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Outline of my talk

• Score test-based confidence interval (CI) as alternative to
Wald, likelihood-ratio-test-based large-sample intervals

• Relation of score-test-based inference to Pearson
chi-squared statistic, its application for variety of categorical
data analyses

• Pseudo-score CI for model parameters based on
generalized Pearson statistic comparing models

• Good small-sample “exact” pseudo-score CIs

• An “adjusted Wald” pseudo-score method performs well for
simple cases (e.g., proportions and their difference) by
approximating the score CI
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Inverting tests to obtain CIs

For parameter β, consider CIs based on inverting standard tests
of H0: β = β0

(95% CI is set of β0 for which P -value > 0.05)

Most common approach inverts one of three standard
asymptotic chi-squared tests: Likelihood-ratio (Wilks 1938),
Wald (1943), score (Rao 1948)

For log likelihood L(β), denote

maximum likelihood (ML) estimate by β̂

score u(β) = ∂L(β)/∂β

information ι(β) = −E[∂2L(β)/∂β2]
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Wald, likelihood-ratio, score large-sample inference

• Wald test: [(β̂ − β0)/SE]2 = (β̂ − β0)
2ι(β̂).

e.g., 95% Wald CI is β̂ ± 1.96(SE)

• Likelihood-ratio (LR) statistic: −2[L(β0)− L(β̂)]

• Rao’s score test statistic:

[u(β0)]
2

ι(β0)
=

[∂L(β)/∂β0]
2

−E[∂2L(β)/∂β2
0 ]

where the partial derivatives are evaluated at β0
(For canonical GLMs, this is standardized sufficient stat.)

The three methods are asymptotically equivalent under H0.

In practice, Wald inference popular because of simplicity, ease
of forming it using software output.
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Examples of score-test-based inference

• Pearson chi-squared test of independence in two-way
contingency table

• McNemar test for binary matched-pairs

• Cochran–Mantel–Haenszel test of conditional
independence for stratified 2×2 tables

• Cochran–Armitage trend test for several ordered binomials

• Y ∼ binomial(n, π), π̂ = y/n

Test of H0: π = π0 uses

z = π̂−π0√
π0(1−π0)/n

∼ N(0,1) null distribution (or z2 ∼ χ2
1).

Inverting two-sided test gives Wilson CI for π (1927).

(Wald 95% CI is π̂ ± 1.96
√

π̂(1− π̂)/n.)
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Wald inference can be poor for categorical data

• Hauck and Donner (1977) showed aberrant behavior in
logistic regression when effect is strong.

Example : Y ∼ binomial(n, π) with n = 25

– Model logit(π) = α

– Consider H0: α = 0 (i.e., π = 0.50)

– Wald chi-squared statistic = [logit(π̂)]2[nπ̂(1− π̂)]

= 11.0 when y = 23 (π̂ = 0.92)
= 9.7 when y = 24 (π̂ = 0.96)

(likelihood-ratio statistics are 20.7 and 26.3)

• Wald CI for π has coverage probability that is especially
poor when π near 0 or 1.
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Wald CI for binomial parameter, (n = 15)

0.80

0.85

0.90

0.95

1.00

0.0 0.2 0.4 0.6 0.8

binomial parameter pi

Coverage Probability

Coverage Probability as a Function of pi for the 95% Wald Interval, When n = 15

Vienna, May 24, 2012 – p. 7/35



Score CI for binomial parameter, (n = 15)
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Examples of score inference: Not so “well known”

• Difference of proportions for independent binomial samples

Consider H0: π1 − π2 = β0. Score statistic is square of

z =
(π̂1 − π̂2)− β0

√

[π̂1(β0)(1− π̂1(β0))/n1] + [π̂2(β0)(1− π̂2(β0))/n2]
,

where π̂1 and π̂2 are sample proportions and π̂1(β0) and
π̂2(β0) are ML estimates under constraint π1 − π2 = β0.

(When β0 = 0, z2 = Pearson chi-squared for 2×2 table.)

Score CI for π1 − π2 inverts this test.
(Mee 1984, Miettinen and Nurminen 1985)
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Aside: 2×2 tables with no ‘successes’ (meta-analyses)

• For significance tests (e.g., Cochran–Mantel–Haenszel and
small-sample exact), no information about whether there is
an association; data make no contribution to the tests.

• For estimation, no information about odds ratio or relative
risk but there is about π1 − π2
(i.e., impact on practical, not statistical, significance).

Response Response
Group Success Failure Success Failure

1 0 10 0 100

2 0 20 0 200

Score 95% CIs for π1 − π2: (−0.16, 0.28), (−0.02, 0.04)
Wald 95% CIs for π1 − π2: (0.00, 0.00), (0.00, 0.00)

Note: Not necessary to add constants to empty cells.
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Examples of score inference: Not “well known” (2)

• Score CI for odds ratio for 2×2 table {nij} (Cornfield 1956):
For given β0, let {µ̂ij(β0)} have same row and column
margins as {nij} and

µ̂11(β0)µ̂22(β0)

µ̂12(β0)µ̂21(β0)
= β0.

95% CI = set of β0 satisfying

X2(β0) =
∑

(nij − µ̂ij(β0))
2/µ̂ij(β0) ≤ 1.962

• Likewise, score CI applies to relative risk, logistic regression
parameters, generic measure of association (Lang 2008),
but is not found in standard software.

(Some R functions: www.stat.ufl.edu/∼aa/cda/software.html)
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Relation of score statistic to Pearson chi-squared

For counts {ni} for a multinomial model and testing goodness of
fit using ML fit {µ̂i} under H0,
the score test statistic is the Pearson chi-squared statistic

X2 =
∑ (ni − µ̂i)

2

µ̂i

True for generalized linear models (Smyth 2003, Lovison 2005)

When model refers to parameter β, inverting Pearson
chi-squared test of H0: β = β0 gives score CI

e.g., 95% CI for β is set of β0 for which X2 ≤ χ2
1,0.05 = (1.96)2.

For small to moderate n, actual coverage probability closer to
nominal level for score CI than Wald, usually LR.
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Evidence that score-test-based inference is “good”

• Testing independence in two-way tables (Koehler and
Larntz 1980), LR stat. G2 = 2

∑

nij log(nij/µ̂ij)

• CI for binomial parameter (Newcombe 1998)

• CI for difference of proportions, relative risk, odds ratio,
comparing dependent samples (Newcombe 1998, Tango
1998, Agresti and Min 2005)

• Multivariate comparisons of proportions for independent and
dependent samples (Agresti and Klingenberg 2005, 2006)

• Simultaneous CIs comparing binomial proportions
(Agresti, Bini, Bertaccini, Ryu 2008)

• CI for ordinal effect measures such as P (y1 > y2)
(Ryu and Agresti 2008)
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Score-test-based inference infeasible for some models

Example : 2006 General Social Survey Data responses to “How
successful is the government in (1) Providing health care for the
sick? (2) Protecting the environment?”

(1 = successful, 2 = mixed, 3= unsuccessful)

y2 = Environment
y1 = Health Care 1 2 3 Total

1 199 81 83 363

2 129 167 112 408

3 164 169 363 696

Total 492 417 558 1467
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A marginal model for multivariate data

Cumulative logit marginal model for responses (y1, y2)

logit[P (y1 ≤ j)] = αj , logit[P (y2 ≤ j)] = αj + β, j = 1, 2.

designed to detect location shift in marginal distributions.

Multinomial likelihood in terms of cell probabilities {πij = µij/n}
and cell counts {nij}

L(π) ∝ πn11

11 πn12

12 · · · πn33

33

but model parameters refer to marginal probabilities.
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LR and score inference comparing two models

Contingency table {ni} with ML fitted values {µ̂i} for a model
and {µ̂i0} for simpler “null” model (e.g., with β = β0):

H0: Simpler model, Ha: More complex model

LR statistic (for multinomial sampling) is

G2 = 2
∑

i

µ̂i log(µ̂i/µ̂i0).

Rao (1961) suggested Pearson-type statistic,

X2 =
∑

i

(µ̂i − µ̂i0)
2

µ̂i0
.
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Pseudo-score CI based on Pearson stat. (with E. Ryu)

For hypothesis testing, G2 nearly universal, X2 mostly ignored
since Haberman (1977) results on sparse asymptotics.

Confidence intervals:

Popular to obtain profile likelihood confidence intervals: If
G2 = G2(β0) is LR stat. for H0: β = β0, then 95% LR CI is

{β0} such that G2(β0) ≤ χ2
1,0.05

e.g., in SAS, available with LRCI option in PROC GENMOD;
in R, with confint() function applied to model object.

Since score CI often out-performs LR CI for simple discrete
measures, as alternative to LR CI, could find pseudo-score CI:

{β0} such that X2(β0) ≤ χ2
1,0.05 Biometrika 2010
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Example : Cumulative logit marginal model

Cumulative logit marginal model

logit[P (y1 ≤ j)] = αj , logit[P (y2 ≤ j)] = αj + β, j = 1, 2.

Joe Lang (Univ. Iowa) has R function “mph.fit” for ML fitting of
general class of models (JASA 2005, Ann. Statist. 2004).

For various fixed β0, need to fit model with that constraint (using
offset), giving {µ̂ij,0} to compare to {µ̂ij} in 3×3 table to find β0
with X2(β0) ≤ χ2

1,0.05.

95% pseudo-score CI is (0.2898, 0.5162).

Here, n large and results similar to LR CI of (0.2900, 0.5162).

Simulation studies show pseudo-score often performs better for
small n.
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Pseudo-score inference for discrete data

When independent {yi} for a GLM, a Pearson-type
pseudo-score statistic is

X2 =
∑

i

(µ̂i − µ̂i0)
2

v(µ̂i0)
= (µ̂− µ̂0)

′
V̂

−1
0 (µ̂− µ̂0),

v(µ̂i0) = estimated null variance of yi

V̂0 = diagonal matrix containing v(µ̂i0)
(Lovison 2005)

Binary response: v(µ̂i0) = µ̂i0(1− µ̂i0)

Pseudo-score CI potentially useful for discrete dist’s other than
binomial, multinomial, and for complex sample survey data (e.g.,
variances inflated from simple random sampling) and clustered
data.
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Small-sample methods (not “exact”)

Using score (or other) stat., can use small-sample distributions
(e.g., binomial), rather than large-sample approximations (e.g.,
normal), to obtain P-values and confidence intervals.

– Because of discreteness, error probabilities do not exactly
equal nominal values.

– For CI, inverting test with actual size ≤ .05 for all β0
guarantees actual coverage probability ≥ 0.95.

– Inferences are conservative –
actual error probabilities ≤ 0.05 nominal level.

– Actual coverage prob varies for different β values and is
unknown in practice.

Example : Binomial (n, π) with n = 5
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Large-sample score CI vs. small-sample CI (n = 5)
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Examples of small-sample CIs (95%)

Use tail method: Invert two separate one-sided tests each of
size ≤ 0.025. (P-value = double the minimum tail probability)

1. Binomial parameter π

Clopper and Pearson (1934) suggest solution (πL, πU ) to

n
∑

k=tobs

(

n

k

)

πk
L(1− πL)

n−k = 0.025

and
tobs
∑

k=0

(

n

k

)

πk
U (1− πU )

n−k = 0.025
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Examples of small-sample CIs (2)

2. Logistic regression parameter

For subject i with binary outcome yi, explanatory variables
(xi0 = 1, xi1, xi2, . . . , xik)

Model: logit[P (yi = 1)] = β0 + β1xi1 + · · ·+ βkxik

Use dist. of score stat. after eliminating nuisance para. by
conditioning on sufficient stat’s (Tj =

∑

i yixij for βj).

e.g., Bounds (β1L, β1U ) of 95% CI for β1 satisfy

P (T1 ≥ t1,obs|t0, t2, . . . , tk;β1L) = 0.025

P (T1 ≤ t1,obs|t0, t2, . . . , tk;β1U ) = 0.025
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Randomizing Eliminates Conservatism

• For testing H0 : β = β0 against Ha : β > β0 using a test stat.
T , a randomized test has P -value

Pβ0
(T > tobs) + U × Pβ0

(T = tobs)

where U is a uniform(0,1) random variable.

• To construct CI with actual coverage probability 0.95,

PβU
(T < tobs) + U × PβU

(T = tobs) = 0.025

and

PβL
(T > tobs) + (1− U)× PβL

(T = tobs) = 0.025.
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Use randomized methods in practice?

• Randomized CI suggested by Stevens (1950), for binomial
parameter.

• Pearson (1950): Statisticians may come to accept
randomization after performing experiment just as they
accept randomization before the experiment.

• Stevens (1950): “We suppose that most people will find
repugnant the idea of adding yet another random element to
a result which is already subject to the errors of random
sampling. But what one is really doing is to eliminate one
uncertainty by introducing a new one. ... It is because this
uncertainty is eliminated that we no longer have to keep ‘on
the safe side’, and can therefore reduce the width of the
interval.”
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Mid-P Pseudo-Score Approach

• Mid-P-value (Lancaster 1949, 1961): Count only
(1/2)Pβ0

(T = tobs) in P-value; e.g., for Ha : β > β0,

Pβ0
(T > tobs) + (1/2)Pβ0

(T = tobs).

• Unlike randomized P-value, depends only on data.

• Under H0, ordinary P-value stochastically larger than
uniform, E(mid-P-value)= 1/2.

• Sum of right-tail and left-tail P-values is 1 + Pβ0
(T = tobs) for

ordinary P-value, 1 for mid-P-value.
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CI based on mid-P-value

• Mid-P CI based on inverting tests using mid-P-value:

PβL
(T > tobs) + (1/2)× PβL

(T = tobs) = 0.025.

PβU
(T < tobs) + (1/2)× PβU

(T = tobs) = 0.025.

• Coverage probability not guaranteed ≥ 0.95, but mid-P CI
tends to be a bit conservative.

• For binomial, how do Clopper–Pearson and mid-P CI
behave as n increases?

(from Agresti and Gottard 2007)
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Clopper-Pearson (—) and mid-P (- -) CIs for π = 0.50
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Simple approximations to score CIs often work well

Example: Binomial proportion

Finding all π0 such that |π̂−π0|
√

π0(1−π0)

n

< 2

provides 95% score CI of form M ± 2s
(approximating 1.96 by 2) with

M =

(

n

n+ 4

)

π̂ +

(

4

n+ 4

)

1

2
=

tobs + 2

n+ 4

s2 =
1

n+ 4

[

π̂(1− π̂)

(

n

n+ 4

)

+
1

2

1

2

(

4

n+ 4

)]
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Adjusted Wald CI approximates score CI

For 95% CI, this suggests an adjusted Wald CI (plus 4 CI)

π̃ ± 2.0
√

π̃(1− π̃)/ñ

with π̃ = tobs+2
n+4 and ñ = n+ 4.

Midpoint same as 95% score CI, but wider (Jensen’s inequality).

In fact, simple adjustments of Wald improve performance
dramatically and give performance similar to score CI:

– Proportion: Add 2 successes and 2 failures before computing
Wald CI (Agresti and Coull 1998)

– Difference: Add 2 successes and 2 failures before computing
Wald CI (Agresti and Caffo 2000)

– Paired Difference: Add 2 successes and 2 failures before
computing Wald CI (Agresti and Min 2005)
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Clopper-Pearson, Wald, and “Plus 4” CI (n = 10)
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“Good” CIs shrink midpoints

• Poor performance of Wald intervals due to centering at π̂,
(π̂1 − π̂2) rather than being too short.

• Wald CI has greater length than adjusted intervals unless
parameters near boundary of parameter space.

• Intervals resulting from Bayesian approach can also
perform well in frequentist sense.

Single proportion: Brown et al. (2001)

Comparing proportions: Agresti and Min (2005). Using
independent Jeffreys beta(0.5, 0.5) priors gives frequentist
performance similar to score CI.

• Many score CIs, mid-P corrections, Bayes CIs available in R
at www.stat.ufl.edu/∼aa/cda/software.html.
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Summary

• Full model saturated: Score confidence interval inverts
goodness-of-fit test using Pearson chi-squared statistic.

• Full model unsaturated: Pseudo-score method of inverting
Pearson test comparing fitted values available when
ordinary score CI infeasible and may perform better than
profile likelihood CI for small n.

• Good small-sample CI inverts score test with mid-P -value.

• For proportions and their differences, pseudo-score method
that adjusts Wald method by adding 4 observations
performs well.
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