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Abstract

This paper considers a Bayesian estimation of restricted conditional moment
models with linear regression as a particular example. The standard practice in
the Bayesian literature for linear regression and other semiparametric models is
to use flexible families of distributions for the errors and to assume that the er-
rors are independent from covariates. However, a model with flexible covariate
dependent error distributions should be preferred for the following reasons. First,
assuming that the error distribution is independent of predictors might lead to in-
consistent estimation of the parameters of interest when errors and covariates are
dependent. Second, the prediction intervals obtained from a model with predictor
dependent error distributions are likely to be superior to the ones obtained assum-
ing a constant error distribution. Third, modeling conditional error density might
allow one to obtain a more efficient estimator of the regression coefficients under
heteroscedasticity. To address these issues, we develop a Bayesian semiparametric
regression model with flexible predictor dependent error densities and with mean
restricted by a conditional moment condition. Sufficient conditions to achieve pos-
terior consistency of the regression parameters and conditional error densities are
provided. In experiments, the proposed method compares favorably with classical
and alternative Bayesian estimation methods for the estimation of the regression
coefficients.
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1 Introduction

Estimation of regression coefficients in linear regression models can be consistent but in-

efficient if heteroscedasticity is ignored. Furthermore, the regression curve only provides

a summary of the mean effects but does not provide any information regarding condi-

tional error distributions which might be of interest to the decision maker. Estimation of

conditional error distributions is useful in settings where forecasting and out of sample

predictions are the object of interest. In this paper I propose a novel Bayesian method

for consistent estimation of both linear regression coefficients and conditional residual

distributions when data generating process satisfies a linear conditional moment restric-

tion E[y|x] = x′β or a more general restricted moment condition of E[y|x] = h(x, θ) for

some known function h. The contribution of this proposal is that the model is correctly

specified for a large class of true data generating processes without imposing specific

restrictions on the conditional error distributions and hence efficient estimation of the

parameters of interest might be expected.

The most widely used method to estimate the mean of a continuous response variable

as a function of predictors is, without doubt, the linear regression model. Often the

models considered impose the assumptions of constant variance and/or symmetric and

unimodal error distributions and such restrictions are often inappropriate for real-life

datasets where conditional variability, skewness and asymmetry might hold. The pre-

diction intervals obtained using models with constant variance and/or symmetric error

distributions are likely to be inferior to the prediction intervals obtained from models with

predictor dependent residual densities. To achieve full inference of regression coefficients

and conditional residual densities I propose a semiparametric Bayesian model for simul-

taneous estimation of regression coefficients and predictor dependent error densities. A

Bayesian approach might be more effective in small samples as it enables exact inference

given observed data instead of relying on asymptotic approximations.
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Most of the semiparametric Bayesian literature focuses on constructing nonparametric

priors for error distribution. The common assumption is that the errors are generated in-

dependently from regressors x and usually satisfy either a median or quantile restriction.

Estimation and consistency of such models is discussed in Kottas and Gelfand (2001),

Amewou-Atisso et al. (2003) and Wu and Ghosal (2008) among others. However, esti-

mation of regression coefficients and error densities might be inconsistent if errors and

regressors are dependent. For example, under heteroscedasticity or conditional asym-

metry of error distributions the pseudo-true values of regression coefficients in a linear

model with errors generated by regressor independent mixtures of normals are not gener-

ally equal to the true parameter values. One of the contributions of this paper is to show

that the model proposed in this manuscript that incorporates predictor dependent resid-

ual densities is flexible and leads to consistent estimation of both regression coefficients

and residual densities. Other Bayesian proposals that incorporate predictor dependent

residual density modeling into parametric models are by Pati and Dunson (2009) where

residual density is restricted to be symmetric, by Kottas and Krnjajic (2009) for quantile

regression but without accompanying consistency theorems and by Leslie et al. (2007) who

accommodate heteroscedasticity by multiplying the error term by a predictor dependent

factor. However, none of these papers address the issue of conditional error asymmetry,

and the estimation of regression coefficients by these methods might be inconsistent in

the presence of residual asymmetry as the models are misspecified.

Flexible models with covariate dependent error densities might lead to a more effi-

cient estimator of the regression coefficients. For a linear regression problem, often only

the regression coefficient β is of interest. It is a well known fact that if the conditional

moment restriction holds then the weighted least squares estimator is more efficient than

ordinary least squares estimator under heteroscedasticity. It is known that in parametric

models, by assertion of Le Cam’s parametric Bernstein-von Mises theorem, the posterior
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behaves as if one has observed normally distributed maximum likelihood estimator with

variance equal to the inverse of Fisher information, see van der Vaart (1998). Semipara-

metric versions of Bernstein-von Mises theorem have been obtained by Shen (2002) and

Kleijn and Bickel (2010), but the conditions are hard to verify. Nonetheless there is an

expectation that posterior distribution of β is normal and centered at the true value in

correctly specified semiparametric models if the priors are carefully chosen. Since the

most popular frequentist approach of using OLS with heteroscedasticity robust covari-

ance matrix (White (1982)) is suboptimal in a linear regression model with conditional

moment restriction, one should expect to achieve a more efficient estimator by estimating

a correctly specified model proposed here. Simulation results presented in Section 4 sup-

port the hypothesis that the proposed model gives a more efficient estimator of regression

coefficients under heteroscedasticity.

The defining feature of the proposed model is that we impose a zero mean restriction

for residual distributions conditional on any predictor value. We model residual distribu-

tions flexibly as a finite or infinite mixtures of a base kernel. The base kernel for residual

density is a mixture of two normal distributions with a joint mean of 0.

The probability weights in both finite and infinite mixtures are predictor dependent

and vary smoothly with changes in predictor values. We consider a finite smoothly mixing

regression model similar to the ones considered by Geweke and Keane (2007) and Norets

(2010) and show that estimation would be consistent if the number of mixtures is allowed

to increase. In such models, an appropriate number of mixtures needs to be selected

which presents an additional complication. To avoid such complications, an alternative

is to estimate a fully nonparametric model (i.e. infinite mixture). We consider the

kernel stick breaking process as a fully non-parametric approach to inference in a linear

regression model defined by a conditional moment restriction. This flexible approach leads

to consistent estimation of both regression coefficients and conditional residual densities.
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Another contribution of this paper is to provide weak posterior consistency theorems

for conditional density estimation in a Bayesian framework for a large class of true data

generating processes using kernel stick breaking process (KSBP) with an exponential

kernel proposed by Dunson and Park (2008). There are two alternative approaches for

conditional density estimation in the Bayesian literature. The first general approach is

to use dependent Dirichlet processes (MacEachern (1999), De Iorio et al. (2004), Griffin

and Steel (2006) and others) to model conditional density directly. The second approach

is to model joint unconditional distributions (Muller et al. (1996), Norets and Pelenis

(2012) and others) and extract conditional densities of interest from joint distribution of

observables. Even though many varying approaches for direct modeling of conditional

distributions have been considered, consistency properties have been largely unstudied

and only recent studies of Tokdar et al. (2010), Norets and Pelenis (2011) and Pati et al.

(2011) address this question using different setups. We provide a set of sufficient condi-

tions to ensure weak posterior consistency of conditional densities using KSBP with an

exponential kernel and mixtures of Gaussians and indirectly achieve posterior consistency

of regression coefficients.

In Section 4, we conduct a Monte Carlo evaluation of the proposed method and

compare it to a selection of alternative Bayesian and classical approaches for estimat-

ing regression coefficients. The proposed semiparametric estimator has smaller RMSE

and Bayesian risk under linex loss than other alternatives under heteroscedasticity and

performs equally well under homoscedasticity. The alternative semiparametric Bayesian

estimator based on error density modeled as a mixture of normal distributions performs

worse than other methods both under heteroscedasticy and conditional asymmetry of er-

ror distributions. This is unsurprising as the pseudo-true values of regression coefficients

in this misspecified alternative Bayesian semiparametric model are not equal to the true

parameter values.
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The outline of the paper is as follows: Section 2 introduces the finite and infinite

models for estimation of a semiparametric linear regression with a conditional moment

constraint. Section 3 provides theoretical results regarding the posterior consistency of

both the parametric and nonparametric components of the model. Section 4 contains

small sample simulation results. Section 5 concludes and suggests directions for future

research. The proofs and fine details of posterior computation are contained in the

Appendix.

2 Restricted Moment Model

The data consists of n observations of (Yn, Xn) = {(y1, x1), (y2, x2), . . . , (yn, xn)} where

yi ∈ Y ⊆ R is a response variable and xi ∈ X ⊆ Rd are the covariates. The observations

are independently and identically distributed (yi, xi) ∼ F0 under the assumption that the

data generating process (DGP) satsifies EF0 [y|x] = h(x, θ0) for all x ∈ X for some known

function h : X ×Θ 7→ Y . Alternatively, the restricted moment model can be written as

yi = h(xi, θ0) + εi, (yi, xi) ∼ F0, i = 1, . . . , n.

with EF0 [ε|x] = 0 for all x ∈ X .

The unknown parameters of this semiparametric model would be (θ, fε|x), where θ is

the finite dimensional parameter of interest and fε|x is the infinite dimensional parameter.

Let Ξ = Fε|x × Θ be the parameter space, where Θ denotes the space of θ and Fε|x the

space of conditional densities with mean zero. That is θ ∈ Θ ⊂ Rp and

Fε|x =

{
fε|x : R×X 7→ [0,∞) :

∫
R
fε|x(ε, x)dε = 1,

∫
R
εfε|x(ε, x)dε = 0 ∀x ∈ X

}
.

The primary objective is to construct a model to consistently estimate the parameter
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of interest θ0, while consistent estimation of the conditional error densties f0,ε|x is of

secondary interest. This joint objective is achieved by proposing a flexible predictor

dependent model for residual densities that allows the residual density to vary with

predictors x ∈ X . the model is correctly specified under weak restrictions on Fε|x and

leads to consistent estimation of both θ0 and conditional error densities. Furthermore,

the simulation results in Section 4 show that this flexible approach might be helpful to

achieve a more efficient estimates of the parameter of interest θ0.

2.1 Finite Smoothly Mixing Regression

First, we define a density f2(·) which is a mixture of two normal distributions with a joint

mean of zero. That is density of f2 given parameters {π, µ, σ1, σ2} is defined as

f2(ε; π, µ, σ1, σ2) = πφ(ε;µ, σ2
1) + (1− π)φ(ε;−µ π

1− π
, σ2

2)

where φ(ε;µ, σ2) is a standard normal density evaluated at ε with mean µ and variance

σ2. Note that by construction a random variable ε with a probability density function f2

has an expected value 0 as desired. In Section 3 we show that any density belonging to

a large class of densities with mean 0 can be approximated by a countable collection of

mixtures of f2.

The proposed finite smoothly mixing regression model that imposes a conditional

moment restriction is a special case of a mixtures of experts as introduced by Jacobs

et al. (1991). Let the proposed modelMk be defined by a set of parameters (ηk, θ) where

θ is the parameter of interest and ηk are the nuisance parameters that induce conditional
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densities fε|x. The density of observable yi is modeled as:

p(yi|xi, θ, ηk) =
k∑
j=1

αj(xi)f2 (yi − h(xi, θ);πj, µj, σj1, σj2) (1)

k∑
j=1

αj(xi) = 1, ∀xi ∈ X

where αj(xt) is a regressor dependent smoothly varying probability weight. Note that

by construction Ep[y|x] = h(x, θ) as desired. The conditional distribution of residuals is

modeled as a flexible countable mixture of densities f2 with predictor dependent mixing

weights.

Modeling of αj(x) is the choice of the econometrician and there are few available

alternatives. We will use a linear logit regression considered by Norets (2010) as it has

desirable theoretical properties. Mixing probabilities αj(xi) are modeled as

αj(xi) =
exp

(
ρj + γ′jxi

)∑k
l=1 exp (ρl + γ′lxi)

. (2)

The linear logit regression is not a unique choice as Geweke and Keane (2007) considered

a multinomial probit model for αj(x), and a multiple number of alternative possibilities

have been considered in predictor-dependent stick breaking process literature. Generally,

this finite mixture model can be considered as a special case of smoothly mixing regression

model for conditional density estimation that imposes a linear mean but leaves residual

densities unconstrained.

The full finite mixture model is characterized by the parameter of interest θ and the

nuissance parameters ηk ≡
{
πj, µj, σj1, σj2, ρj, γ

′
j

}k
j=1

. To complete the characterization

of this model one would specify a prior Πθ on Θ and a prior Πfε|x on Fε|x is induced by

a prior Πη on the parameters ηk. These priors induce a joint prior Π = Πθ × Πfε|x on Ξ.

In Section 3 we show that for any true DGP F0 there exists k large enough and
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parameters (θ, ηk) such that the proposed model is arbitrarily close in KL distance to the

true DGP. This property can be used to show that a consistent estimation of θ0 would

be obtained with k →∞.

2.2 Infinite Smoothly Mixing Regression

Estimation of a finite mixture model introduces an additional complication of having

to estimate the number of mixture components k. An alternative solution would be to

consider an infinite smoothly mixing regression. The conditional density of the observable

yi is modeled as:

p(yi|xi, θ, η) =
∞∑
j=1

pj(xi)f2 (yi − h(xi, θ); πj, µj, σj1, σj2)

where η are nuissance parameters to be specified later, pj(xi) is a predictor dependent

probability weight and
∑∞

j=1 pj(x) = 1 a.s. for all x ∈ X . To construct this infinite

mixture model we will employ predictor-dependent stick breaking processes.

Similarly to the choice of αj(x) in the finite smoothly mixing regressions, various

constructions of pj(x) have been considered in the literature. Those methods include

order based dependent Dirichlet processes (πDDP) proposed by Griffin and Steel (2006),

probit stick-breaking process (Chung and Dunson (2009b)), kernel stick-breaking process

(Dunson and Park (2008)) and local Dirichlet process (lDP) (Chung and Dunson (2009a))

which is a special case of kernel stick-breaking processes. We will be employing a kernel

stick-breaking process introduced by Dunson and Park (2008). It is defined using a

countable sequence of mutually independent random components Vj ∼ Beta(aj, bj) and

Γj ∼ H independently for each j = 1, . . .. The covariate dependent mixing weights are
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defined as:

pj(x) = VjKϕ(x,Γj)
∏
l<j

(1− VlKϕ(x,Γl)), for all x ∈ X

where K : Rd × Rd → [0, 1] is any bounded kernel function. Kernel functions that

have been considered in practice are Kϕ(x,Γj) = exp(−ϕ||x − Γj||2) and Kϕ(x,Γj) =

1(||x− Γj|| < ϕ), where || · || is the Euclidean distance.

Jointly the conditional density of yi conditional on covariate xi is defined as

p(yi|xi, θ, η) =
∞∑
j=1

pj(xi)f2 (yi − h(xi, θ); πj, µj, σj1, σj2) (3)

pj(x) = VjKϕ(x,Γj)
∏
l<j

(1− VlKϕ(x,Γl))

where K : Rd×Rd → [0, 1] is a bounded kernel function,
{
πj, µj, σ

2
j1, σ

2
j2

}
∼ G0, Γj ∼ H,

Vj ∼ Beta(aj, bj), ϕ ∼ Πϕ and θ ∼ Πθ where Πϕ and Πθ are prior distributions for ϕ

and θ. The nuissance parameter is η = {ϕ, {πj, µj, σj1, σj2, Vj,Γj}∞j=1} and jointly these

priors on the nuissance parameters induce a prior Πfε|x on Fε|x.

This is a very flexible model for predictor dependent conditional densities, however it

also imposes the desired property that conditional error densities have a mean of zero in

order to identify parameter of interest θ. We will show that this is a ‘correctly’ specified

model for the DGP as posterior concentrates on the true parameter θ0 and on a weak

neighborhood of the true conditional densities f0,ε|x and a particular choice of a kernel

function. Exponential kernel is chosen as it is closely related to the linear logit regression

used in finite mixture model. Therefore, we will use kernel stick-breaking processes with

exponential kernel as our choice to construct pj(x).

Even though practical suggestions have been plentiful, theoretical results regarding the

consistency properties of predictor dependent stick-breaking processes are scarce. Related
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theoretical results are presented by Tokdar et al. (2010) One of the key contributions of

this paper is Theorem 2 in Section 3 which proves that kernel stick-breaking processes with

exponential kernel can be used to consistently estimate flexible unrestricted conditional

densities. Other predictor dependent stick-breaking processes could be considered for

the estimation of this model as well, and it might be of interest to do if and when

other theoretical results regarding consistent conditional density estimation using those

processes are provided.

3 Consistency Properties

We provide general sufficient conditions on the true data generating process that lead to

posterior consistency in estimating regression parameters and conditional residual densi-

ties. I show that residual densities induced by the proposed models can be chosen to be

arbitrarily close in Kullback-Leibler distance to true conditional densities that satisfy the

conditional moment restriction. That is the Kullback-Leibler (KL) closure of proposed

models in Section 2 include all true data generating distributions that satisfy a set of

general conditions outlined below.

Let p(y|x,M) be the conditional density of y given x implied by some modelM. The

models considered in this paper were presented in Sections 2.1 and 2.2. Let the true data

geberating joint density of (y, x) be f0(y|x)f0(x), then the joint marginal density induced

by the model M is p(y|x,M)f0(x). Note that in the models considered in Section 2

we modeled only conditional error density and left the data generating density f0(x) of

x ∈ X unspecified. The KL distance between f0(y|x)f0(x) and p(y|x,M)f0(x) is defined

as

dKL(f0, pM) =

∫
log

f0(y|x)f0(x)

p(y|x,M)f0(x)
F0(dy, dx) =

∫
log

f0(y|x)

p(y|x,M)
F0(dy, dx). (4)
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Given the true conditional data generating density f0(y|x), define f0,ε|x as f0,ε|x(ε|x) =

f0(ε+h(x, θ0)|x). We say that posterior is consistent for estimating (f0,ε|x, θ0) if Π(W|Yn, Xn)

converges to 1 with P n
F0

probability as n→∞ for any neighborhoodW of (f0,ε|x, θ0) when

the true data generating distribution is F0. We define a weak neighborhood Uδ(fε|x) as

Uδ(fε|x) =

{
f|x : f|x ∈ Fε|x,

∣∣∣∣∫
R×Y

gf|x(ε, x)f0(x)dεdx−
∫
R×Y

gfε|x(ε, x)f0(x)dεdx

∣∣∣∣ < δ,

g : R×X 7→ R is bounded and uniformly continuous } .

Then we consider neighborhoodsW of (f0,ε|x, θ0) of the form Uδ(f0,ε|x)×{θ : ||θ−θ0|| < ρ}

for any δ > 0 and ρ > 0. Since our primary objective is consistent estimation of θ0 it

suffices to consider only the weak neighborhoods of conditional densities.

First, we will consider the case of the finite model described in Section 2.1. Let the

proposed model Mk be defined by the parameters (ηk, θ). Then we show that there

exists k large enough and a set of parameters (ηk, θ) such that KL distance between true

conditional densities and the ones implied by the finite model is arbitrarily close to 0.

Theorem 1. Assume that

1. f0(y|x) is continuous in (y, x) a.s. F0.

2. X has bounded support and EF0 [y
2|x] <∞ for all x ∈ X .

3. For any (y, x) there exists a hypercube C(δ, y, x) with side length δ and y ∈ C(δ, y, x)

such that ∫
log

f0(y|x)

infz∈C(δ,y,x),||x−t||<δ f0(z|t)
F0(dy, dx) <∞ (5)

Let p(·|·, θ, ηk) be defined as in Equations (1) and (2). Then, for any ε > 0 there exists

(ηk, θ) such that

dKL(f0(·|·), p(·|·, θ, ηk)) < ε.
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Theorem 1 is proved rigorously in the appendix. The basic idea is that any uncondi-

tional density with mean 0 can be approximated by a finite mixture of f2 densities. To

approximate conditional densities we show that the proposal of mixing weights α(x) is

flexible enough so that for any x ∈ X most of the mass on the neighborhood of x induced

by a subset of particular mixing weights approaches 1. Then only unconditional density

with mean 0 at that particular x ∈ X has to be approximated and that is feasible.

The results above imply the existence of a large number k of mixture components

such that induced conditional densities are close to the true values of the DGP. However,

this does not provide a direct method of estimating k, the number of mixtures, to be

used in applications. Furthermore, one can show that any finite model could have pseu-

dotrue values of θ different from true values for some data generating distributions that

belong to the general class F of DGPs. Such concerns do not play a role if an infinite

smoothly regression model induced by a predictor dependent stick breaking process prior

is used for inference. Below we show that estimation of infinite mixture model would

lead to posterior consistent estimation of f0,ε|x and θ0. Hence, we provide the necessary

theoretical foundation for the use of infinite mixture model.

For the infinite mixture model defined in the Equation 1, the priors G0, H,ΠV ,Πϕ,Πθ

and a choice of kernel function Kϕ induce a prior Π on Ξ. A conditional density func-

tion fx is said to be in the KL support of the prior Π (i.e. fx ∈ KL(Π)), if for all

ε > 0, Π(Kε(fx)) > 0, where Kε(fx) ≡ {(θ, η) : dKL(fx(·|·), p(·|·, θ, η)) < ε} and dKL(·, ·)

is defined in the Equation 4. The next theorem shows that if a true data generating

distribution F0 satisfies the assumptions of the Theorem 1, then f0 belongs to the KL

support of Π under general conditions on the prior distributions and for a particular

kernel function.

Theorem 2. Assume F0 satisfies assumptions of Theorem 1 and f0(·|·) are covariate

dependent conditional densities of y ∈ Y induced by F0. Let Kϕ(x,Γ) = exp(−ϕ||x−Γ||2)
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and let the prior Π be induced by the priors G0, H,ΠV ,Πϕ,Πθ. If the priors are such that

θ0 is an interior point of support of Πθ, Π(σj1 < δ) > 0 for any δ > 0 and X ⊂ supp(H),

then f0 ∈ KL(Π).

The full proof of the theorem is provided in the Appendix, while the intuition is

provided below. The proof is constructing by showing that there exists a particular set

of parameters of infinite smoothly mixing regression and an open neighborhood of this

particular set of parameters that are arbitrarily close in KL sense to the finite smoothly

mixing regression that is close to the DGP. Hence the true data generating conditional

densities belong to the KL support of the prior Π.

Once the KL support property is established we hope to proceed to use Schwartz’s

posterior consistency theorem (Schwartz (1965)) to show that posterior is weakly con-

sistent at f0,ε|x and θ0. First, we will consider the case of the linear regression with

h(x, θ) = x′θ as an illustrative example of the additional assumptions that are necessary

to achieve posterior consistency. Let γ ∈ {−1, 1}D and define a quadrant Qγ = {z ∈ Rd :

zjγj > 0 for all j = 1, . . . , d. Furthermore, we require an additional assumption.

Assumption A: For any γ, F0(Qγ\{X : |xi| < ξ}) > 0 for each i = 1, . . . , d and some

ξ > 0. This is an assumption used by Wu and Ghosal (2008) and it plays a similar role

to the assumption of no multicolinearity in the DGP so that θ0 can be identified.

Theorem 3. An (almost) immediate implication of Schwartz (1965). Suppose that F0

satisfy the assumptions of the Theorem 1 and Assumption A and that the prior distri-

butions satisfy the requirements of the Theorem 2. Furthermore, the prior is restricted

so that Ef [ε2|x] < L for all x ∈ X and all f ∈ supp(Πfε|x) and some large L. Let

W = Uδ(f0,ε|x) × {θ : ||θ − θ0|| < ρ} for some δ > 0 and ρ > 0, then Π(Wc|Yn, Xn) → 0

a.s. P∞F0
.

The theorem is proved rigorously in the Appendix. It consists of the construction

of exponentially consistent tests for testing H0 : (fε|x, θ) = (f0,ε|x, θ0) against alternative
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hypothesis H1 : (fε|x, θ) ∈ Wc. Once that is accomplished it is a straightforward appli-

cation of Schwartz’s posterior consistency theorem as KL-property is already proved in

Theorem 2.

Theorem 3 can be extended to other restricted moment models beyond linear regres-

sion case. This would require specifying additional assumptions on the function h(·, ·)

such as Lipshitz continuity and an equivalent version of the Assumption A. These results

will be provided in the near future.

In this section we presented novel results of posterior consistency properties for para-

metric and nonparametric parts of restricted moment moedels with conditional moment

constraint. Given the desirable theoretical properties that both parametric and nuissance

parts are consistently estimated it achieves the two objectives. Firstly, the estimation of

the parameter of interest is consistent. Secondly, consistent estimation of the nuissance

parameter, which is conditional error densities in this case, might lead to a more efficient

estimation of the parameter of interest which would be a justification for the estimation

of the full semiparametric model.

4 Simulation Examples

A number of simulation examples is considered to asses the performance of the method

proposed in this paper. Consider a linear regression model with

yi = α + x′iβ + εi, , (yi, xi)
iid∼ F0, i = 1, . . . , n.

and EF0 [εi|xi] = 0 and x is one-dimensional. We consider four alternative data generating

processes (DGPs), with first three suggested by Müller (2010).

1. Case (i): yi = 0 + 0 · xi + εi, εi ∼ N(0, 1).

2. Case (ii): yi = 0 + 0 · xi + εi, εi|xi ∼ N(0, a2(|xi|+ 0.5)2), where a = 0.454 . . .
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3. Case (iii): yi = 0 + 0 · xi + εi, εi|xi, s ∼ N([1 − 2 · 1(xi < 0)]µs, σ
2
s), where P (s =

1) = 0.8, P (s = 2) = 0.2, µ1 = −0.25, σ1 = 0.75, µ2 = 1 and σ2 =
√

1.5.

4. Case (iv): yi = 0+0·xi+εi, εi|xi ∼ N(xiµs, 0.5
2), where P (s = 1) = P (s = 2) = 0.5

and µ1 = −µ2 = 0.5.

All four DGPs are such that E[(xiεi)
2] = 1 and xi ∼ N(0, 1).

Inference is based on the following methods. First, Bayesian inference based on the ar-

tificial sandwich posterior (OLS) as proposed by Müller (2010). Let θ = (α, β)′, then θ ∼

N(θ̂, Σ̂) where θ̂ is the ordinary least squares coefficient and Σ̂ is the “sandwich” covari-

ance matrix. Note that inference based on this sandwich posterior is asymptotically equiv-

alent to inference using Bayesian bootstrap (Lancaster (2003)) so there is a Bayesian alter-

native to this frequentist inspired procedure when the regression coefficient is the object

of interest. Second, Bayesian inference based on a normal regression model (NLR), where

εi|xi ∼ N(0, h−1) with priors θ ∼ N(0, (0.01I2)−1), 3h ∼ χ2
3. Third, Bayesian inference

based on a normal mixture linear regression model (MIX) with εi|xi, s ∼ N(µs, (hhs)−1)

and P (s = j) = πj, j = 1, 2, 3 with priors θ ∼ N(0, (0.01I2)−1), 3h ∼ χ2
3, 3hj ∼

χ2
3, (π1, π2, π3) ∼ Dirichlet(3, 3, 3) and µj

iid∼ N(0, (0.4h)−1). Fourth, Bayesian inference

on a linear regression model (TLR) with student-t disturbances with εi|xi ∼ t(0, h−1, λ).

The priors are set to θ ∼ N(0, (0.01I2)−1), 3h ∼ χ2
3 and λ ∼ exp(10). Finally, Bayesian

inference based on the conditional linear regression model (CLR) proposed in this pa-

per. We consider the finite model with n = 5 number of states. The priors are set to

θ ∼ N(0, (0.01I2)−1), γj ∼ N(0, (0.01I2)−1), 3hji ∼ χ2
3, µ̃j ∼ N(0, 0.25−1), π = 10 for all

j = 1, . . . , n and i = 1, 2. Posterior computation and full description of the priors are

contained in the Appendix.

The parameter of interest is β ∈ R and we consider four separate criteria for the

evaluation of the performance of the proposed estimators. We will compute both root

mean squared error (RMSE) and risk under linex loss as suggested by Müller (2010),
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where linex loss function at α = β = 0 is

ln(θ, a) = exp[2
√
n(β − a)]− 2

√
n(β − a)− 1

with a ∈ R. While Bayesian credibility regions are different from confidence intervals

in practice one can still expect some similarity even in moderate samples. Therefore,

for practical purposes we construct 95% intervals using 0.025 and 0.975 quantiles of

the posterior distribution and report coverage probabilities. Furthermore, we consider

the lengths of these credibility regions as another indicator of the performance of the

estimator. Similar approaches for evaluating performance have been considered by Conley

et al. (2008).

We repeat simulation exercise 1000 times for each DGP. The results are displayed

in Table 1. Relative performance of the methods is similar whether RMSE, linex loss,

coverage, or interval length is used as an evaluation criterion. The results show that the

conditional linear regression model proposed in this paper performs better than alterna-

tives in Cases (ii) and (iv) in the presence of heteroscedasticity and performs comparably

in other cases. In Cases (i) and (iii) the best performing models should be OLS and

NLR since it is well know that OLS estimator achieves the semi-parametric efficiency

under homoscedasticity. Note that both models MIX and TLR perform worse in Cases

(iii) and (iv) due to (conditional) assymetries of the error distribution. In Case (iii)

this is expected since the pseudotrue value of β is not the true β0 = 0 for either of the

models. One has to be careful when estimating linear models with flexible unconditional

error disturbances such as mixture of normals or symmetric student-t disturbances. As

demonstrated in this simulation example estimation of linear models with student-t dis-

turbances (and with other more flexible symmetric residual densities as proposed in Pati

and Dunson (2009)) might be misguided if the regression coefficients are the object of

interest. The reason being that the pseudo-true values of β might be different from true
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Table 1: Simulation results

Case (i) Case (ii) Case (iii) Case (iv)
Method Criterion

CLR 0.070 0.060 0.072 0.067
OLS 0.070 0.069 0.071 0.071
NLR RMSE 0.070 0.069 0.070 0.071
MIX 0.071 0.067 0.083 0.075
TLR 0.070 0.067 0.080 0.081
CLR 1 1 1 1
OLS 0.97 1.39 1.05 1.28
NLR Linex Loss Risk 0.99 1.84 1 1.78
MIX 1.02 1.47 1.54 2.15
TLR 0.98 1.58 1.31 5.44
CLR 0.971 0.948 0.965 0.935
OLS 0.946 0.948 0.949 0.942
NLR Coverage 0.950 0.805 0.947 0.847
MIX 0.947 0.843 0.905 0.841
TLR 0.948 0.843 0.911 0.836
CLR 0.30 0.23 0.30 0.25
OLS 0.28 0.27 0.28 0.27
NLR Interval Length 0.28 0.18 0.28 0.20
MIX 0.28 0.20 0.27 0.21
TLR 0.28 0.20 0.27 0.21

Notes: DGPs are in columns and methods of inference in rows. Entries are RMSE, risk

under linex loss using the row model divided by the risk of the method (CLR) proposed in

this paper, Coverage of 95% Bayesian credibility region and interval length of the Bayesian

credibility region. Bayesian inference in each method is implemented by a Gibbs sampler

with 8000 draws and first 2000 discarded as burn-in, and the risks are estimated from

1000 draws from each DGP. Bayes actions are determined numerically from the posterior

distribution.
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β0, for example, when disturbances are asymmetric. As expected, the model proposed

in this paper outperforms in the heteroscedastic cases and performs comparably in the

homoscedastic cases.

5 Concluding Remarks

A related line of research would be to consider estimating parametric models with condi-

tional median or quantile restraints. Conditional residual distributions could be modeled

as a mixture of mixtures of two normal distributions that satisfy the necessary quantile

restriction and the flexibility is achieved as the mixture weights vary with predictors. The

general idea of this strand of research is to estimate parametric models with extremely

flexible varying residual distributions and compare the performance of estimation with

alternative misspecified models.

More importantly, it would be good to determine the conditions on the true data gen-

erating processes such that asymptotic semiparametric efficiency bound could be achieved

by estimating the proposed models. Or alternatively, to provide some conclusive theoret-

ical evidence that efficiency bounds will not be obtained by estimation of the models that

are too flexible in the nuissance parameter estimation and provide alternative practical

suggestions to achieve semiparametric efficiency bounds.
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6 Appendix

6.1 Proofs

Proof. (Theorem 1)

Note that dKL is always non-negative, hence for any model Mm,n

0 ≤
∫

log
f0(y|x)

p(y|x, θm,n,Mm,n)
F0(dy, dx) ≤

∫
log max

{
1,

f0(y|x)

p(y|x, θm,n,Mm,n)

}
F0(dy, dx).

Therefore, it would suffice to show that the last integral in the inequality converges to

0 as (m,n) increase. Dominated convergence theorem will be used for that. In the first

part we will show pointwise convergence to 0 for any given (y, x) a.s. F . Then we will

present conditions for the existence of an integrable upper bound on the integrand.

Pointwise Convergence

Let Amj , j = 0, 1, . . . ,m, be a partition of Y , where Am1 , . . . , A
m
m are adjacent cubes

with side length hm and Am0 is the rest of set Y . Let Bn
j , j = 0, 1, . . . , N(n), be a

partition of X with N(n) = nd, where Bn
1 , . . . , B

n
N(n) are adjacent cubes with side length

λn and Bn
0 is the rest of X . This partition has to satisfy two conditions. First, the

partition becomes finer as n increases with λn → 0. Second, the area covered by the finer

partition has to increase and eventually cover the whole support of X , i.e. λdnN(n)→∞.

Furthermore, let xni be the center of Bn
j , j = 1, . . . , N(n) and xn0 ∈ Bn

0 be such that{
||xn0 − x||2 > sn : ∀x ∈

⋃N(n)
i=1 Bn

i

}
where sn is the squared diagonal of Bn

i . Let’s consider

a model Mm,n such that

p(y|x,Mm,n) =

N(n)∑
j=0

m∑
i=0

αnmji (x)φ
(
y − h(x, θ);µji, σ

2
ji

)
(6)

N(n)∑
j=0

m∑
i=0

αnmji (x)µji = 0 for all x ∈ X .
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We propose mixing probabilities such that

αnmji (x) = πjiαj(x)

πji = F (Ami |xnj )

αj(x) =
exp

(
−cn(xnj

′xnj − 2xnj
′x)
)∑N(n)

i=0 exp (−cn(xni
′xni − 2xni

′x))
.

Under appropriate conditions for cn, we can show that some collection of αj(x) ap-

proximates 1Bnj (x). All that is required is that cn is such that cn →∞ and

exp {−cnsn}/N(n)→ 0, where sn = λ2
nd

i.e. sn is the squared diagonal of Bn
i . Such a sequence cn always exists, for exam-

ple all the necessary conditions would be satisfied for λn = N(n)−dn−1/2 = n−1/2 and

cn = s−2
n . Following the proof of Proposition 4.1. in Norets (2010) define In1 (x, sn) ={

j : ||xnj − x||2 < sn
}

. Using the arguments of the proof of Proposition 4.1. we know that

for (n,m) large enough for any j ∈ In1 (x, sn)

∑
j∈In1 (x,sn)

αj(x) ≥ 1− exp {−cnsn}/N(n). (7)

Assume that |∂h(x, θ0)/xj| < T for all x ∈ X . Next, let δ∗m = δm + (d1/2λn · 1d)′T

where δm → 0. Then for j ∈ In1 (x, sn) and Ami ⊂ Cδ∗m(y), where Cδ(y) is a cube with

center y and side length δ,

F (Ami |xnj ) ≥ λ(Ami ) inf
z∈Cδ∗m (y),||t−x||2≤sn

f(z|t).
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Then, inequality above and equation (6) imply

p(y|x,Mm,n) >
∑

j∈In1 (x,sn)

∑
i:Ami ⊂Cδ∗m (y)

F (Ami |xnj )
exp

(
−cn(xnj

′xnj − 2xnj
′x)
)∑N(n)

k=1 exp (−cn(xnk
′xnk − 2xnk

′x))

× φ
(
y − h(x, θ);µji, σ

2
ji

)
≥ inf

z∈Cδ∗m (y),||t−x||2≤sn
f(z|t) · [1− exp {−cnsn}/N(n)]

×
∑

i:Ami ⊂Cδ∗m (y);j∈In1 (x,sn)

λ(Ami )φ
(
y − h(x, θ);µji, σ

2
ji

)
.

Next, I show that there exists a set of parameters
{
θ, {µji}N(n),m

j=0,i=0

}
such that

∑
i:Ami ⊂Cδ∗m(y);j∈In1 (x,sn)

λ(Ami )φ
(
y − h(x, θ);µji, σ

2
ji

)
(8)

approaches 1 as (n,m) increase.

For each xnj the parameters {µji}mi=0 must satisfy

m∑
i=0

πjiµji =
m∑
i=0

F (Ami |xnj )µji = 0. (9)

Let θ = θ0, let cmi be the center of the cube Ami if i 6= 0, then for i 6= 0 let µji =

cmi + dmj − h(xnj , θ0) where dmj ∈ [−hm/2, hm/2] and let µj0 be

µj0 =

∫
Am0

f(y|xnj )(y − h(xnj , θ0))dy

F (Am0 |xnj )

if F (Am0 |xnj ) > 0 and µj0 = 0 otherwise. Then we will show that there exists dmj such
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that equation (9) is satisfied. Define function G(dmj ) as

G(dmj ) =
m∑
i=0

F (Ami |xnj )µji

=
m∑
i=1

∫
Ami

f(y|xnj )(cmi + dmj − h(xnj , θ0))dy +

∫
Am0

f(y|xnj )(y − h(xnj , θ0))dy.

Clearly, the function G(dmj ) is linear in dmj and therefore continuous in dmj . Note that

G(hm/2) =
m∑
i=1

∫
Ami

f(y|xnj )(cmi + hm/2− h(xnj , θ0))dy +

∫
Am0

f(y|xnj )(y − h(xnj , θ0))dy

≥
m∑
i=1

∫
Ami

f(y|xnj )(y − h(xnj , θ0))dy +

∫
Am0

f(y|xnj )(y − h(xnj , θ0))dy

≥
m∑
i=0

∫
Ami

f(y|xnj )(y − h(xnj , θ0))dy = 0

since E[y|x] = h(x, θ0) for all x ∈ X and hence G(hm/2) ≥ 0. By the same argument it

follows that 0 ≥ G(−hm/2). As we have mentioned earlier G(·) is a continuous function,

therefore ∃ dmj ∈ [−hm/2, hm/2] such that G(dmj ) = 0 and equivalently equation (9) is

satisfied.

Now we can revisit equation (8) and show that it converges to 1. Let σji = σm if

i > 0. For m large enough it is true that ∅ 6=
{
i : Ami ⊂ Cδ∗m(y)

}
, therefore

∑
i:Ami ⊂Cδ∗m(y);j∈In1 (x,sn)

λ(Ami )φ
(
y − h(x, θ0);µji, σ

2
m

)
=

∑
i:Ami ⊂Cδ∗m(y);j∈In1 (x,sn)

λ(Ami )φ
(
y − (h(x, θ0)− h(xnj , θ0)); cmi + dmj , σ

2
m

)
.

Let y∗j = y − (h(x, θ0) − h(xnj , θ0)), then note that since j ∈ In1 (x, sn) we have that
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Cδm(y∗j ) ⊂ Cδ∗m(y) and

∑
i:Ami ⊂Cδ∗m (y);j∈In1 (x,sn)

λ(Ami )φ
(
y − (h(x, θ0)− h(xnj , θ0)); cmi + dmj , σ

2
m

)
≥

∑
i:Ami ⊂Cδm (y∗j );j∈In1 (x,sn)

λ(Ami )φ
(
y∗j ; c

m
i + dmj , σ

2
m

)
.

By Lemmas 1 and 2 in Norets and Pelenis (2012) ( with a minor adjustment in the proofs

due to uncentered positions of µji) the bound for the sum in equation (8) is

∑
i:Ami ⊂Cδm (y∗j )

λ(Ami )φ
(
y∗j ; c

m
i + dmj , σ

2
m

)
≥ 1− 3hm

(2π)1/2σm
− 8σm

(2π)1/2δm

as desired. Let {δm, σm, hm, cn, sn} satisfy the following:

δm → 0, σm/δm → 0, hm/σm → 0, cn →∞, sn → 0, exp {−cnsn}/N(n)→ 0.

Combining all these pieces together we get that

p(y|x,Mm,n) > inf
z∈Cδ∗m (y),||t−x||2≤sn

f(z|t) ·
[
1− exp {−cnsn}

N(n)

]
·
[
1− 3hm

(2π)1/2σm
− 8σm

(2π)1/2δm

]
.

(10)

Given ε > 0 there exist (M1, N1) large enough such that ∀m > M1, n > N1

p(y|x,Mm,n) > inf
z∈Cδ∗m (y),||t−x||2≤sn

f(z|t) · (1− ε).

By Assumption 1 f(y|x) is continuous in (y, x) and if f(y|x) > 0, then there exist (M2, N2)

large enough such that ∀m > M2, n > N2∣∣∣∣∣ f(y|x)

infz∈Cδ∗m (y),||t−x||2≤sn f(z|t)

∣∣∣∣∣ ≤ 1 + ε
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since sn → 0 and δ∗m → 0. Then for any (m,n) ≥ {max {M1,M2} ,max {N1, N2}}

1 ≤ f(y|x)

p(y|x,Mm,n)
≤ f(y|x)

infz∈Cδ∗m (y),||t−x||2≤sn f(z|t)(1− ε)
≤ 1 + ε

1− ε
.

Henceforth, log max {1, f(y|x)/p(y|x,Mm,n)} → 0 a.s. F as long as f(y|x) is continuous

in (y, x) a.s. F. This result establishes pointwise convergence.

Integrable upper bound

Let (y, x) ∈ Y × X . Since Y and X are bounded sets there exist (M3, N3) large enough

such that ∀m > M3, n > N3 we have that y /∈ Am0 and x /∈ Bn
0 and equation (10) applies.

Therefore, there exist (M4, N4) large enough such that ∀m > M4, n > N4 we have that

p(y|x,Mm,n) > inf
z∈Cδ∗m (y),||t−x||≤δ

f(z|t)/2

as δ∗m/2 < δ for any given x and
√
sn < δ if (m,n) are large enough. Then for any

(m,n) ≥ {max {M3,M4} ,max {N3, N4}}

log max

{
1,

f(y|x)

p(y|x, θm,n,Mm,n)

}
≤ log max

{
1,

f(y|x)

infz∈Cδ∗m (y),||t−x||≤δ f(z|t)/2

}

= 2
f(y|x)

infz∈Cδ∗m (y),||t−x||≤δ f(z|t)

and the expression above is integrable by Assumption 3. In summary, applying DCT we

get that dKL(f0(·|·), p(·|·,M))→ 0.

Finite model with mixtures of two normal distributions

We start with a finite model as defined in equation (6)

p(y|x,Mm,n) =
n∑
j=0

αj(x)
m∑
i=0

πjiφ
(
y − h(x, θ);µji, σ

2
ji

)
.
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Given any j by Lemma 1 below there exists
{
pji, π

∗
ji, µ

∗
ji, σ

2∗
ji

}m
i=0

m∑
i=0

πjiφ
(
y − h(x, θ);µji, σ

2
ji

)
=

m∑
i=0

pji

2∑
l=1

π∗jilφ
(
y − h(x, θ);µ∗jil, σ

2∗
jil

)

such that
∑m

i=0 pji = 1,
∑2

l=1 π
∗
jil = 1 and

∑2
l=1 π

∗
jilµ
∗
jil = 0 for all i. Note that predictor

dependent weights can be expressed as

αj(x) =
exp

(
−cn(xnj

′xnj − 2xnj
′x)
)∑n

i=0 exp (−cn(xni
′xni − 2xni

′x))
=

exp (φj,0 + φj,−0x)∑n
i=0 exp (φi,0 + φi,−0x)

Define φ∗jk,0 = log(pjk) + φj,0 and φ∗jk,−0 = φj,−0 where pjk are the probability weights

constructed using Lemma 1 for each j. Then

p(y|x,Mm,n) =
n∑
j=0

αj(x)
m∑
i=0

πjiφ
(
y − x′β;µji, σ

2
ji

)
=

n∑
j=0

exp (φj,0 + φj,−0x)∑n
k=0 exp (φk,0 + φk,−0x)

m∑
i=0

πji

2∑
l=1

π∗jilφ
(
y − x′β;µ∗jil, σ

2∗
jil

)
=

n∑
j=0

m∑
i=0

exp
(
φ∗ji,0 + φ∗ji,−0x

)∑n
k=0 exp

(
φ∗k,0 + φ∗k,−0x

) 2∑
l=1

π∗jilφ
(
y − x′β;µ∗jil, σ

2∗
jil

)
=

m×n∑
j=0

exp
(
φ∗j,0 + φ∗j,−0x

)∑n×m
k=0 exp

(
φ∗k,0 + φ∗k,−0x

) 2∑
l=1

π∗jlφ
(
y − x′β;µ∗jl, σ

2∗
jl

)
.

This shows that modelMm,n can be represented using a finite predictor-dependent mix-

ture of 2-component mixture models with mean zero.

Lemma 1. Let θn = {πi, µi, σ2
i }

n
i=1 be such that

p(y|θn) =
n∑
i=1

πiφ(y;µi, σ
2
i )

such that
∑n

i=1 πi = 1 and
∑n

i=1 πiµi = 0. Then there exists a set of parameters θ∗n =
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{p∗i , π∗i1, µ∗i1, σ2∗
i1 , π

∗
i2, µ

∗
i2, σ

2∗
i2 }

n
i=1 such that

p(y|θn) = p(y|θ∗n) =
n−1∑
i=1

p∗i

2∑
l=1

π∗ilφ(y;µ∗il, σ
2∗
il )

such that
∑n−1

i=1 p
∗
i = 1,

∑2
l=1 π

∗
il = 1 and

∑2
l=1 π

∗
ilµ
∗
il = 0 for each i.

Proof. (Lemma 1)

Find i = arg mini∈{1,...,n} {|πiµi|}. Let i = n without loss of generality. If µi = 0 then let

p∗1 = πi and π∗11 = π∗12 = 1/2, µ∗11 = µ∗12 = µi and σ2∗
12 = σ2∗

11 = σ2
i . If µi 6= 0, then pick any

j 6= i such that sign(µi) 6= sign(µj). Then let π∗11 = (p∗1)−1πi and π∗12 = (p∗1)−1πi|µi|/|µj|

where p∗1 is the normalizing constant to get π∗11+π∗12 = 1. Let µ∗11 = µi, µ
∗
12 = µj, σ

2∗
11 = σ2

i

and σ2∗
12 = σ2

j . Then
∑2

l=1 π
∗
il = 1 and

∑2
l=1 π

∗
ilµ
∗
il = 0 for i = 1.

Let π̃k = πk for all k = 1, . . . , j − 1, j + 1, . . . , n − 1 and let π̃j = πj − πn|µn|/|µj|.

Then

n∑
i=1

πiφ(y;µi, σ
2
i ) =

n−1∑
i=1

π̃iφ(y;µi, σ
2
i ) + p∗1

2∑
l=1

π∗1lφ(y;µ∗1l, σ
2∗
1l ).

By induction

n∑
i=1

πiφ(y;µi, σ
2
i ) =

n−1∑
i=1

p∗i

2∑
l=1

π∗1lφ(y;µ∗1l, σ
2∗
1l )

where
∑2

l=1 π
∗
il = 1 and

∑2
l=1 π

∗
ilµ
∗
il = 0 for each i. Note that

∑n−1
i=1 p

∗
i = 1 since integral

of the LHS w.r.t y is 1 and integral of RHS w.r.t y is 1 iff
∑n

i=1 p
∗
i = 1.
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Proof. (Theorem 2)

We want to show that f0 ∈ KL(Π), that is Π({(θ, η) : dKL(f0(·, ·), p(·|·, θ, η) < ε}) > 0.

Let ε > 0 be given. By Thoerem1 there exists a finite number k and a set of parameters

(ηk, θ) such that dKL(f0(·|·), p(·|·, θ, ηk)) < ε/3, where ηk =
{
πj, µj, σj1, σj2, γ

′
j

}k
j=1

. Note

that the mixing weights that depend on {ρj, γ′j}kj=1 can be rewritten as

αj(x) =
exp

(
ρj + γ′jx

)∑k
l=1 exp (ρl,0 + γ′lxi)

=
exp

(
ρj + γ′jγj/2− γ′jγj/2 + γ′jx− x′x

)∑k
l=1 exp (ρl + γ′lγl/2− γ′lγl/2 + γ′lx− x′x)

=
exp

(
(ρj + γ′jγj/2)− 0.5||x− γj||2

)∑k
l=1 exp ((ρl + γ′lγl/2)− 0.5||x− γl||2)

≡ αj exp (−ϕ||x− Γj||2)∑k
l=1 αl exp (−ϕ||x− Γl||2)

=
αjKϕ(x,Γj)∑k
l=1 αlKϕ(x,Γl)

with a set of parameters {ϕ, αj,Γj}kj=1. In this particular construction ϕ = 0.5, however

any other positive constant could have been used.

Let fFSMR(·|·, θ, ηk) be constructed as

fFSMR(y|x, θk) =
k∑
j=1

pj(x)f2(y − h(x, θ); πj, µj, σj1, σj2)

pj(x) =
αjKϕ(x,Γj)∑k
l=1 αlKϕ(x,Γl)

and we know that dKL(f0(·, ·), fSMR(·|·, θ, ηk)) < ε/3 for some particular parameters

(θ, ηk). Now, we will show that there exists a truncated at some large N infinite smoothly

mixing regression fTSMR such that

∫
log

fSMR(y|x, θ, ηk)
fTSMR(y|x, θ, ηN)

dF0(y, x) <
ε

3

27



where

fTSMR(yi|xi, θ, ηN) =
N∑
j=1

pj(xi)f2 (yi − h(xi, θ); πj, µj, σj1, σj2)

pj(x) = VjKϕ(x,Γj)
∏
l<j

(1− VlKϕ(x,Γl)).

Let’s construct an infinie smoothly mixing regression with parameters (θ∗, η∗) based

on the parameters (θ, ηk) of fSMR. Let θ∗ = θ, and η∗ ≡
{
π∗j , µ

∗
j , σ

∗
j1, σ

∗
j2, V

∗
j ,Γ

∗′
j

}k
j=1

be

defined as

(π∗h, µ
∗
h, σ

∗
h1, σ

∗
h2) = (π∗, µ∗1, σ

∗
1, σ

∗
2)(h mod k) = (πj, µj2, σj1, σj2)

Kϕ(x,Γ∗h) = Kϕ(x,Γ∗(h mod k)) = Kϕ(x,Γj)

V ∗h = V ∗(h mod k) = αj · δ

where j = (h mod k) and for some small δ with max {αj}−1 > δ > 0 and any ϕ > 0.

Given these parameter values of η∗ the conditional density induced by the infinite

smoothly mixing representation is

fISMR(y|x, θ∗, η∗) =
k∑
j=1

δαjKϕ(x,Γj)f2(y − h(x, θ); πj, µj, σj1, σj2)
∏

0<l<j

(1− δαlKϕ(x, xl))

+
2·k∑

j=k+1

δαjKϕ(x, xj)f2(y − h(x, θ);πj, µj, σj1, σj2)
∏
k<l<j

(1− δαlKϕ(x, xl))

·
∏

0<i≤k

(1− δαiKϕ(x, xl))

+
3·k∑

j=2·k+1

δαjKϕ(x, xj)f2(y − h(x, θ); πj, µj, σj1, σj2)
∏

2·k<l<j

(1− δαlKϕ(x, xl))

·
∏

0<i≤2·k

(1− δαiKϕ(x, xl))

+ . . .
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and it combines to

fISMR(y|x, θ∗, η∗) =

∑k
j=1 δαjKϕ(x, xj)f2(y − h(x, θ); πj, µj, σj1, σj2) ·

∏
l<j (1− δαlKϕ(x, xl))∑k

j=1 δαjKϕ(x, xj)
∏

l<j (1− δαlKϕ(x, xl))
.

It is almost immediate that fIMSR(y|x) induced by infinite representation approaches

fSMR(y|x, θ, ηk) for all values of (y, x) as δ → 0. To make this statement precise note

that

fSMR(y|x, θ, ηk)
fIMSR(y|x, θ∗, η∗)

=

∑k
j=1 αjKϕ(x, xj)f2(y − h(x, θ); πj, µj, σj1, σj2)∑k

j=1 αjKϕ(x, xj)f2(y − h(x, θ); πj, µj, σj1, σj2)
∏

l<j (1− δαlKϕ(x, xl))

·
∑k

j=1 αjKϕ(x, xj)
∏

l<j (1− δαlKϕ(x, xl))∑k
j=1 αjKϕ(x, xj)

<

∑k
j=1 αjKϕ(x, xj)f2(y − h(x, θ);πj, µj, σj1, σj2)∑k

j=1 αjKϕ(x, xl)f2(y − h(x, θ); πj, µj, σj1, σj2) · (1− δmaxαl)k
· 1

=
1

(1− δmaxαl)k
.

Then if we pick δ < (1− exp(−ε/(6k)))/max {αj} it immediately implies that

log(fSMR(y|x, θ, ηk)/fISMR(y|x, θ, η∗)) < ε/6 for all (y, x). Now we want to show that

there exists fTSMR such that log(fISMR(y|x, θ, η∗)/fTSMR(y|x, θ, ηN)) < ε/6. Let the

truncated SMR be cut off at a point N = k ∗M for some M large enough. Then by

construction of η∗ for any (y, x) the following is true

fISMR(y|x, θ, η∗)

(
1−

∏
1≤l<k∗M

(1− δαlKϕ(x,Γl)

)
= fTSMR(y|x, θ, ηN)

fISMR(y|x, θ, η∗)
fTSMR(y|x, θ, ηN)

=

(
1−

∏
1≤l<k∗M

(1− δαlKϕ(x,Γl)

)−1
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The objective is to show that M large enough exists such that

− log

(
1−

∏
1≤l<k∗M

(1− δαlKϕ(x,Γl)

)
< ε/6.

This is achieved by considering let i∗ = arg maxj=1,··· ,k{αj}. Since X is bounded we can

find K = maxx∈X Kϕ(x,Γi∗) > 0. Then

− log

(
1−

∏
1≤l<k∗M

(1− δαlKϕ(x,Γl)

)
< − log

(
1−

∏
1≤l<M

(1− δαi∗K)

)

= − log
(
1− (1− δαi∗K)M

)
.

Then for M > log(1−e−ε/6)

log(1−δαi∗K)
this inequality is true

− log
(
1− (1− δαi∗K)M

)
< ε/6.

Hence, forN > k∗M we have found ηN such that log(fISMR(y|x, θ, η∗)/fTSMR(y|x, θ, ηN)) <

ε/6 for all (y, x) and it follows that

∫
log

fSMR(y|x, θ, ηk)
fTSMR(y|x, θ, ηN)

dF0(y, x) <
ε

3
.

Next we will show that there exists an open neighborhood Υ of ηn such that for any

η′ ∈ Υ

∫
log

fTSMR(y|x, θ, ηN)

fTSMR(y|x, θ, η′)
dF0(y, x) <

ε

3
.

To show this we will show that this integral is (sequentially) continuous in η′ at ηN . Let

ηl be a sequence of parameter values converging to ηN as l →∞. Then for every (y, x),

we have that log(fTSMR(y|x, θ, ηN)/fTSMR(y|x, θ, ηl)) → 1. To show that the integral is
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continuous we will use the dominated convergence theorem. We need to show that there

exist integrable with respect to F0 lower and upper bounds for − log(fTSMR(y|x, θ, ηl)).

Since,

fTSMR(yi|xi, θ, ηl) =
N∑
j=1

pj(xi)f2 (yi − h(xi, θ);πj, µj, σj1, σj2)

As ηl → ηN , therefore for l large enough and for some finite µ > µ, σ > σ and π > π we

will find that πlj ∈ (π, π), µlj ∈ (µ, µ), −µlj
πlj

1−πlj
∈ (µ, µ) and σlj1, σ

l
j2 ∈ (σ, σ). Then

φ(0; 0, σ) ≥ fTSMR(yi|xi, θ, ηl)

≥
1(−∞,µ) exp

(
− (y−µ)2

2σ2

)
+ 1(µ,µ) exp

(
− (µ−µ)2

2σ2

)
+ 1(µ,∞) exp

(
− (y−µ)2

2σ2

)
√

2πσ2
.

The logarithm of the upper bound is constant and finite, hence integrable. The logarithm

of the lower bound is integrable by the Assumption 2 of the Theorem 1 as the conditional

second moments of y are finite under F0. Hence the integral is continuous and an open

neighborhood Υ of ηN exists.

Finally, given any η′ ∈ Υ, let η∞ = (η′, ηN+1:∞) with ηN+1:∞ unrestricted. Then

log
fTSMR(y|x, θ, η′)
fISMR(y|x, θ, η∞)

< 0

for any (y, x) by definition.

In conclusion, then there exists ηN and an open neighborhood Υ of ηN such that for
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any η′ ∈ Υ and any η∞ = (η′, ·)

∫
log

f0(y|x)

fISMR(y|x, θ, η∞)
dF0(y, x)

=

∫
log

f0(y|x)

fSMR(y|x, θ, ηk)
dF0(y, x) +

∫
log

fSMR(y|x, θ, ηk)
fTSMR(y|x, θ, ηN)

dF0(y, x)

+

∫
log

fTSMR(y|x, θ, ηN)

fTSMR(y|x, θ, η′)
dF0(y, x) +

∫
log

fTSMR(y|x, θ, η′)
fISMR(y|x, θ, η∞)

dF0(y, x)

<
ε

3
+
ε

3
+
ε

3
+ 0 < ε.

Hence, if ηk is in the support of the prior and the priors assign a positive mass for some

neighborhood of any ηk, then Π(Υ) > 0 and f0 is in the KL support of Π.

Proof. (Theorem 3)

First, we would like to construct an unbiased test for the hypothesis:

H0 : (f, θ) = (f0, θ0) against H1 : (f, θ) ∈ V × {θ : ||θ − θ0|| ≥ ρ}

where V = supp(Πfε|x). To do so we will consider a finite set of alternative hypothesis

such that their union would be a superset of H1. Therefore, consider for some small

∆ > 0 a group of hypothesis for each γ and j = 1, . . . , d

H0 : (f, θ) = (f0, θ0) against H1 : (f, θ) ∈ W × {θ : (θ − θ0) ∈ Qγ, γj(θj − θ0,j) > ∆}.

By Assumption A for any j consider only x observations such that xjγj > ξ where

xj is the j−th coordinate of x and x ∈ Qγ, then by construction x′θ − x′θ0 > ξ∆.

Let Qγ,j = Qγ\{X : |xj| < ξ}, then by Assumtion A F0(Qγ,j) = ζ > 0. Then we

will use Chebyshev’s inequality to construct strictly unbiased test for H0 against H1. By

assumptions 1 and 2 of Theorem 1 there exists M such that M > supx∈XEF0 [(y−x′θ0)2|x].

For any n let Kn,j =
∑n

i=1 1{xi ∈ Qγ,j}. Then let Tn,j = K−1
n,j

∑n
i=1 1{xi ∈ Qγ,j}(yi−xiθ0).
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Then by Chebyshev’s inequality Pf0(|Tn,j| ≥ ε) ≤ M2

Kn,jε2
and since ζ > 0 it is immediate

that Pf0(|Tn,j| ≥ ε)→ 0 as n→∞. Now we just need to show that inf(f,θ)∈H1 Pf,θ(|Tn,j| ≥

ε)→ 1 as n→∞. Then note that for any θ ∈ H1, we have that x′θ − x′θ0 > ξ∆. So let

ε = ξ∆/3 and consider a statistic T̃n,j = K−1
n,j

∑n
i=1 1{xi ∈ Qγ,j}(yi − xiθ). Then

Pf,θ(|Tn,j| ≥ ε) ≥ Pf,θ(|T̃n,j| ≤ ε) ≥ 1− L2

Kn,jε2

where L > supx∈X ,f∈W,θ∈ΘEf,θ[(y−x′θ)2|x] for some L by conditions on the prior support.

Since Kn,j → ∞ as n → ∞, therefore Pf,θ(|Tn,j| ≥ ε) → 1. These facts can be used to

construct an uniformally consistent sequence of tests

φn(Xn, Yn) = 1{|Tn,j| ≥ ξ∆/3}

and by Proposition 4.4.1 by Ghosh and Ramamoorthi (2003) this implies the existence of

exponentially consistent tests. Note that by choosing ∆ > 0 sufficiently small the union

of these sets of alternative hypothesis will contain the set {(f, θ) ∈ V×{θ : ||θ−θ0|| ≥ ρ}}

which is the original alternative hypothesis.

Given a weak neighborhood of Uδ(f0,ε|x) of conditional error density, let’s construct

exponentially consistent tests for this hypothesis:

H0 : (fε|x, θ) = (f0,ε|x, θ0) against H1 : (fε|x, θ) ∈ Uδ(f0,ε|x)
c × {θ : ||θ − θ0|| < υ}

for some small υ > 0. Uδ(f0,ε|x) is defined via some bounded uniformly continuous function

g, then let ∆2 be such that if |ε1 − ε2| < ∆2, then |g(ε1, x) − g(ε2, x)| < δ/2. Then for

fε|x ∈ Uδ(f0,ε|x)
c and any θ such that |θ−θ0| < υ, where υ is such that |x′(θ−θ0)| < ∆2 as X

is bounded, define fy|x,θ = fε|x(ε+h(x, θ), x). Then fy|x,θ ∈ Uδ/2(f0,y|x)
c where Uδ/2(f0,y|x)

is a weak neighborhood of conditional densities f0(y|x). Exponentially consistent tests for
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such weak neighborhoods always exist, while we could not have constructed exponentially

consistent tests based on unobservable ε.

By choosing ∆ and υ small enough the union of the sets of alternative hypothesis

would contain {(fε|x, θ) ∈ Uδ(f0,ε|x)
c×{θ : ||θ− θ0|| ≥ ρ}}. Then exponentially consistent

tests for H0 : (f, θ) = (f0, θ0) against H1 : (f, θ) ∈ (Uδ(f0,ε|x)× {θ : ||θ− θ0|| < ρ})c exist,

and since f0 ∈ KL(Π) by Theorem 2, then a straigtforward application of Schwartz

(1965) posterior consistency theorem yields the result that Π(Wc|Yn, Xn) → 0 a.s. P∞F0

for any given ρ > 0.
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6.2 Posterior Computation

The finite model with n states is defined as

p(yt|xt, β, θn) =
n∑
j=1

αj(xt)f2

(
yt − x

′

tβ; πj, µj, h
−1/2
j1 , h

−1/2
j2

)
αj(xt) =

exp
(
γj,0 + γ′jxt

)∑n
i=1 exp (γi,0 + γ′ixt)

.

We propose Gibbs sampler for the estimation procedure. We introduce latent state

variables st = (st1, st2) with st1 ∈ {1, . . . , n} and st2 ∈ {1, 2}. Then p(yt|st, xt, θ) =

φ(·, xt′β+µst , h
−1
ji ) where µj1 = µj and µj2 = − πj

1−πjµj and P (st = (j, i)|xt, θ) = αj(xt)πji.

We will use some of the Gibbs sampling techniques used by Geweke and Amisano

(2011) to implement the zero mean conditions in Gibbs sampler. To do so consider the

following redefinitions. Define 2 × 1 vector µj = (µj1, µj2)′. Let st = (j, i), then define

dt as 2n × 1 vector with value 1 on (2(j − 1) + i)’th row and 0 elsewhere. Let πj be

the j’th row of π, then let 2 × 1 vector Cj be orthonormal compliment of πj. Define

scalar µ̃j = Cj
′µj. Construct 2n× n matrix C = Blockdiag[C1, . . . , Cn] and n× 1 vector

µ̃ = (µ̃1, . . . , µ̃n)′. Then the distribution of observable yt is

(yt|xt, st = (j, i), θ) ∼ N(xt
′β + µ̃′C ′dt, h

−1
ji ).

Let ζ = (β′, µ̃′)′ and Wt = (Xt
′, d′tC). Finally,the distribution of observable yt is

(yt|xt, st = (j, i), θ) ∼ N(Wtζ, h
−1
ji )

and the prior for ζ is induced by priors on µ̃ and β. The following priors are used:

Gaussian prior for β, γ, µ̃, inverse Gamma prior for σ2 and Dirichlet prior for π. The full
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posterior is proportional to the joint distribution of observables and unobservables:

p(YT , ST , θ|XT ) ∝
T∏
t=1

|hst |1/2 exp
{
−0.5(yt −Wtζ)2hst

}
αst1(xt)πst

· |Hζ |1/2 exp
{
−0.5(ζ − ζ)′Hζ(ζ − ζ)

}
·
n∏
j=1

2∏
i=1

ππ−1
ji

·
n∏
j=1

2∏
i=1

|hji|(ν−2)/2 exp
{
−0.5s2hji

}
·
n∏
j=1

|Hγ|1/2 exp
{
−0.5(γj − γ)′Hγ(γj − γ)

}
where

ζ = [β′, 0′]′ ,

Hµ = hµ · In ,

Hζ =

Hβ 0

0 Hµ

 .
Then Gibbs sampler consists of:

1. Conditional posterior distribution of ζ:

p(ζ| . . .) ∼ N
(
ζ,H

−1

ζ

)
Hζ = Hζ +

T∑
t=1

W ′
thstWt

ζ = H
−1

ζ

(
Hζζ +

T∑
t=1

W ′
thstyt

)
.
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2. Conditional posterior distribution of hji:

hji ∼ Ga

ν + Tji
2

,

1

2
s2 +

1

2

∑
t|st=(j,i)

(yt −Wtζ)(yt −Wtζ)′

−1
where Tji =

∑
t 1{st=(j,i)}.

3. Conditional posterior distribution of π:

Posterior distribution of π is non-standard and non-conjugate since C is a function

of π and we must account for that in our posterior simulator. Firstly, we will

follow Geweke and Amisano (2011) in producing a unique representation of Ck for

k = 1, . . . , n. Note that πkCk = 0, then construct unique Ck by first constructing

C∗k as follows: C∗k = (πk1,−π2
k1/πk2)′. Then construct unique Ck by normalizing

column of C∗k to Euclidean length of 1. Since Ck is a function of π, we will use

Metropolis within Gibbs step for each row k of π. Use Dirichlet distribution as a

proposal for row πk

p(πk| . . .) ∝ π
(π+Tk1)
k1 π

(π+Tk2)
k2 .

Construct new ε∗t = yt −W ∗
t ζ. Then Metropolis acceptance ratio for the new draw

of πk is

exp
(
−0.5

∑
t|st1=k ε

∗′
t hstε

∗
t

)
exp

(
−0.5

∑
t|st1=k ε

′
thstεt

)
where εt = yt −Wtζ.

4. Conditional posterior distribution of γ:

Metropolis-Hastings algorithm is used to sample γ.

5. Conditional posterior distribution of st:
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Gibbs sampler block for st has a simple multinomial distribution with

p(st = (j, i)| . . .) ∝ αj(xt)πji|hji|0.5 exp
{
−0.5(yt − µji − x

′

tβ)′hji(yt − µji − x
′

tβ)
}
.
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