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Outline

• Selective historical overview of some important and/or
interesting contributions to the literature about latent
variable analysis of multivariate categorical responses

• Summary of main ideas, suppressing details

• Caveat: Enormous literature, so survey is highly selective.
Examples selected shaped by my revision work on
Categorical Data Analysis, 3rd edition (2013).

• Observed variables categorical, but latent variable can be
discrete (i.e., latent “classes”) or continuous.
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Paul Lazarsfeld (1901-1976): Latent structure analysis

Lazarsfeld (1950) introduces latent class model, treating a
contingency table as a finite mixture of unobserved tables
generated under a conditional independence structure.

For categorical (Y1, Y2, . . . , YT ), model assumes latent
categorical Z such that for each possible sequence (y1, . . . , yT )
and each category z of Z,

P (Y1 = y1, . . . , YT = yT | Z = z)

= P (Y1 = y1 | Z = z) · · ·P (YT = yT | Z = z).

Model receives more attention after Latent Structure Analysis
text written by Lazarsfeld and Henry (1968).
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Latent class models: “Local independence”

L & H, p. 22: “The defining characteristic of the latent structure
models is the axiom of local independence.”

Within a latent class, responses to different items are
independent.

Model fitting? “Accounting equations” (apparently suggested by
Mosteller) equate relative frequencies to corresponding marginal
probabilities of various orders. Iterative solution using
“determinantal method” approximates minimum chi-squared
(BAN) estimates.

Anderson (1954) shows asymptotic properties, also in L & H.

p. 13: When {Yt} have > 2 categories, the model has so many
restrictions that its practical application seems doubtful.
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Neil Henry: e-mail May 15, 2012

“While Lazarsfeld was many things, he was not a
statistician. The people he had working on LSA with
him were sociology students with mathematical
abilities, but no interest in inferential statistics. ... The
papers, mostly unpublished, that I inherited in 1960
were full of these accounting equation solution
techniques. Eventually I learned enough history to
realize that he had adopted Karl Pearson’s ‘method of
moments’ technique of estimation.

MLE was impossible (as a practical estimation
technique) in the 40s and 50s, of course.”
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Leo Goodman: EM algorithm for ML fitting

Goodman (1974) shows how to fit basic latent class model
(discrete latent variable) using maximum likelihood (ML)

• Uses EM algorithm, treating data on Z as missing.

• The E (expectation) step in each iteration calculates
pseudo-counts for the unobserved table using working
conditional distribution for (Z | Y1, . . . , YT ).

• The M (maximization) step treats pseudo counts as data
and maximizes the pseudo-likelihood, by fitting the loglinear
model of conditional independence (given the latent
classes) symbolized by marginal sufficient statistics
(Y1Z, Y2Z, . . . , YTZ).

• This is an early application of EM, three years before the
classic JRSS-B paper by Dempster, Laird, and Rubin.
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The EM algorithm for ML fitting (continued)

• EM algorithm is computationally simple and stable, and
each iteration increases the likelihood.

• However, convergence can be very slow.

• Later methods also include use of Newton-Raphson
algorithm (e.g., Haberman 1988 Sociol. Methodology ).

• Some software (e.g., Latent GOLD) uses EM at first, then
switches to Newton-Raphson to speed convergence.

• Problematic issues: log likelihood can have local maxima
(especially as number of latent classes increases), and with
complex models, identifiability is an issue.
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Extension: Using Goodman association models

• Goodman (1979) proposes models that provide structured
associations between ordinal variables.

• e.g., uniform association model: For expected frequencies
{µij} in two-way contingency table,

log µij = λ+ λX
i + λY

j + βuivj

Equally-spaced scores (e.g., {ui = i} and {vj = j}) imply
common value of local odds ratios

(µijµi+1,j+1)/(µi,j+1µi+1,j) = exp(β)

for pairs of adjacent rows and adjacent columns.

• Goodman (1981) and others showed such association
models and their multivariate generalizations fit well when
there is underlying multivariate normal distribution.
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Example: Association models with latent classes

With ordinal data, seems natural to have ordered latent classes
also, such as by assuming uniform association between them
and each response.

Agresti and Lang (1993) modeled agreement among many
raters evaluating carcinoma with exchangeble model having
same β between each ordinal variable and the latent variable.

Model parameters describe two components of agreement:

– Strength of association between classifications by pairs of
raters (governed by size of β)

– Heterogeneity among observers’ rating distributions

Solution with 3 latent classes may reflect
Class 1: rater agreement that carcinoma = yes
Class 2: strong disagreement (some raters yes, some no)
Class 3: rater agreement that carcinoma = no
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Rasch model: Continuous latent variables

• Rasch model is an item response model for a binary
response. For subject i with item t

logit[P (Yit = 1 | ui)] = ui + βt,

with ui a latent “ability” measure for subject i.
• Rasch (1961): {ui} fixed, eliminated using conditional ML.
• Tjur (1982): Averaging over ui in nonparametric manner,

Rasch model for T items implies quasi-symmetry (QS)
loglinear model for observed 2T table. {β̂t} for QS identical
to conditional ML estimates for Rasch model.

• Much literature over the years by Hatzinger, Dittrich and
colleagues about IRT – loglinear connections.

• Analogs for ordinal IRT models and corresponding ordinal
QS loglinear models (e.g., Agresti 1993).
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Rasch mixture model for latent abilities

• In Rasch model logit[P (Yit = 1|ui)] = ui + βt, often {ui} is
now treated parametrically, e.g. N(0, σ2).

• Lindsay, Clogg, and Grego (1991) instead treat ui
nonparametrically, with finite number q of values,

P (U = ak) = ρk, k = 1, . . . , q,

for unknown q, {ak} and {ρk} (Rasch mixture model).

• Likelihood increases in q, but reaches maximum when
q = (T + 1)/2.
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Other latent variable extensions

• Bartholomew constructed general latent variable models for
categorical responses, in analogy with factor analysis.
“Factor analysis for categorical data”
(J. Roy. Statist. Soc. B, 1980)
“Latent variable models for ordered categorical data”
(J. Econometrics, 1983).

• These and Christoffersen (1975), Muthén (1977) induce
extensive “latent trait” literature in psychometrics that grows
together with item response literature in educational
statistics.

• For recent survey, see Bartholomew, Knott, and Moustaki,
Latent Variable Models and Factor Analysis: A Unified
Approach, 3rd ed. (2011).
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Latent mixture for summarizing goodness of fit

• For a model, with sufficiently large n, traditional
goodness-of-fit statistics (e.g., chi-squared) reject a model
even if in practical terms the lack of fit is unimportant.

• Rudas, Clogg, and Lindsay (1994): For a model for a
contingency table with true probabilities π, express

π = (1− ρ)π1 + ρπ2,

with π1 the model-based probabilities and π2 unconstrained.

• Index of lack of fit is the smallest such ρ possible for which
this holds (i.e., fraction of population that cannot be
described by the model).

• Recognizes George Box’s quote that “All models are wrong,
but some are useful.” Useful means ρ close to 0.
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Latent mixing of logistic regression

Follman and Lambert (1989) analyzed effect of dosage of
poison on probability of death of protozoan of a particular genus

Poison Poison

Dose Exposed Dead Dose Exposed Dead

4.7 55 0 5.1 53 22

4.8 49 8 5.2 53 37

4.9 60 18 5.3 51 47

5.0 55 18 5.4 50 50
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Latent mixing of logistic regression (continued)

– For πi(x) = probability of death at log dose level x for genus
type i, i = 1, 2, and ρ = probability a protozoan belongs to
genus type 1 (unknown),

π(x) = ρπ1(x)+(1−ρ)π2(x), where logit[πi(x)] = αi+βx.

– Curve for π(x) is weighted average of two curves having same
logistic shapes but different intercepts.

Deviance decreases by 21.3 (df = 2) compared to single logistic
regression curve.

(Decreases by only 1.7 when take normal mixture.)
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The two separate logistic regression curves
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Mixture of two logistic regression curves
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Count data latent variable model

• Lambert (1992) also proposed zero-inflated Poisson (ZIP)
regression model, for applications in which some
observations must be zero and others are zero just by
chance.

(e.g., number of times went to gym in last week,
frequency of sexual intercourse in past month,
number of papers professors publish in a year)

• For overdispersed data, alternative to ZIP model is
zero-inflated negative binomial (Greene, 1994).

• Alternative hurdle model (Mullahy 1986) has logistic model
for (zero, positive) outcome and truncated count-data model
for positive counts.
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Generalized linear mixed models (GLMM)

• Pierce and Sands (1975) proposed logistic regression with
a random intercept, assumed to be normally distributed, in
never published Oregon State technical report on
“Extra-Bernoulli variation in regression of binary data.”

• They used Gauss-Hermite quadrature, still a practical
solution for generalized linear mixed models with simple
random effects structure.

• Breslow and Clayton (1993) developed penalized
quasi-likelihood (PQL) as simple alternative to
Gauss-Hermite quadrature for more complex random
effects structure.

• PQL can be highly biased for categorical response with
large variance component (Lin 1997).
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Questions in fitting GLMMs

• Still a current research topic, as models are proposed with
more complex random effects structure.
(e.g., multilevel models)

• Zipunnikov and Booth (2013) suggest that higher-order
Laplace approximations work better in practice than some
methods that, in theory, produce ML
(such as Monte Carlo EM).

• Bayes approach (e.g., with MCMC) is also used to
approximate ML, but how does this work in model having
large number of parameters and/or large number of random
effects?

Hot topic: How to choose “objective prior” in
high-dimensional problems?
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Distribution assumed for random effects important?

• Let yit denote observation t in cluster i, t = 1, . . . , Ti, with
random effects ui for cluster i. For µit = E(Yit|ui), GLMM
has form

g(µit) = xT
itβ + zT

itui

for link function g(·) and fixed effects β, and ui ∼ N(0,Σ).

• Other assumptions for random effects include a
nonparametric approach (Aitkin 1999) and a mixture of
normal distributions (Molenberghs et al. 2010).

• Ordinary multivariate normal has advantage of natural use
in multivariate case and for multilevel models.

• What if we assume normality but actual distribution quite
different?
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Effect of non-normal random effects

• Most literature shows relatively little effect in bias and
efficiency in choosing incorrect random effects distribution
(e.g., Neuhaus et al. 1992).

• Accuracy of predicted random effects not much affected by
violations. McCulloch and Neuhaus (2011) show different
distributions yield different predicted values but have similar
MSE performance.

• But, when var(ui) depends on covariates, between-cluster
effects may be sensitive to misspecification of dist. of ui,
because of implied diminution of marginal effect
(Heagerty and Zeger 2000).
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Logistic random-intercept model

Figure shows the conditional subject-specific curves for a
random effects model and marginal (population-averaged) curve
averaging over these.
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Effect of non-normal random effects (continued)

• Agresti, Caffo, Ohman-Strickland (2004) found significant
efficiency loss for logistic-normal random intercept model
when true distribution is two-point mixture, especially when
var(ui) and T are large.

Example: Follman and Lambert two-point mixture of logistic
regression has

β̂ = 124.8, SE = 25.2, β̂/SE = 4.9,

whereas normal mixture model has

β̂ = 65.5, SE = 19.5, β̂/SE = 3.4.

Relevant sort of example?
Opinions about legalized abortion in several situations.
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Standard models motivated by latent variable models

Example: Probit model, Logistic regression model

– Tolerance distribution in dose–response studies:

A tolerance distribution with cdf F for dosage that induces
‘success’ implies model for ’success probability’ π(x)

G−1[π(x)] = α+ βx

for standardized cdf G for F .

G−1 is the “link function.”

G = Φ (standard normal) gives probit (Bliss, 1935).

G = standard logistic gives logit (Berkson 1944).
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Latent model for probit regression

– Threshold model:

Assumes unobserved continuous response y∗ such that we
observe y = 0 if y∗ ≤ τ and y = 1 if y∗ > τ .

Suppose y∗ = α+ βx+ ǫ, where {ǫi} independent from
N(0, σ2). Then,

P (Y = 1) = P (Y ∗ > τ) = P (α+ βx+ ǫ > τ)

= P (−ǫ < α+ βx− τ) = Φ[(α + βx− τ)/σ].

(For identifiability, set σ = 1 and τ = 0.)

Thus, probit model results (link function is then Φ−1).

Logistic regression model (logit link) follows when ǫ has
instead a standard logistic distribution.
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Latent model for probit and logit (continued)

– Utility model:

Let U0 be utility of y = 0 and U1 the utility of y = 1. For y = 0
and 1, suppose Uy = αy + βyx+ ǫy. A particular subject
selects y = 1 if their U1 > U0.

If ǫ0 and ǫ1 are independent N (0, 1) random variables,

P (Y = 1) = P (α1 + β1x1 + ǫ1 > α0 + β0x0 + ǫ0)

= P
{

(ǫ0−ǫ1)/
√
2 <

[

(α1−α0)+(β1−β0)x
]/
√
2
}

= Φ(α∗+β∗x)

where α∗ = (α1 − α0)/
√
2 and β∗ = (β1 − β0)/

√
2.

Again, this is probit model.

Get logit model when ǫ ∼ extreme-value distribution.
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Ordinal models also result from latent variable models

Regression model for ordered categorical response
(Anderson and Philips 1981, McKelvey and Zavoina 1975)

y = observed ordinal response
y∗ = underlying continuous latent variable,

cdf G(y∗ − η) with η = η(x) = βTx

thresholds (cutpoints) −∞ = α0 < α1 < . . . < αc = ∞ such that

y = j if αj−1 < y∗ ≤ αj

Then

P (y ≤ j | x) = P (y∗ ≤ αj | x) = G(αj − βTx)

→ model G−1[P (y ≤ j | x)] = αj − βTx
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Latent variable model for an ordinal response
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Latent variable model for ordinal response

Here, G−1 is again a link function.

Get cumulative logit model when G = logistic cdf (G−1 = logit).

So, cumulative logit (probit) model fits well when regression
model holds for underlying logistic (normal) response.

Note: Model is often expressed as

logit[P (y ≤ j)] = αj − β′x.

This derivation suggests such models are designed to detect
shifts in location (center), not dispersion (spread).

Model implies conditional distributions of y at different settings of
explanatory variables are stochastically ordered ; i.e., cdf at one
setting always above or always below cdf at another setting.
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Latent model showing how OLS regression can fail

Suppose
y∗ = 20.0 + 0.6x− 40z + ǫ

x ∼ unif(0, 100), P (z = 0) = P (z = 1) = 0.50, ǫ ∼ N(0, 102).

For random sample of size n = 100, suppose

y = 1 if y∗ ≤ 20, y = 2 if 20 < y
∗ ≤ 40, y = 3 if 40 < y

∗ ≤ 60,

y = 4 if 60 < y
∗ ≤ 80, y = 5 if y∗ > 80.

When x < 50 with z = 1, there is high probability that
observations fall in lowest category of y. Suppose we fit model

y = α+ β1x+ β2z + β3(x · z) + ǫ

to investigate effects and possible interactions.
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Latent model, and OLS fit to observed data
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Floor effect for ordinal data

Because of floor effect, least squares line for observed data with
fixed y scores has slope half as large when z = 1 as when z = 0.

Interaction is statistically and practically significant.

Such spurious effects would not occur in fitting the ordinal model
(cumulative logit or cumulative probit).

Note: The ordinal model does not require scores for y values.
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Latent variable structure for ordinal contingency tables

• What if assume an underlying continuous variable, but
rather than select a particular parametric form (such as
logistic or normal), merely assume ordinal structure such as
(1) nonnegative local log odds ratios, (2) stochastic
ordering, (3) nonnegative global log odds ratios for binary
collapsings of y and x.

• Order-restricted methods can fit data subject to such
restrictions, test hypotheses such as independence against
such alternatives (e.g., Agresti and Coull 2002).

• For significance testing, large-sample distribution theory
awkward, relying on chi-bar-squared distributions.

• Confidence intervals: Seems to be little research yet.
• How to infer whether particular structure holds, such as

uniformly nonnegative local log odds ratios?
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Example: Trauma due to subarachnoid hemorrhage

Outcome

Treatment Death Vegetative Major Minor Good
group state disabiity disability recovery

Placebo 59 25 46 48 32
Drug 135 39 147 169 102

• Sample log odds ratios are:
Local: (−0.38, 0.72, 0.10, −0.10)
Global: (0.28, 0.47, 0.32, 0.15)

• For testing H0: independence (identical distributions)
against nonnegative local log odds ratios, P -value = 0.012.

• Strong evidence against H0, but inappropriate to conclude
that the true local log odds ratios are uniformly nonnegative.
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A Bayesian solution (with M. Kateri, 2013)

• For a particular prior distribution for multinomial
probabilities, construct posterior distribution and evaluate
posterior probability over desired set
(e.g., nonnegative local log odds ratios).

• For Dirichlet priors, posterior is Dirichlet. Can simulate from
it to precisely approximate posterior probabilities.

• Example: For uniform densities over admissible probability
values (i.e., Dirichlet with hyperparameters = 1), based on
1,000,000 simulations, posterior probability of nonnegative

local log odds ratios: 0.014

global log odds ratios: 0.705
(closed form in Altham 1969)
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Brief summary of some other work

• Anderson and Vermunt (2000, Sociol. Methodology ):
Goodman association model arises when observed {Yt}
conditionally independent given latent Z that is conditionally
normal (given observed variables).

• Gueorguieva and Agresti (2001, J. Amer. Statist. Assoc.):
Probit model for joint modeling of clustered binary and
continuous responses, based on underlying joint normality.

• Vermunt (2003, Sociol. Methodology ): Multilevel latent
class models, relaxing assumption of local independence.

• Vermunt and Magidson: Latent GOLD software fits wide
variety of mixture models, including latent class models,
nonparametric mixtures of logistic regression, Rasch
mixture models, zero-inflated models, multilevel models,
continuous latent var’s.
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Applications generalize scope of models

• Reboussin and Ialongo (2010, J. Roy. Stat. Soc.):
Model drug use among students who suffer from attention
deficit hyperactivity disorder (ADHD), using (1) longitudinal
latent transition model with latent classes for stages of
marijuana use that describes probability of transitioning
between stages, (2) cross-sectional latent class model
constructs ADHD subtypes and describes influence of
subtypes on transition rates.

• Lin et al. (2008, Biometrics):
Model repeated transitions between independence and
disability states of daily living using multivariate latent var’s.
State-specific latent var. represents tendency to remain in
state, accounts for correlation among repeated sojourns in
same state. Correlation among sojourns across states
accounted for by correlation between different latent var’s.
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Summary and final comments

• Latent variable models have a long and substantial history
for categorical data analysis, which we’ve barely scratched.

• Many methods commonly used by statisticians for
categorical data analysis have latent variable justifications.

• Future: Challenges statisticians face with large data sets
with huge numbers of variables are especially challenging
for latent variable modeling.

• We should not forget the dangers of reification – acting as if
an assumed latent variable truly measures the characteristic
of interest (Gould 1981, The Mismeasure of Man).
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Some useful references

Bartholomew, D., M. Knott, and I. Moustaki. 2011. Latent Variable Models and Factor
Analysis: A Unified Approach, 3rd ed. (see Chapters 4-6)

Goodman, L. A. 1974. Exploratory latent structure analysis using both identifiable and
unidentifiable models. Biometrika

Lazarsfeld, P. F., and N. W. Henry. 1968. Latent Structure Analysis.

Skrondal, A., and S. Rabe-Hesketh. 2004. Generalized Latent Variable Modeling:
Multilevel, Longitudinal, and Structural Equation Models.

Websites: www.people.vcu.edu/ nhenry/LSA50.htm (Neil Henry reminiscences)
statisticalinnovations.com/products/aboutlc.html (Latent GOLD)
www.stata.com/meeting/2nasug/lclass.pdf (Stata)
www.stat.rutgers.edu/home/buyske/software.html (R)
support.sas.com/kb/30/623.html (SAS)
www.statmodel.com (Mplus)
spitswww.uvt.nl/ vermunt/ (LEM et al.)
www.john-uebersax.com/stat/ (overview)
faculty.chass.ncsu.edu/garson/PA765/latclass.htm (overview)

Other books: Collins / Lanza (2009), Hagenaars / McCutcheon (2009), Heinen (1996)
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