, \alpha, \beta)$ denotes the incomplete beta function.

Inverse-Pareto-simplex copulas.

If $f_R(r) = \kappa r^{\kappa-1}$ on the interval (0,1], we obtain

$$\psi_{\kappa,d}(x) = \kappa \sum_{i=0}^{d-1} {d-1 \choose i} S_i, \quad S_i = \begin{cases} (-1)^i \left(\frac{x^{\kappa} - x^i}{i - \kappa}\right) & i \neq \kappa \\ (-1)^{i+1} x^{\kappa} \ln(x) & i = \kappa \end{cases}.$$

Pictures II

Left: Pareto-simplex. Right: inverse-Pareto-simplex. Upper copulas have $\theta=0.3$; lower pictures have $\theta=4.5$.

The Frailty Subclass

Let $\psi = \mathfrak{W}_d F_R$ for some random variable R satisfying $F_R(0) = 0$ and let Ψ_{∞} denote the class of completely monotone generators (which generate copulas in any dimension). We may show that

$$\psi \in \Psi_{\infty} \iff R \stackrel{\mathsf{d}}{=} Z_d / W$$

where W is an almost surely positive random variable, independent of $Z_d \sim \operatorname{Erlang}(d)$.

Proof

 \Leftarrow If $R \stackrel{d}{=} Z_d/W$ we can show that $\mathfrak{W}_dF_R = \mathcal{L}F_W$ which is completely monotone by Bernstein's theorem.

 \Longrightarrow If $\psi \in \Psi_{\infty}$ then $\psi = \mathcal{L}F_W$ for some W. If $Z_d \sim \operatorname{Erlang}(d)$ independent of W then $\psi = \mathfrak{W}_d F_{Z_d/W}$. Since $\mathfrak{W}_d F_R = \mathfrak{W}_d F_{Z_d/W}$ the uniqueness of the Williamson transform implies $R \stackrel{\mathsf{d}}{=} Z_d/W$.

The Frailty Subclass II

- A d-dimensional copula with generator $\psi \in \Psi_{\infty}$ is known as a frailty copula.
- Let $R \sim F_R$ where $F_R = \mathfrak{W}_d^{-1}\psi$. Let $W \sim F_W$ where $F_W = \mathcal{L}^{-1}\psi$. The random vector $\mathbf{X} = R\mathbf{S}_d$ has a simplex distribution with alternative stochastic representation $\mathbf{X} \stackrel{\mathsf{d}}{=} \mathbf{Y}/W$ where $\mathbf{Y} = (Y_1, \dots, Y_d)$ is vector of iid unit exponential variables.
- This gives two ways of sampling the copula (using distribution of R or distribution of W).
- The copula is the survival copula of any shared multiplicative frailty model with frailty W.

Shared Frailty Model

Conditional on W=w assume that the lifetimes T_1,\ldots,T_d are independent with the hazard function for the ith individual given by $\lambda_i(t,w)=w\lambda_i(t)$ for some underlying hazard $\lambda_i(t)$. The lifetimes (T_1,\ldots,T_d) are said to follow a multiplicative frailty model with frailty W.

It is easily shown the survival copula of the distribution of (T_1, \ldots, T_d) is Archimedean with generator $\psi(x) = \mathcal{L}F_W(x) = E(\exp(-xW).$

- Widely used in multivariate survival analysis. [Hougaard, 2000]
- Application to survival of spouses.
- They have been used in CDO pricing models ("lifetimes" of dependent bonds/credit risks).

4. Kendall's tau

Apossible extension of Kendall's tau in dimension $d \geq 2$ is

$$\tau(C) = \frac{2^d}{2^{d-1} - 1} \int_{[0,1]^d} C(u_1, \dots, u_d) dC(u_1, \dots, u_d) - \frac{1}{2^{d-1} - 1}.$$

[Joe, 1990]

- Independence. When C is the independence copula, $\int C dC = 2^{-d}$ and $\tau(C) = 0$.
- Comonotonicity. When C=M, the Fréchet-Hoeffding upper bound copula, then $\int M dM = 2^{-1}$ and $\tau(M)=1$.
- Archimedean lower bound. Suppose $C = C_d^{\mathbf{L}}$, the survival copula of \mathbf{S}_d which has generator $\psi_d^{\mathbf{L}}(x) = (1-x)_+^{d-1}$. Then $\int C dC = 0$ and $\tau(C_d^{\mathbf{L}}) = -1/(2^{d-1}-1)$.

New Formulas for Kendall's tau I

Let C be an Archimedean copula with generator ψ and radial part R.

$$\tau(C) = \frac{2^d}{2^{d-1} - 1} E\psi(R) - \frac{1}{2^{d-1} - 1}$$

Formula follows from observing that

$$\tau(C) = \frac{2^d}{2^{d-1} - 1} E(C(\mathbf{U})) - \frac{1}{2^{d-1} - 1}.$$

where $\mathbf{U} = (U_1, \dots, U_d) \sim C$.

$$C(\mathbf{U}) = \psi(\psi^{-1}(U_1) + \cdots \psi^{-1}(U_d)) \stackrel{\mathsf{d}}{=} \psi(R).$$

New Formulas for Kendall's tau II

Let $Y = R/R^*$ where R^* is an independent copy of R.

$$\tau(C) = \frac{2^d}{2^{d-1} - 1} E\left\{ (1 - Y)_+^{d-1} \right\} - \frac{1}{2^{d-1} - 1}$$

Follows from

$$E(1-Y)_{+}^{d-1} = \int_{0}^{\infty} \int_{0}^{\infty} \left(1 - \frac{r}{s}\right)_{+}^{d-1} dF_{R}(s) dF_{R}(r)$$
$$= \int_{0}^{\infty} \psi(r) dF_{R}(r) = E\psi(R).$$

Kendall's tau: Example

Kendall's tau depends on R through the ratio of radial variables Y: Same formula for the gamma- and inverse-gamma-simplex copulas, or for the Pareto- and inverse-Pareto-simplex copulas.

In latter case, for example, we obtain

$$\tau(C_{\kappa,d}) = \frac{2^{d-1} \kappa B(\kappa,d) - 1}{2^{d-1} - 1}.$$

Both cases turn out to yield comprehensive families, giving all correlations between the lower limit for Archimedean copulas $-1/(2^{d-1}-1)$ and 1. Moreover they are negatively ordered (in terms of Kendall's tau) by their parameter.

5. Liouville Copulas

Dirichlet distributions

Let $\boldsymbol{Z}=(Z_1,\ldots,Z_d)$ be independent random variables such that $Z_i \sim \operatorname{Ga}(\alpha_i)$ for positive parameters α_1,\ldots,α_d . Write $\alpha = \sum_{i=1}^d \alpha_i$, $\|\boldsymbol{Z}\| = \sum_{i=1}^d Z_i$ and $D_i = Z_i/\|\boldsymbol{Z}\|$ for $1 \leq i \leq d$. Then

- 1. $\|\boldsymbol{Z}\|$ and (D_1,\ldots,D_{d-1}) are independent;
- 2. $\|Z\| \sim Ga(\alpha)$;
- 3. the joint density of (D_1, \ldots, D_{d-1}) is given by

$$f(x_1, \dots, x_{d-1}) = \frac{\Gamma(\alpha)}{\prod_{i=1}^d \Gamma(\alpha_i)} \prod_{i=1}^{d-1} x_i^{\alpha_i - 1} \left(1 - \sum_{j=1}^{d-1} x_j \right)^{\alpha_d - 1},$$

where $\sum_{i=1}^{d-1} x_i \leq 1$ and $x_i \geq 0$ for $i = 1, \ldots, d-1$.

Liouville Distribution

Let $D_{(\alpha_1,...,\alpha_d)} = (D_1,...,D_d)$. The distribution of the random vector $(D_1,...,D_{d-1})$, or equivalently of $\mathbf{D}_{(\alpha_1,...,\alpha_d)}$, is known as a Dirichlet distribution on the unit simplex \mathcal{S}_d , written $\mathbf{D}_{(\alpha_1,...,\alpha_d)} \sim D(\alpha_1,...,\alpha_d)$.

A random vector X on $\mathbb{R}^d_+ = [0, \infty)^d$ is said to follow a Liouville distribution if it permits the stochastic representation

$$\boldsymbol{X} \stackrel{\mathsf{d}}{=} R\boldsymbol{D}_{(\alpha_1,...,\alpha_d)}$$

where $D_{(\alpha_1,...,\alpha_d)} \sim D(\alpha_1,...,\alpha_d)$ and R is a positive radial random variable independent of $D_{(\alpha_1,...,\alpha_d)}$.

[Marshall and Olkin, 1979, Gupta and Richards, 1997, Gupta and Richards, 1987, Song and Gupta, 1997, Fang et al., 1990]

The survival copula of X will be called a Liouville copula.

Liouville Distributions with Integer Parameters

Obviously simplex distributions are special cases of Liouville distributions when $\alpha_1 = \cdots = \alpha_d = 1$. So Archimedean copulas are special cases of Liouville copulas.

If the parameters $\alpha_1, \ldots, \alpha_d$ are positive integers then we can extend the equitable resource sharing analogy to Liouville distributions. We can think of individuals forming coalitions to pool their resources.

For example, suppose that $\mathbf{X} \stackrel{\mathsf{d}}{=} R\mathbf{S}_3$ and agents 1 and 2 form a coalition and pool their resources. In effect we now consider the random vector $\mathbf{Y} = (Y_1, Y_2)$, where $Y_1 = X_1 + X_2$ and $Y_2 = X_3$, which has the stochastic representation $\mathbf{Y} \stackrel{\mathsf{d}}{=} R\mathbf{D}_{(2,1)}$.

Survival functions and Williamson Transforms

Let \boldsymbol{X} be a Liouville distributed random vector with radial part R and parameters $(\alpha_1,\ldots,\alpha_d)$ such that $\alpha_i\in\mathbb{N}$ for $i=1,\ldots,d$. Furthermore, set $\alpha=\sum_{i=1}^d\alpha_i$ and $\psi(x)=\mathfrak{W}_{\alpha}F_R(x)$. Then the survival function of \boldsymbol{X} is given on $\boldsymbol{x}\in\mathbb{R}_+^d$ by

$$\bar{H}(\boldsymbol{x}) = \sum_{i_1=0}^{\alpha_1-1} \cdots \sum_{i_d=0}^{\alpha_d-1} (-1)^{i_1+\cdots+i_d} \frac{\psi^{(i_1+\cdots+i_d)}(x_1+\cdots+x_d)}{i_1!\cdots i_d!} \prod_{j=1}^d x_j^{i_j}.$$

[McNeil and Nešlehová, 2009a]

If ψ is α -times differentiable then ${m X}$ has density

$$h(\boldsymbol{x}) = (-1)^{\alpha} \psi^{(\alpha)}(\|\boldsymbol{x}\|) \prod_{i=1}^{d} \frac{x_i^{\alpha_i - 1}}{\Gamma(\alpha_i)}, \quad \boldsymbol{x} \in \mathbb{R}_+^d.$$

Marginal Distributions and Simulation

The marginal distributions are given by

$$H_i(x) = 1 - \sum_{j=0}^{\alpha_i - 1} \frac{(-1)^j x^j \psi^{(j)}(x)}{j!} = \mathfrak{W}_{\alpha_i}^{-1} \psi(x), \quad x \in \mathbb{R}_+.$$

Obviously, Liouville distributions are easy to sample. This means that if we can compute the derivatives of the Williamson α -transfrom of the radial part, we can generate samples from the copula in the usual way:

- 1. Generate $\boldsymbol{X} = R\boldsymbol{D}_{(\alpha_1,...,\alpha_d)}$.
- 2. Return $(H_1(X_1), \ldots, H_d(X_d))$.

6. Examples

Gamma- and inverse-Gamma-Liouville copulas

Take $R \sim \text{Ga}(\theta)$ or $1/R \sim \text{Ga}(\theta)$.

Clayton-Liouville

Let $\alpha_1, \ldots, \alpha_d$ be integer and consider a radial part whose Williamson α -transform is given by

$$\psi_{\theta}(x) = \mathfrak{W}_{\alpha} F_R(x) = (1 + \theta x)_{+}^{-1/\theta},$$

with $\theta \ge -1/(\alpha - 1)$ and $\alpha = \alpha_1 + \cdots + \alpha_d$.

 $\tilde{\mathbf{X}} := R\mathbf{S}_{\alpha}$ has a α -dimensional simplex distribution with a Clayton copula as survival copula and parameter θ . The Liouville random vector $\mathbf{X} = R\mathbf{D}_{(\alpha_1, \dots, \alpha_d)}$ has a survival copula that we call a Clayton–Liouville copula.

Gamma-Liouville

2000 points from a 3-dimensional gamma-Liouville copula with $\theta=0.6$ and $(\alpha_1,\alpha_2,\alpha_3)=(1,5,20)$.

Inverse-Gamma-Liouville

2000 points from a 3-dimensional inverse-gamma-Liouville copula with $\theta=0.6$ and $(\alpha_1,\alpha_2,\alpha_3)=(1,5,20)$.

Bivariate Clayton-Liouville Copula

Let $\alpha_1=1$ and $\alpha_2=2$ and assume $\theta \geq -1/2$. Let R have distribution function $F_R=\mathfrak{W}_3^{-1}\psi_\theta$ where $\psi_\theta(x)=(1+\theta x)_+^{-1/\theta}$.

The Liouville distribution of $\mathbf{X} = R\mathbf{D}_{(1,2)}$ has survival function

$$\bar{H}(x_1, x_2) = \psi_{\theta}(x_1 + x_2) \left(1 + \frac{x_2}{1 + \theta(x_1 + x_2)} \right)$$
.

The survival margins are

$$\bar{H}_1(x) = \psi_{\theta}(x)$$

and

$$\bar{H}_2(x) = \psi_{\theta}(x)\{1 + x/(1 + \theta x)\}.$$

Kendall's tau

Kendall's tau for Liouville copulas can be expressed in terms of the ratio $Y=R/R^*$ between a radial variable R and an independent copy R^* . Consider bivariate case.

Let C be a bivariate Liouville copula with radial part R and parameters $\alpha_i \in \mathbb{N}$, i = 1, 2. Let $\alpha = \alpha_1 + \alpha_2$. $\tau(C)$ is given by

$$4\sum_{i=0}^{\alpha_1-1}\sum_{j=0}^{\alpha_2-1}\frac{B(\alpha_1+i,\alpha_2+j)\Gamma(\alpha)}{B(\alpha_1,\alpha_2)i!j!\Gamma(\alpha-i-j)}E\left\{(Y)^{i+j}(1-Y)_+^{\alpha-i-j-1}\right\}-1.$$

Example - Pareto-Liouville copulas. $\tau(C_{\kappa,(\alpha_1,\alpha_2)})$

$$2\kappa \sum_{i=0}^{\alpha_1-1} \sum_{j=0}^{\alpha_2-1} \frac{B(\alpha_1+i,\alpha_2+j)\Gamma(\alpha)B(i+j+\kappa,\alpha-i-j)}{B(\alpha_1,\alpha_2)i!j!\Gamma(\alpha-i-j)} - 1.$$

Illustrations

Left plot shows $\tau(C_{\kappa,(1,\alpha)})$ as a function of $\sqrt{\kappa}$ for $\alpha \in \{1,2,3,4,5,10,15,20\}$; for fixed κ the τ values increase with α .

Right plot shows $\tau(C_{\kappa,(\alpha,\alpha)})$ as a function of $\sqrt{\kappa}$ for $\alpha \in \{1,2,3,4,5,6,7,8\}$; for fixed κ the τ values increase with α .

References

[Fang et al., 1990] Fang, K.-T., Kotz, S., and Ng, K.-W. (1990). Symmetric Multivariate and Related Distributions. Chapman & Hall, London.

[Genest and Rémillard, 2006] Genest, C. and Rémillard, B. (2006). Discussion of "Copulas: Tales and Facts" by Thomas Mikosch. *Extremes*, 9(1):27–36.

[Gupta and Richards, 1987] Gupta, R. D. and Richards, D. S. P. (1987). Multivariate Liouville distributions. *J. Multivariate Anal.*, 23(2):233–256.

[Gupta and Richards, 1997] Gupta, R. D. and Richards, D. S. P. (1997). Multivariate Liouville distributions. V. In *Advances in the*

Theory and Practice of Statistics, Wiley Ser. Probab. Statist. Appl. Probab. Statist., pages 377–396. Wiley, New York.

[Hougaard, 2000] Hougaard, P. (2000). *Analysis of Multivariate Survival data*. Springer, New York.

[Joe, 1990] Joe, H. (1990). Multivariate concordance. *J. Multivariate Anal.*, 35(1):12–30.

[Kimberling, 1974] Kimberling, C. (1974). A probabilistic interpretation of complete monotonicity. *Aequationes Math.*, 10:152–164.

[Marshall and Olkin, 1979] Marshall, A. W. and Olkin, I. (1979). Inequalities: Theory of Majorization and its Applications, volume 143 of Mathematics in Science and Engineering. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York.

- [McNeil and Nešlehová, 2009a] McNeil, A. and Nešlehová, J. (2009a). From Archimedean to Liouville distributions. to appear.
- [McNeil and Nešlehová, 2009b] McNeil, A. and Nešlehová, J. (2009b). Multivariate Archimedean copulas, d-monotone functions and ℓ_1 -norm symmetric distributions. Annals of Statistics, 37(5b):3059–3097.
- [Mikosch, 2006] Mikosch, T. (2006). Copulas: Tales and facts. Extremes, 9(1):21-22.
- [Song and Gupta, 1997] Song, D. and Gupta, A. K. (1997). Properties of generalized Liouville distributions. *Random Oper. Stochastic Equations*, 5(4):337–348.
- [Williamson, 1956] Williamson, R. (1956). Multiply monotone

functions and their Laplace transforms. *Duke Mathematics Journal*, 23:189–207.