
The BUGS language

Sampling methods for generalized linear models

Martyn Plummer

International Agency for
Research on Cancer

4 May 2012

Martyn Plummer JAGS

The BUGS language

BUGS

BUGS stands for Bayesian inference Using Gibbs Sampling.

Starting in the late 1980s, the BUGS project brought
together:

1 Bayesian Inference
2 Graphical modelling
3 Simulation-based inference

To provide user-friendly software for Bayesian data analysis.

Growth in computing power has made simulation-based
methods increasingly accessible.

BUGS has helped to popularize Bayesian methods, which
previously had limited applicability.

Martyn Plummer JAGS

The BUGS language

Other Bayesian software

PyMC MCMC for Python
http://code.google.com/p/pymc

HBC Hierarchical Bayes Compiler
http://www.cs.utah.edu/~hal/HBC

YADAS Yet Another Data Analysis System
http://www.stat.lanl.gov/yadas

HYDRA MCMC library
http://sourceforge.net/projects/hydra-mcmc

Scythe Statistical library (MCMCpack)
http://scythe.wustl.edu

CppBUGS C++ version of BUGS
https://github.com/armstrtw/CppBugs

Stan A C++ library for probability and sampling
http://code.google.com/p/stan/

Martyn Plummer JAGS

http://code.google.com/p/pymc
http://www.cs.utah.edu/~hal/HBC
http://www.stat.lanl.gov/yadas
http://sourceforge.net/projects/hydra-mcmc
http://scythe.wustl.edu
https://github.com/armstrtw/CppBugs
http://code.google.com/p/stan/

The BUGS language

JAGS: Just Another Gibbs Sampler

A clone of BUGS

Written in C++

Cross-platform (Linux, Windows, Mac OS X, ...)

Object-based R interface (rjags)

Other interfaces: R2jags, runjags

JAGS aims (more or less) for compatibility with BUGS. In
particular, models are described in the same way using “the BUGS
language”

Martyn Plummer JAGS

The BUGS language

Statistical models as graphs

In a graphical model, random variables are represented as nodes,
and the relations between them by edges.
In simple models, we want to predict a single variable Y from
input variables X . This can be represented by a trivial graph:

X

Y

Graphical models become more interesting when we have multiple
variables, and the relations between them become more complex.

Martyn Plummer JAGS

The BUGS language

Stochastic Relations

The relation

Y ∼ N(µ, τ−1)

is written as

Y ~ dnorm(mu, tau)

Y

µ τ

This relation can be represented by a graph in which Y , µ, τ are
nodes. The dependency of Y on parameters µ, τ is represented by
directed edges.

Martyn Plummer JAGS

The BUGS language

Stochastic relations

A parameter can itself have a
distribution with its own
hyper-parameters

τ ∼ Γ(0.01, 0.01)

In the BUGS language

tau ~ dgamma(0.01, 0.01)

This fits with the Bayesian approach
to statistical inference, in which the
parameters of a model are also
random variables.

Y

µ τ

0.01 0.01

Martyn Plummer JAGS

The BUGS language

Deterministic relations

We can also describe deterministic
relationships between variables

µ = α + βx

In BUGS:

mu <- alpha + beta * x

They are represented by double
arrows.

Y

τ

0.01 0.01

µ

α βx

β x

Martyn Plummer JAGS

The BUGS language

Arrays and for loops

Repeated structures in the graph can
be simplified using arrays and for
loops.

Yi ∼ N(µi , τ
−1) i = 1 . . . n

In BUGS:

for (i in 1:n) {

Y[i] ~ dnorm(mu[i], tau)

}

Here the nodes Y[1] to Y[n] are
embedded in the array Y. Matrices
and higher-dimensional arrays can
also be used.

Y1 Y2 Yn

µ1 µ2 µn

τ

. . .

Martyn Plummer JAGS

The BUGS language

Plates

Repeated structures can make the
graph hard to read.
To simplify drawing of the graph, we
use a “plate” notation.

Only one entry in the for loop is
shown.

The rest are implied by the
stack of plates

Yi

µi

τ

i = 1 . . . n

Martyn Plummer JAGS

The BUGS language

Linear regression example (in BUGS)

Models written in the BUGS language may appear quite verbose:

for (i in 1:N) {
y[i] ∼ dnorm(mu[i], tau)

mu[i] <- alpha + beta * x[i]

}
alpha ∼ dnorm(m.alpha, p.alpha)

beta ∼ dnorm(m.beta, p.beta)

log.sigma ∼ dunif(a, b)

sigma <- exp(log.sigma)

sigma.sq <- pow(sigma, 2)

tau <- 1 / sigma.sq

You need to specify the
parameters as well as the
data.

Parameters need to have
explicit prior distributions

Unlike R, the language is
not vectorized, so you
need for loops for
repeated calculations.

The model may include
parameter
transformations.

Martyn Plummer JAGS

The BUGS language

Linear regression example (in BUGS)

Models written in the BUGS language may appear quite verbose:

for (i in 1:N) {
y[i] ∼ dnorm(mu[i], tau)

mu[i] <- alpha + beta * x[i]

}
alpha ∼ dnorm(m.alpha, p.alpha)

beta ∼ dnorm(m.beta, p.beta)

log.sigma ∼ dunif(a, b)

sigma <- exp(log.sigma)

sigma.sq <- pow(sigma, 2)

tau <- 1 / sigma.sq

You need to specify the
parameters as well as the
data.

Parameters need to have
explicit prior distributions

Unlike R, the language is
not vectorized, so you
need for loops for
repeated calculations.

The model may include
parameter
transformations.

Martyn Plummer JAGS

The BUGS language

Linear regression example (in BUGS)

Models written in the BUGS language may appear quite verbose:

for (i in 1:N) {
y[i] ∼ dnorm(mu[i], tau)

mu[i] <- alpha + beta * x[i]

}
alpha ∼ dnorm(m.alpha, p.alpha)

beta ∼ dnorm(m.beta, p.beta)

log.sigma ∼ dunif(a, b)

sigma <- exp(log.sigma)

sigma.sq <- pow(sigma, 2)

tau <- 1 / sigma.sq

You need to specify the
parameters as well as the
data.

Parameters need to have
explicit prior distributions

Unlike R, the language is
not vectorized, so you
need for loops for
repeated calculations.

The model may include
parameter
transformations.

Martyn Plummer JAGS

The BUGS language

Linear regression example (in BUGS)

Models written in the BUGS language may appear quite verbose:

for (i in 1:N) {
y[i] ∼ dnorm(mu[i], tau)

mu[i] <- alpha + beta * x[i]

}
alpha ∼ dnorm(m.alpha, p.alpha)

beta ∼ dnorm(m.beta, p.beta)

log.sigma ∼ dunif(a, b)

sigma <- exp(log.sigma)

sigma.sq <- pow(sigma, 2)

tau <- 1 / sigma.sq

You need to specify the
parameters as well as the
data.

Parameters need to have
explicit prior distributions

Unlike R, the language is
not vectorized, so you
need for loops for
repeated calculations.

The model may include
parameter
transformations.

Martyn Plummer JAGS

The BUGS language

Linear regression example (in BUGS)

Models written in the BUGS language may appear quite verbose:

for (i in 1:N) {
y[i] ∼ dnorm(mu[i], tau)

mu[i] <- alpha + beta * x[i]

}
alpha ∼ dnorm(m.alpha, p.alpha)

beta ∼ dnorm(m.beta, p.beta)

log.sigma ∼ dunif(a, b)

sigma <- exp(log.sigma)

sigma.sq <- pow(sigma, 2)

tau <- 1 / sigma.sq

You need to specify the
parameters as well as the
data.

Parameters need to have
explicit prior distributions

Unlike R, the language is
not vectorized, so you
need for loops for
repeated calculations.

The model may include
parameter
transformations.

Martyn Plummer JAGS

The BUGS language

Linear regression example (in BUGS)

Models written in the BUGS language may appear quite verbose:

for (i in 1:N) {
y[i] ∼ dnorm(mu[i], tau)

mu[i] <- alpha + beta * x[i]

}
alpha ∼ dnorm(m.alpha, p.alpha)

beta ∼ dnorm(m.beta, p.beta)

log.sigma ∼ dunif(a, b)

sigma <- exp(log.sigma)

sigma.sq <- pow(sigma, 2)

tau <- 1 / sigma.sq

You need to specify the
parameters as well as the
data.

Parameters need to have
explicit prior distributions

Unlike R, the language is
not vectorized, so you
need for loops for
repeated calculations.

The model may include
parameter
transformations.

Martyn Plummer JAGS

The BUGS language

A linear regression example

Martyn Plummer JAGS

The BUGS language

Markov Chain Monte Carlo

A general purpose technique for simulation from an arbitrary
distribution

Usually abbreviated MCMC

Developed in statistical physics in the 1950s

Introduced to statistics via image analysis in the 1980s

There is a catch!

The samples are dependent
The samples only come from the target distribution in the long
run
But you cannot tell how long the “long run” should be!
(convergence diagnostics)

Martyn Plummer JAGS

The BUGS language

Gibbs sampling on a graphical model

A BUGS model defines a distribution on a set of nodes
(v1, . . . vn) on a graph G .

The distribution factorizes as

p(v) =
∏
i∈G

p(vi | Parents(vi))

“Gibbs sampling” consists of visiting each node in turn,
updating it in a way that preserves the joint distribution of v

The calculations required are local computations on the graph

Martyn Plummer JAGS

The BUGS language

Good and bad “mixing”

Trace plots show the evolution
of the sampled values by the
number of iterations.

1000 1200 1400 1600 1800 2000

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3

Iterations

Gibbs sampling

1000 1200 1400 1600 1800 2000

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3

Iterations

Block updating

Autocorrelation plots show the
extent to which current value
depends on previous ones.

0 5 10 15 20 25 30

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Lag

A
ut

oc
or

re
la

tio
n

Gibbs sampling

0 5 10 15 20 25 30

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Lag

A
ut

oc
or

re
la

tio
n

Block updating

Martyn Plummer JAGS

The BUGS language

“Solving” autocorrelation by thinning

1000 1200 1400 1600 1800 2000

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3

Iterations

Poor mixing

Martyn Plummer JAGS

The BUGS language

“Solving” autocorrelation by thinning

1000 1200 1400 1600 1800 2000

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3

Iterations

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

Thinning every 20 iterations

Martyn Plummer JAGS

The BUGS language

“Solving” autocorrelation by thinning

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

1000 1200 1400 1600 1800 2000

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3

Iterations

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

Thinned chain

Martyn Plummer JAGS

The BUGS language

“Solving” autocorrelation by thinning
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

Iterations

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

1000 2000

Thinned chain

Martyn Plummer JAGS

The BUGS language

“Solving” autocorrelation by thinning

2000 4000 6000 8000 10000

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3

Iterations

Thinned chain − longer run

Martyn Plummer JAGS

The BUGS language

An abstract view of the KIDNEY model

This is what a right-censored survival analysis problem looks like as
a graphical model.

●beta.dis[1] ●beta.dis[2] ●beta.dis[3] ●beta.dis[4]

●r

●tau

●alpha

●beta.age●beta.sex

●b[1]

●sex[1]

●beta.sex*sex[1]●disease[1]

●age[1,1]

●beta.age*age[1,1]

●log(mu1,1])

●mu1,1]

●t[1,1]●t.cen[1,1]

●censored[1,1]

●age[1,2]

●beta.age*age[1,2]

●log(mu1,2])

●mu1,2]

●t[1,2] ●t.cen[1,2]

●censored[1,2]

●b[2]

●sex[2]

●beta.sex*sex[2]●disease[2]

●age[2,1]

●beta.age*age[2,1]

●log(mu2,1])

●mu2,1]

●t[2,1]●t.cen[2,1]

●censored[2,1]

●age[2,2]

●beta.age*age[2,2]

●log(mu2,2])

●mu2,2]

●t[2,2] ●t.cen[2,2]

●censored[2,2]

●b[3]

●sex[3]

●beta.sex*sex[3]●disease[3]

●age[3,1]

●beta.age*age[3,1]

●log(mu3,1])

●mu3,1]

●t[3,1]●t.cen[3,1]

●censored[3,1]

●age[3,2]

●beta.age*age[3,2]

●log(mu3,2])

●mu3,2]

●t[3,2] ●t.cen[3,2]

●censored[3,2]

●b[4]

●sex[4]

●beta.sex*sex[4]●disease[4]

●age[4,1]

●beta.age*age[4,1]

●log(mu4,1])

●mu4,1]

●t[4,1]●t.cen[4,1]

●censored[4,1]

●age[4,2]

●beta.age*age[4,2]

●log(mu4,2])

●mu4,2]

●t[4,2] ●t.cen[4,2]

●censored[4,2]

●b[5]

●sex[5]

●beta.sex*sex[5]●disease[5]

●age[5,1]

●beta.age*age[5,1]

●log(mu5,1])

●mu5,1]

●t[5,1]●t.cen[5,1]

●censored[5,1]

●age[5,2]

●beta.age*age[5,2]

●log(mu5,2])

●mu5,2]

●t[5,2] ●t.cen[5,2]

●censored[5,2]

●b[6]

●sex[6]

●beta.sex*sex[6]●disease[6]

●age[6,1]

●beta.age*age[6,1]

●log(mu6,1])

●mu6,1]

●t[6,1]●t.cen[6,1]

●censored[6,1]

●age[6,2]

●beta.age*age[6,2]

●log(mu6,2])

●mu6,2]

●t[6,2] ●t.cen[6,2]

●censored[6,2]

●b[7]

●sex[7]

●beta.sex*sex[7]●disease[7]

●age[7,1]

●beta.age*age[7,1]

●log(mu7,1])

●mu7,1]

●t[7,1]●t.cen[7,1]

●censored[7,1]

●age[7,2]

●beta.age*age[7,2]

●log(mu7,2])

●mu7,2]

●t[7,2] ●t.cen[7,2]

●censored[7,2]

●b[8]

●sex[8]

●beta.sex*sex[8]●disease[8]

●age[8,1]

●beta.age*age[8,1]

●log(mu8,1])

●mu8,1]

●t[8,1]●t.cen[8,1]

●censored[8,1]

●age[8,2]

●beta.age*age[8,2]

●log(mu8,2])

●mu8,2]

●t[8,2] ●t.cen[8,2]

●censored[8,2]

●b[9]

●sex[9]

●beta.sex*sex[9]●disease[9]

●age[9,1]

●beta.age*age[9,1]

●log(mu9,1])

●mu9,1]

●t[9,1]●t.cen[9,1]

●censored[9,1]

●age[9,2]

●beta.age*age[9,2]

●log(mu9,2])

●mu9,2]

●t[9,2] ●t.cen[9,2]

●censored[9,2]

●b[10]

●sex[10]

●beta.sex*sex[10]●disease[10]

●age[10,1]

●beta.age*age[10,1]

●log(mu10,1])

●mu10,1]

●t[10,1]●t.cen[10,1]

●censored[10,1]

●age[10,2]

●beta.age*age[10,2]

●log(mu10,2])

●mu10,2]

●t[10,2] ●t.cen[10,2]

●censored[10,2]

●b[11]

●sex[11]

●beta.sex*sex[11]●disease[11]

●age[11,1]

●beta.age*age[11,1]

●log(mu11,1])

●mu11,1]

●t[11,1] ●t.cen[11,1]

●censored[11,1]

●age[11,2]

●beta.age*age[11,2]

●log(mu11,2])

●mu11,2]

●t[11,2]●t.cen[11,2]

●censored[11,2]

●b[12]

●sex[12]

●beta.sex*sex[12]●disease[12]

●age[12,1]

●beta.age*age[12,1]

●log(mu12,1])

●mu12,1]

●t[12,1]●t.cen[12,1]

●censored[12,1]

●age[12,2]

●beta.age*age[12,2]

●log(mu12,2])

●mu12,2]

●t[12,2] ●t.cen[12,2]

●censored[12,2]

●b[13]

●sex[13]

●beta.sex*sex[13] ●disease[13]

●age[13,1]

●beta.age*age[13,1]

●log(mu13,1])

●mu13,1]

●t[13,1]●t.cen[13,1]

●censored[13,1]

●age[13,2]

●beta.age*age[13,2]

●log(mu13,2])

●mu13,2]

●t[13,2]●t.cen[13,2]

●censored[13,2]

●b[14]

●sex[14]

●beta.sex*sex[14] ●disease[14]

●age[14,1]

●beta.age*age[14,1]

●log(mu14,1])

●mu14,1]

●t[14,1] ●t.cen[14,1]

●censored[14,1]

●age[14,2]

●beta.age*age[14,2]

●log(mu14,2])

●mu14,2]

●t[14,2]●t.cen[14,2]

●censored[14,2]

●b[15]

●sex[15]

●beta.sex*sex[15]●disease[15]

●age[15,1]

●beta.age*age[15,1]

●log(mu15,1])

●mu15,1]

●t[15,1] ●t.cen[15,1]

●censored[15,1]

●age[15,2]

●beta.age*age[15,2]

●log(mu15,2])

●mu15,2]

●t[15,2]●t.cen[15,2]

●censored[15,2]

●b[16]

●sex[16]

●beta.sex*sex[16] ●disease[16]

●age[16,1]

●beta.age*age[16,1]

●log(mu16,1])

●mu16,1]

●t[16,1]●t.cen[16,1]

●censored[16,1]

●age[16,2]

●beta.age*age[16,2]

●log(mu16,2])

●mu16,2]

●t[16,2] ●t.cen[16,2]

●censored[16,2]

●b[17]

●sex[17]

●beta.sex*sex[17]●disease[17]

●age[17,1]

●beta.age*age[17,1]

●log(mu17,1])

●mu17,1]

●t[17,1] ●t.cen[17,1]

●censored[17,1]

●age[17,2]

●beta.age*age[17,2]

●log(mu17,2])

●mu17,2]

●t[17,2]●t.cen[17,2]

●censored[17,2]

●b[18]

●sex[18]

●beta.sex*sex[18]●disease[18]

●age[18,1]

●beta.age*age[18,1]

●log(mu18,1])

●mu18,1]

●t[18,1] ●t.cen[18,1]

●censored[18,1]

●age[18,2]

●beta.age*age[18,2]

●log(mu18,2])

●mu18,2]

●t[18,2]●t.cen[18,2]

●censored[18,2]

●b[19]

●sex[19]

●beta.sex*sex[19] ●disease[19]

●age[19,1]

●beta.age*age[19,1]

●log(mu19,1])

●mu19,1]

●t[19,1]●t.cen[19,1]

●censored[19,1]

●age[19,2]

●beta.age*age[19,2]

●log(mu19,2])

●mu19,2]

●t[19,2] ●t.cen[19,2]

●censored[19,2]

●b[20]

●sex[20]

●beta.sex*sex[20]●disease[20]

●age[20,1]

●beta.age*age[20,1]

●log(mu20,1])

●mu20,1]

●t[20,1] ●t.cen[20,1]

●censored[20,1]

●age[20,2]

●beta.age*age[20,2]

●log(mu20,2])

●mu20,2]

●t[20,2] ●t.cen[20,2]

●censored[20,2]

●b[21]

●sex[21]

●beta.sex*sex[21] ●disease[21]

●age[21,1]

●beta.age*age[21,1]

●log(mu21,1])

●mu21,1]

●t[21,1]●t.cen[21,1]

●censored[21,1]

●age[21,2]

●beta.age*age[21,2]

●log(mu21,2])

●mu21,2]

●t[21,2]●t.cen[21,2]

●censored[21,2]

●b[22]

●sex[22]

●beta.sex*sex[22]●disease[22]

●age[22,1]

●beta.age*age[22,1]

●log(mu22,1])

●mu22,1]

●t[22,1] ●t.cen[22,1]

●censored[22,1]

●age[22,2]

●beta.age*age[22,2]

●log(mu22,2])

●mu22,2]

●t[22,2] ●t.cen[22,2]

●censored[22,2]

●b[23]

●sex[23]

●beta.sex*sex[23] ●disease[23]

●age[23,1]

●beta.age*age[23,1]

●log(mu23,1])

●mu23,1]

●t[23,1]●t.cen[23,1]

●censored[23,1]

●age[23,2]

●beta.age*age[23,2]

●log(mu23,2])

●mu23,2]

●t[23,2] ●t.cen[23,2]

●censored[23,2]

●b[24]

●sex[24]

●beta.sex*sex[24] ●disease[24]

●age[24,1]

●beta.age*age[24,1]

●log(mu24,1])

●mu24,1]

●t[24,1]●t.cen[24,1]

●censored[24,1]

●age[24,2]

●beta.age*age[24,2]

●log(mu24,2])

●mu24,2]

●t[24,2]●t.cen[24,2]

●censored[24,2]

●b[25]

●sex[25]

●beta.sex*sex[25] ●disease[25]

●age[25,1]

●beta.age*age[25,1]

●log(mu25,1])

●mu25,1]

●t[25,1]●t.cen[25,1]

●censored[25,1]

●age[25,2]

●beta.age*age[25,2]

●log(mu25,2])

●mu25,2]

●t[25,2]●t.cen[25,2]

●censored[25,2]

●b[26]

●sex[26]

●beta.sex*sex[26] ●disease[26]

●age[26,1]

●beta.age*age[26,1]

●log(mu26,1])

●mu26,1]

●t[26,1]●t.cen[26,1]

●censored[26,1]

●age[26,2]

●beta.age*age[26,2]

●log(mu26,2])

●mu26,2]

●t[26,2]●t.cen[26,2]

●censored[26,2]

●b[27]

●sex[27]

●beta.sex*sex[27] ●disease[27]

●age[27,1]

●beta.age*age[27,1]

●log(mu27,1])

●mu27,1]

●t[27,1] ●t.cen[27,1]

●censored[27,1]

●age[27,2]

●beta.age*age[27,2]

●log(mu27,2])

●mu27,2]

●t[27,2]●t.cen[27,2]

●censored[27,2]

●b[28]

●sex[28]

●beta.sex*sex[28] ●disease[28]

●age[28,1]

●beta.age*age[28,1]

●log(mu28,1])

●mu28,1]

●t[28,1]●t.cen[28,1]

●censored[28,1]

●age[28,2]

●beta.age*age[28,2]

●log(mu28,2])

●mu28,2]

●t[28,2]●t.cen[28,2]

●censored[28,2]

●b[29]

●sex[29]

●beta.sex*sex[29] ●disease[29]

●age[29,1]

●beta.age*age[29,1]

●log(mu29,1])

●mu29,1]

●t[29,1]●t.cen[29,1]

●censored[29,1]

●age[29,2]

●beta.age*age[29,2]

●log(mu29,2])

●mu29,2]

●t[29,2] ●t.cen[29,2]

●censored[29,2]

●b[30]

●sex[30]

●beta.sex*sex[30] ●disease[30]

●age[30,1]

●beta.age*age[30,1]

●log(mu30,1])

●mu30,1]

●t[30,1] ●t.cen[30,1]

●censored[30,1]

●age[30,2]

●beta.age*age[30,2]

●log(mu30,2])

●mu30,2]

●t[30,2] ●t.cen[30,2]

●censored[30,2]

●b[31]

●sex[31]

●beta.sex*sex[31] ●disease[31]

●age[31,1]

●beta.age*age[31,1]

●log(mu31,1])

●mu31,1]

●t[31,1]●t.cen[31,1]

●censored[31,1]

●age[31,2]

●beta.age*age[31,2]

●log(mu31,2])

●mu31,2]

●t[31,2]●t.cen[31,2]

●censored[31,2]

●b[32]

●sex[32]

●beta.sex*sex[32] ●disease[32]

●age[32,1]

●beta.age*age[32,1]

●log(mu32,1])

●mu32,1]

●t[32,1] ●t.cen[32,1]

●censored[32,1]

●age[32,2]

●beta.age*age[32,2]

●log(mu32,2])

●mu32,2]

●t[32,2]●t.cen[32,2]

●censored[32,2]

●b[33]

●sex[33]

●beta.sex*sex[33] ●disease[33]

●age[33,1]

●beta.age*age[33,1]

●log(mu33,1])

●mu33,1]

●t[33,1] ●t.cen[33,1]

●censored[33,1]

●age[33,2]

●beta.age*age[33,2]

●log(mu33,2])

●mu33,2]

●t[33,2]●t.cen[33,2]

●censored[33,2]

●b[34]

●sex[34]

●beta.sex*sex[34]●disease[34]

●age[34,1]

●beta.age*age[34,1]

●log(mu34,1])

●mu34,1]

●t[34,1] ●t.cen[34,1]

●censored[34,1]

●age[34,2]

●beta.age*age[34,2]

●log(mu34,2])

●mu34,2]

●t[34,2] ●t.cen[34,2]

●censored[34,2]

●b[35]

●sex[35]

●beta.sex*sex[35]●disease[35]

●age[35,1]

●beta.age*age[35,1]

●log(mu35,1])

●mu35,1]

●t[35,1] ●t.cen[35,1]

●censored[35,1]

●age[35,2]

●beta.age*age[35,2]

●log(mu35,2])

●mu35,2]

●t[35,2] ●t.cen[35,2]

●censored[35,2]

●b[36]

●sex[36]

●beta.sex*sex[36]●disease[36]

●age[36,1]

●beta.age*age[36,1]

●log(mu36,1])

●mu36,1]

●t[36,1] ●t.cen[36,1]

●censored[36,1]

●age[36,2]

●beta.age*age[36,2]

●log(mu36,2])

●mu36,2]

●t[36,2] ●t.cen[36,2]

●censored[36,2]

●b[37]

●sex[37]

●beta.sex*sex[37] ●disease[37]

●age[37,1]

●beta.age*age[37,1]

●log(mu37,1])

●mu37,1]

●t[37,1]●t.cen[37,1]

●censored[37,1]

●age[37,2]

●beta.age*age[37,2]

●log(mu37,2])

●mu37,2]

●t[37,2] ●t.cen[37,2]

●censored[37,2]

●b[38]

●sex[38]

●beta.sex*sex[38] ●disease[38]

●age[38,1]

●beta.age*age[38,1]

●log(mu38,1])

●mu38,1]

●t[38,1]●t.cen[38,1]

●censored[38,1]

●age[38,2]

●beta.age*age[38,2]

●log(mu38,2])

●mu38,2]

●t[38,2] ●t.cen[38,2]

●censored[38,2]

Martyn Plummer JAGS

The BUGS language

Design Patterns

Design patterns are reusable solutions to commonly
recurring design problems

Originally developed in architecture, the patterns concept
has been translated to software development.

This may be a useful way of thinking about efficient
sampling of graphical models, which often have a rich
structure.

First we need to look for recurring design motifs

Martyn Plummer JAGS

The BUGS language

GLM as a design motif

Y1 Y2 Yn

θ1 θm

µ1 µ2 µn

η1 η2 ηn

. . .

. . .

. . .

. . .

A GLM is a sub-graph with the
following elements

parameters θ with prior normal
distribution

linear predictors η are linear
functions of the parameters
(intermediate nodes omitted).

link functions transform linear
predictor η to mean value µ

Outcome variables Y depend
on parameters θ via the mean µ

Martyn Plummer JAGS

The BUGS language

GLM as a design motif

Y1 Y2 Yn

θ1 θm

µ1 µ2 µn

η1 η2 ηn

. . .

. . .

. . .

. . .

A GLM is a sub-graph with the
following elements

parameters θ with prior normal
distribution

linear predictors η are linear
functions of the parameters
(intermediate nodes omitted).

link functions transform linear
predictor η to mean value µ

Outcome variables Y depend
on parameters θ via the mean µ

Martyn Plummer JAGS

The BUGS language

GLM as a design motif

Y1 Y2 Yn

θ1 θm

µ1 µ2 µn

η1 η2 ηn

. . .

. . .

. . .

. . .

A GLM is a sub-graph with the
following elements

parameters θ with prior normal
distribution

linear predictors η are linear
functions of the parameters
(intermediate nodes omitted).

link functions transform linear
predictor η to mean value µ

Outcome variables Y depend
on parameters θ via the mean µ

Martyn Plummer JAGS

The BUGS language

GLM as a design motif

Y1 Y2 Yn

θ1 θm

µ1 µ2 µn

η1 η2 ηn

. . .

. . .

. . .

. . .

A GLM is a sub-graph with the
following elements

parameters θ with prior normal
distribution

linear predictors η are linear
functions of the parameters
(intermediate nodes omitted).

link functions transform linear
predictor η to mean value µ

Outcome variables Y depend
on parameters θ via the mean µ

Martyn Plummer JAGS

The BUGS language

GLM as a design motif

Y1 Y2 Yn

θ1 θm

µ1 µ2 µn

η1 η2 ηn

. . .

. . .

. . .

. . .

A GLM is a sub-graph with the
following elements

parameters θ with prior normal
distribution

linear predictors η are linear
functions of the parameters
(intermediate nodes omitted).

link functions transform linear
predictor η to mean value µ

Outcome variables Y depend
on parameters θ via the mean µ

Martyn Plummer JAGS

The BUGS language

Mixed models

Mixed models are usually described using notation due to
Laird and Ware (1982)

η = Xβ + Zb

b ∼ N(0,Ψ)

In software the distinction between fixed effects (β) and
random effects (b) is usually implicit in the model syntax.

If JAGS finds a GLM motif in the model, can it partition the
nodes θ1 . . . θm into fixed and random effects?

Martyn Plummer JAGS

The BUGS language

Distinguishing between fixed and random effects

Classical Bayesian

Maximum likelihood MCMC

β unknown parameter β,b both random variables
b random variable

Marginal likelihood Local likelihood
p(Y | β,Ψ) p(Y | β,b)

Need to estimate Ψ Ψ fixed when updating β,b
X dense (Z,X) form a single design matrix with
Z sparse both dense and sparse components

There are no mixed models, only models with sparse design
matrices.

Martyn Plummer JAGS

The BUGS language

Sparse matrix algebra in JAGS

JAGS uses the sparse matrix libraries CSparse and
CHOLMOD developed by Timothy A Davis.

The same sampling engine handles both fixed-effect (dense)
and mixed (sparse) linear models.

The set of parameters of the linear model θ = (β,b) has
multivariate normal posterior distribution, and so can be
efficiently sampled.

Programming is relatively easy due to the fundamental
connection between graph theory and sparse matrix algebra

Martyn Plummer JAGS

The BUGS language

Extending the linear model sampler

It seems natural to preserve the benefits of the linear sampler
by extending its scope.

This also has the benefit of code reuse as a single sampling
“engine” can address multiple models

Some GLMs can be reduced to linear form by data
augmentation (adding additional nodes to the graph)

Methods have been proposed for Poisson regression and
logistic regression, which are coincidentally the most common
models in epidemiology

Martyn Plummer JAGS

The BUGS language

Albert and Chib (1993) approach to binary probit models
pr

ob
ab

ili
ty

 o
f s

uc
ce

ss

0 η

0
µ

1
de

ns
ity

 o
f N

(η
, 1

)

0 η

µ

µ ≡ P(Y = 1 | η) = Φ(η)

Albert and Chib (1993)
introduce a latent variable

Z ∼ N(η, 1)

and make the outcome Y a
deterministic function of Z

Y = I{Z ≥ 0}

Martyn Plummer JAGS

The BUGS language

Graphical representation of Albert-Chib (1993)

Nodes Z1 . . .Zn are intermediate
between the parameters θ and the
outcomes Y1 . . .Yn so that

θ ⊥⊥ Y | Z

When sampling

θ is updated given Z ignoring
Y, thereby reducing the problem
to a linear model.

Z1 . . .Zn are updated
individually from the truncated
normal

Zi ∼ N(ηi , 1)I{Zi ≥ 0} if Yi = 1
Zi ∼ N(ηi , 1)I{Zi < 0} if Yi = 0

Yi

Zi

θ

i = 1 . . . n

Martyn Plummer JAGS

The BUGS language

Holmes and Held (2006) approach to binary logit models
pr

ob
ab

ili
ty

 o
f s

uc
ce

ss

0 η

0
µ

1
de

ns
ity

 o
f l

og
is

tic
(η

, 1
)

0 η

µ

Logistic regression models with
a binary outcome also have a
latent variable representation,
where the latent Z has a
logistic distribution.

Martyn Plummer JAGS

The BUGS language

Mixture representation of logistic distribution

−4 −2 0 2 4

Logistic density

−4 −2 0 2 4

Normal mixture representation
(finite approximation)

The logistic distribution
is a scale mixture of
normals, where the scale
parameter has a
Kolmogorov-Smirnov
distribution

Z | ψ ∼ N(0, (2ψ)2)

ψ ∼ KS

Martyn Plummer JAGS

The BUGS language

Graphical representation of Holmes and Held logistic model

The logistic-mixture model adds further
auxiliary nodes ψ1 . . . ψn, such that

ψi ⊥⊥ Y | Zi

Hence ψi is updated from [ψi | Zi ,θ]

The Kolmogorov-Smirnov density has
no closed-form expression.

But Devroye (1986) provides two
alternating series expansions that can
be used for rejection sampling of ψi .

Zi is updated from the truncated
logistic distribution Zi | Yi ,θ

Yi

ψi Zi

θ

i = 1 . . . n

Martyn Plummer JAGS

The BUGS language

Frühwirth-Schnatter et al (2010) Poisson regression

In a Poisson regression model, Y ∼ Po(λ) where λ = exp(η).
Frühwirth-Schnatter et al (2010) model Y in terms of an
underlying Poisson process of rate λ, as the number of events
before time 1.

o oo o o t
t = 0 t = 1

U V

Sufficient statistics for η are

U, the last arrival before t = 1
V , the next inter-arrival time.

On a log scale, the model is linear

− log(U) = η − log(ε) where ε ∼ Γ(y − 1, 1)
− log(V) = η − log(ξ) where ξ ∼ exp(1)

Martyn Plummer JAGS

The BUGS language

Frühwirth-Schnatter et al (2010) Poisson regression

In a Poisson regression model, Y ∼ Po(λ) where λ = exp(η).
Frühwirth-Schnatter et al (2010) model Y in terms of an
underlying Poisson process of rate λ, as the number of events
before time 1.

o oo o o t
t = 0 t = 1

U V

Sufficient statistics for η are

U, the last arrival before t = 1
V , the next inter-arrival time.

On a log scale, the model is linear

− log(U) = η − log(ε) where ε ∼ Γ(y − 1, 1)
− log(V) = η − log(ξ) where ξ ∼ exp(1)

Martyn Plummer JAGS

The BUGS language

Frühwirth-Schnatter et al (2010) Poisson regression

In a Poisson regression model, Y ∼ Po(λ) where λ = exp(η).
Frühwirth-Schnatter et al (2010) model Y in terms of an
underlying Poisson process of rate λ, as the number of events
before time 1.

o oo o o t
t = 0 t = 1

U V

Sufficient statistics for η are

U, the last arrival before t = 1
V , the next inter-arrival time.

On a log scale, the model is linear

− log(U) = η − log(ε) where ε ∼ Γ(y − 1, 1)
− log(V) = η − log(ξ) where ξ ∼ exp(1)

Martyn Plummer JAGS

The BUGS language

Frühwirth-Schnatter et al (2010) Poisson regression

In a Poisson regression model, Y ∼ Po(λ) where λ = exp(η).
Frühwirth-Schnatter et al (2010) model Y in terms of an
underlying Poisson process of rate λ, as the number of events
before time 1.

o oo o o t
t = 0 t = 1

U V

Sufficient statistics for η are

U, the last arrival before t = 1
V , the next inter-arrival time.

On a log scale, the model is linear

− log(U) = η − log(ε) where ε ∼ Γ(y − 1, 1)
− log(V) = η − log(ξ) where ξ ∼ exp(1)

Martyn Plummer JAGS

The BUGS language

Mixture representation of negative log-gamma

−2 0 2 4 6

Density of negative log−exponential distribution

−2 0 2 4 6

Finite mixture approximation

The GMRFlib library contains
code for approximating the
negative log-gamma
distribution as a finite mixture
of normals. This code is
borrowed by JAGS, under the
GPL.
Using this mixture
approximation reduced the
model to a normal linear
model.

Martyn Plummer JAGS

The BUGS language

Frühwirth-Schnatter et al (2010) logistic regression

In a logistic regression model Y ∼ Bin(π, n) where π = λ/(1 + λ)
and λ = exp(η). Frühwirth-Schnatter et al (2010) model Y as the
sum of n Bernoulli trials with probability π.

Y =
n∑

i=1

Yj

In each trial, Yj is a function of two latent variables Uj ,Vj

Uj ∼ exp(λ)

Vj ∼ exp(1)

Yj = I{Uj < Vj}

The sufficient statistic for η is U =
∑

j Uj and

− log(U) = η − log(ε) where ε ∼ Γ(n, 1)

The same mixture representation for − log(ε) reduces the model to
a normal linear model

Martyn Plummer JAGS

The BUGS language

Graphical representation

These Poisson and logistic regression
models have the same graphical
representation as the Holmes and Held
logistic model.

ψi is an integer value that determines
which mixture component is in use.

Zi = (Ui ,Vi) can be efficiently
sampled given θ,Yi and marginalizing
over ψi .

Sampling of ψi given Zi ,θ is trivial.

Yi

ψi Zi

θ

i = 1 . . . n

Martyn Plummer JAGS

The BUGS language

Patterns again

Y1 Y2 Yn

Z1 Z2 Zn

θ

. . .

. . .

All of these graphical contain the
same distinctive “fantail” motif.

Whenever this motif is seen in a
graph, Gibbs sampling (i.e. sampling
individual nodes) produces poor
mixing.

When Z is sampled, it depends
strongly on the current value of θ

Conversely, when θ is sampled, it
depends strongly on the current value
of Z.

Martyn Plummer JAGS

The BUGS language

Improved binary probit sampler

Holmes and Held (2006) suggested an improved sampler for the
probit model that removes the dependency of Z on θ. When
updating Z , we integrate out θ.

Y1 Y2 Y2 Yn

Z1 Z2 Z2 Zn

. . .

. . .

In this marginal model, Z has a joint multivariate normal prior.

Z is updated element-wise
[Zi | Yi ,Z−i] has a truncated normal distribution. Its mean
and variance can be calculated from the posterior variance of
θ | Z , which is already calculated by the update method for θ.
This produces substantial increase in efficiency of the sampler

Martyn Plummer JAGS

The BUGS language

Improved binary-logit sampler?

Holmes and Held (2006) extended the marginal sampling method
to the binary logistic model, but found little improvement

To preserve multivariate normality of Z, we need to condition
on the current values of the mixture parameters ψ

But the coverage of the normal mixture component Zi | ψi

can be much smaller than the full distribution of Zi .

This reduces the step-size for the update of each element Zi

and so reduces mixing.

Martyn Plummer JAGS

The BUGS language

Work in progress...

The marginal sampler can be generalized to all auxiliary variable
models

Break down sampling of [Zi | Z−i ,Yi] into two steps
1 Sample [η(i) | Z−i ,ψ−i ,Yi]
2 Sample [Zi | η(i),Yi]

where η(i) is a private version of the linear predictor ηi = xTi θ.

This is an example of redundant parameterization (breaking a
single identifiable node into separate non-identifiable
components)

Step 2 is the same as before

Step 1 is trivial for binary-logit and Poisson models...

Martyn Plummer JAGS

The BUGS language

Conclusions

Data augmentation (adding nodes) simplifies update methods
for GLMs but may lead to poor sampling performance.

Marginalization (removing nodes) removes unwanted
dependencies between nodes, improving sampling
performance.

Redundant parameterization (splitting an identifiable node
into non-identifiable components) combines features of both.

Martyn Plummer JAGS

	The BUGS language

