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Abstract. We study the problem of a pro�t maximizing electricity producer who has to
pay carbon taxes and who decides on investments into technologies for the abatement of CO2

emissions in an environment where carbon tax policy is random and where the investment in
the abatement technology is divisible, irreversible and subject to transaction costs. We consider
two approaches for modelling the randomness in taxes. First we assume a precise probabilistic
model for the tax process, namely a pure jump Markov process (so-called tax risk); this leads
to a stochastic control problem for the investment strategy. Second, we analyze the case of
an uncertainty-averse producer who uses a di�erential game to decide on optimal production
and investment. We carry out a rigorous mathematical analysis of the producer's optimization
problem and of the associated nonlinear PDEs in both cases. Numerical methods are used to
study quantitative properties of the optimal investment strategy. We �nd that in the tax risk
case the investment in abatement technologies is typically lower than in a benchmark scenario
with deterministic taxes. However, there are a couple of interesting new twists related to
production technology, divisibility of the investment, tax rebates and investor expectations. In
the stochastic di�erential game on the other hand an increase in uncertainty might stipulate
more investment.

Keywords: Carbon taxes, Emission abatement, Optimal investment strategies, Stochastic

control, Stochastic di�erential games.

1. Introduction

Carbon taxes and trading of emission certi�cates are commonly considered key policy tools

for reducing carbon pollution and hence for mitigating climate change. Academic contributions

in this �eld from an environmental economic perspective have mainly focused on optimal tax

schemes or optimal carbon prices for an e�cient emission reduction, see for instance the seminal

contributions by Nordhaus [21, 22], Golosov et al. [16], Acemoglu et al. [1]. More recently this

problem has been addressed within the literature on continuous-time stochastic control by, e.g.,

Aid and Biagini [3], Aid et al. [4], or Carmona et al. [8] (these papers are discussed in Section

1.1). While the design of an optimal tax scheme or carbon price is a very relevant research

question, in reality emission tax policy is a�ected by many unpredictable factors such as changes
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in political sentiment and election results, lobbying by industry groups, or developments in

international climate policy. Therefore future tax rates are random and long-term emission tax

schemes announced by governments are not fully credible from the viewpoint of carbon emitting

producers. This is a prime example of the so-called climate policy uncertainty. In environmental

economics it is often argued that policy uncertainty has a negative impact on investments in

carbon abatement technology. For instance the British newspaper The Economist [10] writes

Political polarisation [regarding the relevance of climate change] means bigger �ip-

�ops when power changes hands: imagine France under the wind-farm-loathing

Marine Le Pen. Everywhere, making climate policy less predictable makes it

harder for investors to plan for the long term, as they must.

On the policy side, a report by the International Energy Agency (Yang [26]) discusses the impact

of policy-induced jumps in carbon prices on the incentives for investing in low-carbon power-

generation technologies. The report argues that �the greater the level of policy uncertainty,

the less e�ective climate change policies will be at incentivising investment in low-emitting

technologies.� The empirical study of Berestycki et al. [7] develops indices for climate policy

uncertainty that are based on newspaper coverage, and they carry out a regression analysis

showing that higher levels of uncertainty are associated with a substantial decrease in the

investment level in carbon intensive industries.

Fuss et al. [15] and of Yang et al. [27] (this latter paper is related to the IEA-report of Yang [26])

propose formal models for analysing the implications of randomness in carbon price policy (which

is economically very similar to a carbon tax policy) on investment in carbon capture and storage

technologies. To the best of our knowledge, these are the only contributions of this type so far.

In these works there are two sources of randomness. First, there are �uctuations in the electricity

and in the carbon price. Second, there is randomness in the carbon pricing policy itself: at a

deterministic future time point t̄ government announces if the carbon pricing scheme continues

or if the policy is abolished, where the probability of both events is known. Fuss et al. [15] and

Yang et al. [27] use a real options approach where investment is immediate (no construction

times), indivisible, and irreversible. In that setup it is optimal to postpone investment decisions

until the announcement date t̄, so that randomness in policy delays investment into abatement

technology. Fluctuations in market prices, on the other hand, have very little impact on the

investment decision. From a technical point of view, [15] and [27] consider a discrete time

settings and solve the optimization via numerical methods based on Monte-Carlo simulation and

backward induction.

In our paper we go beyond the analysis of [15] and [27]. We study the problem of a pro�t

maximizing electricity producer who pays taxes on emissions and may invest into emission

abatement technology in a continuous time framework that incorporates a rich set of approaches

for modeling randomness in carbon tax policy. In our setup investments are divisible as, for

instance, in the installation of new solar panels, and the producer chooses the rate γ at which

she invests. Moreover, investment is irreversible (i.e. γt ≥ 0) and subject to transaction costs

that prohibit a rapid adjustment of the investment level. This framework includes stylized forms

of emission abatement technology, such as the case where producer has the option to retro�t

existing gas-�red power plants with a carbon capture and storage or �lter technology, and the

case where she may reduce the costs for producing electricity by investing into a novel green
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technology with lower marginal production costs. We discuss these examples in detail in the

theoretical part of the paper and in our numerical experiments.

To deal with randomness in carbon taxes we consider two di�erent approaches. First, we

assume a precise probabilistic model for the tax process, namely a pure jump Markov process. In

decision-theoretic terms this corresponds to the paradigm of risk, so that we refer to this situation

as tax risk. In the tax risk case the producer is confronted with a stochastic control problem

with the investment rate as control variable. Second, we analyze the case of an uncertainty-

averse producer who considers a set of possible future tax scenarios but does not postulate a

probabilistic model for the tax evolution. Instead she determines her production and investment

policy as equilibrium strategy of a game with a malevolent opponent. The objective of the

producer remains that of maximizing expected pro�ts, whereas the opponent chooses a tax

process from the set of scenarios to minimize the pro�ts of the producer. In both cases, tax risk

and tax uncertainty, we carry out a precise mathematical analysis of the producer's optimization

problem. For the tax risk case we characterize the value function as unique viscosity solution of

the associated HJB equation, using general results from Pham [23]. Moreover we give conditions

for the existence of classical solutions. For the tax uncertainty setup we end up with a di�erential

game for which we establish existence of an equilibrium and we characterise the value of the game

in terms of a classical solution of the Bellman�Isaacs equation. Since explicit solutions to these

equations exist only in very special situations, we conduct numerical experiments to analyze the

investment behaviour of the producer.

In our numerical experiments within the paradigm of tax risk we consider two models for the tax

dynamics: in the �rst model, the government may raise taxes at some random future time point,

for instance to comply with international climate treaties; in the second model high taxes might

be reversed, for instance since a government with a �brown� policy agenda replaces a �green� one.

The latter situation is somewhat similar, in spirit, to the framework of [15]. We compare the

investment decisions of the producer to a benchmark case where taxes are deterministic. Our

experiments show that under tax risk the �rm is typically less willing to invest into abatement

technologies than in the corresponding benchmark scenario, which supports the intuition that

randomness in carbon taxes may be detrimental for climate policy. However, there are some new

interesting twists. To begin with, in our setup the producer invests already before a tax increase is

actually implemented in order to hedge against high future tax payments. This hedging behavior

is not observed in real options models such as [15], where randomness in tax policy induces the

producer to delay investment and wait until the government decision. In addition, we study

the implications of introducing an emission-independent tax rebate and we �nd that rebates

enhance the investment into abatement technology. Finally, our experiments show that investor

expectations are crucial determinants for the success of a carbon tax policy. In particular, a

tax policy that is not credible (i.e. producers are not convinced that an announced tax increase

will actually be implemented or they expect that a high tax regime will be reversed soon) is

substantially less e�ective than a credible policy.

We go on and study the optimal investment within the stochastic di�erential game for the

uncertainty averse producer. Interestingly, in that case the results are reversed, that is, more

uncertainty is bene�cial from a societal point of view, as it leads to higher investment in

carbon abatement technology. Moreover, a rebate now generally reduces investment. These
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are interesting new results which show that the paradigm used to model the decision making

process of the producer is crucial for the impact of climate policy uncertainty on investment into

abatement technology.

The remainder of the paper is organized as follows: In Section 1.1 we discuss some of the related

literature; in Section 2 we introduce the setup and the optimization problem of the electricity

producer; in Section 3 we discuss speci�c examples for the electricity production and emission

abatement technology; Section 4 is concerned with the control problem of the producer under

tax risk, whereas the stochastic di�erential game related to tax policy uncertainty is studied

in Section 5; in Section 6 we present the results from numerical experiments and discuss their

economic implications; Section 7 concludes.

1.1. Literature review

We continue with a brief discussion of related contributions. Within the context of stochastic

control literature on optimal tax- and carbon pricing schemes, Aid and Biagini [3] study an

optimal dynamic carbon emission regulation for a set of �rms, in presence of a regulator who

may choose dynamically the emission allowances to each �rm. The problem is formulated as

a Stackelberg game between the regulator and the �rms in a jump di�usion setup with linear

quadratic costs. This formulation allows for a closed-form expression of the optimal dynamic

allocation policies. Aid et al. [4] investigate the optimal regulatory incentives that trigger the

development of green electricity production in a monopoly and in a duopoly setup. The regulator

wishes to encourage green investments to limit carbon emissions, while simultaneously reducing

the intermittency of the total energy production. Their main results is a characterization of the

regulatory contract that naturally includes interesting agreements like rebate. Carmona et al. [8]

analyse mean �eld control and mean �eld game models of electricity producers who can decide

on the composition of their energy mix (brown or green) in the presence of a carbon tax. The

producers have to balance the cost of intermittency and the amount of carbon tax they pay.

Initially producers choose their investment in green production technology; given this choice

they continuously adjust their usage of fossil fuels and hence emissions to minimize a given cost

function. The paper analyses competitive (Nash equilibrium) and cooperative (social optimum)

solutions to this problem via systems of forward-backward SDEs. It also includes a study of a

Stackelberg game between a regulator who sets the carbon tax rate at the initial date and the

mean �eld of producers.

Lavigne and Tankov [19] and Dumitrescu et al. [9] have done interesting theoretical research

on the implication of randomness in climate policy more generally. [19] consider a mean-

�eld game model for a large �nancial market where �rms determine their dynamic emission

strategies under climate transition risk in the presence of green and neutral investors. They show

among others that uncertainty about future climate policies leads to overall higher emissions in

equilibrium. In a similar spirit, [9] study the impact of transition scenario uncertainty on the

pace of decarbonization and on output prices in the electricity industry. Empirical studies on the

impact of carbon taxes to production and investment in green technologies include Aghion et al.

[2] who studied in particular the e�ects of taxes and fuel prices on investment in technological

innovation using data for the automobile sector, and Martinsson et al. [20] where data on CO2



5

emissions from Swedish manufacturing sector is used to estimate the impact of carbon pricing

on �rm-level emission intensities. These studies provide a support that taxes and high prices

trigger investment in low emission technology.

2. The optimization problem of the electricity producer

Throughout the paper we �x a horizon date T and a probability space (Ω,F ,P) with �ltration

F = (Ft)0≤t≤T representing the information �ow. In the sequel all processes are assumed to be

F-adapted and expectations are taken with respect to the probability measure P.

We consider a pro�t maximizing electricity producer who has to pay carbon taxes and who

may invest in technology for the abatement of CO2 emissions. We denote by τt the taxes per

unit of emission and by Xt the value of the investment in abatement technology at time t. The

producer chooses the amount of electricity to be produced at every point in time and she controls

the process X = (Xt)0≤t≤T by her investments into abatement technology.

The price of electricity and the production cost may be modulated by an exogenous d-

dimensional factor process Y = (Yt)0≤t≤T . We assume that Y follows a d-dimensional di�usion,

dYt = β(t, Yt) dt+ α(t, Yt) dBt, Y0 = y ∈ R, (2.1)

where B is a d-dimensional Brownian motion, and where the drift β(t, y) ∈ Rd and the dispersion

α(t, y) ∈ Rd×d, for (t, y) ∈ [0, T ] × Rd, satisfy standard conditions for existence and uniqueness

of the SDE (2.1). Moreover, we denote the generator of Y by LY , which reads as

LY f(y) =
d∑
i=1

fyi(y)βi(t, y) +
1

2

d∑
i,j=1

fyiyj (y)Sij(t, y),

where S(t, y) = α(t, y) · α⊤(t, y).

2.1. Instantaneous electricity production

We assume that the electricity market is perfectly competitive so that the producer acts as a

price taker, that is she takes the price pt = p(Yt) of one unit of electricity as given and adjusts

the quantity produced in order to maximize instantaneous pro�ts (In the numeric examples we

also consider the case where the quantity to be produced is �xed.). This situation might arise

in the context of a merit order system, where the electricity spot price is determined by the

short run marginal production cost of the power plant that is on the margin of the electricity

production system. For a given investment value x, tax rate τ and value y of the factor process,

we denote the cost of producing q units of electricity by C(q, x, y, τ). Hence the instantaneous

pro�t is given by

Π(q, x, y, τ) = p(y)q − C(q, x, y, τ) + ν0(q)τ . (2.2)

The term ν0(q)τ models a tax rebate that depends on the amount q of energy produced and on

the current tax rate, but not on the actual emissions of the producer. Tax rebates of this form

penalize (reward) producers with high (low) emissions compared to the industry average and are
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part of many proposals for carbon taxes. The producer chooses the production to maximize her

instantaneous pro�t and we denote the maximal pro�t by

Π∗(x, y, τ) = max
q∈[0,qmax]

Π(q, x, y, τ),

where the constant qmax > 0 denotes the maximum capacity of the production technology.

The next assumption gives conditions ensuring that the function Π∗ is well-de�ned and enjoys

certain regularity properties.

Assumption 2.1.

(i) There are functions C0, C1 : [0, q
max]× R× Rd → [0,∞) such that

C(q, x, y, τ) = C0(q, x, y) + C1(q, x, y)τ ;

moreover, C0 and C1 are increasing, strictly convex and C1 in q and C1 is bounded.

(ii) C0 and C1 are Lipschitz continuous in x, y uniformly in q ∈ [0, qmax].

(iii) The function ν0 is di�erentiable, increasing and concave on [0, qmax]

(iv) The function p : Rd → R is Lipschitz continuous in y.

In economic terms the function C1 measures the emissions from producing q units of electricity

given the investment level x and the value of the factor process; these are then multiplied with τ

to give the instantaneous carbon tax payments; the function C0 gives the emission-independent

production cost. Speci�c examples are discussed in Section 3 below.

Under Assumption 2.1(i) and (iii) there is a unique optimal instantaneous energy output q∗ ∈
[0, qmax] for every (x, y, τ). Taking derivatives with respect to q gives the �rst order condition

p(y)− ∂qC0(q, x, y)− (∂qC1(q, x, y)− ∂qν0(q))τ = 0, (2.3)

which has at most one solution due to the strict convexity of the cost functions. If we consider

moreover the boundary cases q = 0 and q = qmax we get

q∗ =


0 , if p(y)− ∂qC0(0, x, y)− (∂qC1(0, x, y)− ∂qν0(0))τ < 0;

qmax, if p(y)− ∂qC0(q
max, x, y)− (∂qC1(q

max, x, y)− ∂qν0(q
max))τ > 0;

the solution of (2.3), else.

(2.4)

2.2. Optimal investment problem

We assume that the investment value X has dynamics

Xt = X0 +

∫ t

0
γsds−

∫ t

0
δXsds+ σWt, t ≤ T. (2.5)

Here W = (Wt)t≥0 is a Brownian motion, independent of the d-dimensional Brownian motoin

B, 0 ≤ δ < 1 is the depreciation rate and the term σWt models exogenous �uctuations of the

investment value, due, for example, to random replacement costs. The process γ = (γt)0≤t≤T
represents the rate at which the producer invests into abatement technology. We assume

that the investment is irreversible, that is we introduce the constraint that γt ≥ 0 for all t.

Moreover, we assume that the investment is subject to proportional transaction costs given by
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κγ2. These costs penalize a rapid build-up of abatement technology. By A we denote the set of

all admissible investment strategies, that is the set of all adapted nonnegative càdlàg processes

γ with E
[∫ T

0 γt dt
]
<∞.

The producer uses a cash account D to �nance her investments and to invest the pro�ts from

selling electricity. We assume that there is a constant interest rate r ≥ 0 that applies to borrowing

and lending. Hence D has the dynamics

dDt =
(
rDt +Π∗(Xt, τt, Yt)− (γt + κγ2t )

)
dt, D0 = 0. (2.6)

We interpret the horizon date T as lifetime of the electricity production technology, and we

model the residual value of the investment by a function h(XT ), which is nonnegative, increasing

and continuous and whose form will depend on the type of abatement technology.

The goal of the electricity producer is to maximize E
[
e−r(T )(DT + h(XT ))

]
, the expected

discounted value of her terminal cash position and of the residual investment. Next we show

that the initial value of the cash account does not a�ect the investment decision of the producer.

In fact, using (2.6) we get that

e−r(T−t)DT = Dt −
∫ T

t
re−r(s−t)Dsds+

∫ T

t
e−r(s−t)(rDs +Π∗(Xs, Ys, τs)− γs − κγ2s )ds.

Hence

E
[
e−r(T )(DT + h(XT ))

]
= D0 + E

[∫ T

0
e−rs

(
Π∗(Xs, τs, Ys)− γs − κγ2s

)
ds+ e−rTh(XT )

]
,

(2.7)

and the goal of the producer amounts to maximizing the second term in (2.7).

In this paper we study the optimization problem of the producer in two settings that di�er with

respect to the modelling of randomness in carbon taxes. In Section 4 we analyze the case of tax

risk, where the tax process τ follows a precise probabilistic model, namely a pure jump process

with given jump intensity and jump size distribution. In Section 5 we consider an alternative

approach corresponding to the case of tax uncertainty. There the electricity producer considers a

set of possible future tax scenarios and uses a worst case approach based on stochastic di�erential

games to determine her investment strategy.

3. Production technologies: examples

We now discuss two speci�c examples for the production and emission abatement technology

that will be used in the numerical experiments.

3.1. The Filter Technology

In this example we assume that the producer is using a brown technology such as coal �red

power plants but is able to reduce CO2 pollution by investing in a carbon capture and storage

or �lter technology. We let ζ be the input good, i.e. the amount of raw material (coal or gas)

which is needed to produce electricity. We suppose that one unit of raw material has a cost of

c̄(y) dollars and that for each unit of raw material used in the production process, the amount of
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emitted CO2 is e0. If �lters are installed, emissions per unit of raw material are reduced by e(x).

The emission reduction depends clearly on the quality and the number of �lters, and hence on

the investment level x. Given an investment level x, total emissions for ζ units of raw material

are thus given by ζ(e0 − e(x)).

We denote by P (ζ) the amount of electricity that can be produced using ζ units of raw material,

for a continuous increasing and concave function P with P (0) = 0. Denote by Q(·) the inverse
function of P . Then, to produce the amount q of electricity the producer needs ζ = Q(q) units

of raw material and hence the incurred cost (production cost and taxes) is given by

C(q, x, y, τ) = Q(q)(c̄(y) + (e0 − e(x))τ). (3.1)

Note that in this example the functions C0 and C1 from Assumption 2.1 are given by C0(q, x, y) =

Q(q)c̄(y) and C1(q, x, y) = Q(q)(e0−e(x)). Recall that we interpret the horizon date T as lifetime

of the brown power plant. It makes sense to assume that the residual value of the �lters installed

is zero once the power plant is no longer in operation, so that for the �lter technology we take

h(XT ) = 0.

3.2. Two technologies

Next we consider a situation where the energy producer has the option to replace a brown

technology such as coal or gas power plants by a green technology such as wind, or solar energy.

We denote by ζb be the amount of input material for the brown technology and suppose that one

unit of input material costs cb(y) dollars and leads to eb tons of CO2. Let Pb(ζ) be the amount

of electricity that can be produced with ζ units of raw material and assume that Pb is increasing

and concave and Pb(0) = 0.

The input material to produce green, on the other hand, has a prize of zero (for instance wind

or sun) and for simplicity we assume that green technology does not emit CO2. We associate the

investment level x with the amount of green production facilities (solar panels or wind turbines)

installed and we denote by Pg(x) be the maximum amount of electricity that can be produced

with the green technology for a given investment level x. We assume that the maintenance cost

cg(x) of the green technology only depends of the investment x. Denote by Qb(·) the inverse

function of Pb.Then the total cost for producing q units of energy is

C(q, x, y, τ) =

{
cg(x) if q − Pg(x) ≤ 0 ;

cg(x) + (cb(y) + ebτ)Qb (q − Pg(x)) if q − Pg(x) > 0 ;

equivalently, C(q, x, y, τ) = cg(x) + (cb(y) + ebτ)Qb
(
(q − Pg(x))

+). In this example we get that

C0(x, y, q) = cg(x) + cb(y)Qb
(
(q − Pg(x))

+)
C1(x, y, q) = ebQb

(
(q − Pg(x))

+)
which satisfy the regularity conditions stated in Assumption 2.1 (i)�(iii) if cg and Pg are Lipschitz

Qb is C1, increasing, strictly convex and (Qb)
′(0) = 0, with the exception that C0 is strictly convex

in q only for q ≥ Pg(x). This is however su�cient for the existence of a unique optimal electricity

output q∗ which is given by (2.4). In the numerical experiments we take Qb(q) = aq3/2, which

�ts the conditions above. We will also assume that cg and Pg are increasing in the investment
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level x to make the model reasonable from an economic viewpoint. In the numerical experiments

we use a function Pg of the following form

Pg(x) = pg[(x− x̄)+]α, α ∈ (0, 1),

for some productivity parameter pg ∈ (0, 1), where x̄ represents initial expenses such as land

acquisition and infrastructure development for connecting to the grid that the electricity company

must bear when building a green power plant. This example shows that our model may account

for threshold e�ects, even when the investment occurs continuously in time. To simplify the

exposition we concentrate on the case where the maximum production level qmax is independent

of x. In the two-technology example this bound can be interpreted as the maximum amount of

electricity that could be absorbed by the grid. However, it might also make sense to consider

the case where qmax depends on the amount of green technology installed and hence on the

investment level, that is, to model the maximum capacity as a function q̄(x). This choice brings

additional technicalities in some of the theoretical results. We refer, to the comment on maximum

capacity expansion in Appendix B.1 for further discussion.

4. Tax risk and stochastic control

In this section we analyze the case of tax risk, where the tax process τ follows a precise

probabilistic model, namely a Markovian pure jump process with given jump intensity and jump

size distribution. From now on we use the notation Et [·] to indicate the conditional expectation

given Xt = x, Yt = y, τt = τ . The reward function of the optimization problem (2.7) is thus

given by

J(t, x, y, τ,γ) = Et
[∫ T

0
e−r(s−t)

(
Π∗(Xs, τs, Ys)− γs − κγ2s

)
ds+ e−r(T−t)h(XT )

]
, (4.1)

and we denote by V (t, x, y, τ) = sup{J(t, x, y, τ,γ) : γ ∈ A} the corresponding value function.

The main goal of this section is to characterize V as viscosity solution of a certain Hamilton-

Jacobi-Bellman (HJB) equation and to give criteria for the existence of a classical solution.

4.1. The tax process

We begin by introducing the dynamics of the tax process. Let N(dt,dz) be a homogeneous

Poisson random measure with intensity measure m(dz)dt, where m(dz) is a �nite measure on a

compact set Z ⊂ R, i.e. m(Z) = M < ∞. Then we introduce the dynamics of the tax process

as follows:

τt = τ0 +

∫ t

0

∫
Z
Γ(t, Yt−, τt−, z) N(dt,dz), t ∈ [0, T ] (4.2)

for a function Γ(t, y, τ, z) : [0, T ] × Rd × R × Z → R such that equation (4.2) has a unique

solution which is then automatically a Markov process. (A set of su�cient conditions is listed in

Assumption 4.2-(iii)). In the sequel, to avoid technicalities we assume that there exists τmax > 0

such that τt ∈ [0, τmax] for all t ∈ [0, T ]. This translates into the following conditions on the

function Γ: supz∈Z Γ(t, y, τ, z) ≤ τmax − τ and infz∈Z Γ(t, y, τ, z) ≥ −τ , for all t ∈ [0, T ], y ∈ Rd,
τ ∈ [0, τmax].
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We denote by Lτ the generator of τ , for given t and value of the factor process y, that is

Lτf(t, τ, y) =

∫
Z

(
f(t, y, τ + Γ(t, y, τ, z))− f(t, x, y)

)
m(dz)

Remark 4.1. A simple example for the tax process τ is given by a two state Markov chain with

states τ1 < τ2 and switching intensity matrix G = (gij)i,j∈{1,2}, where gii = −gij , j ̸= i. For this

example the generator of the tax process reduces to Lτf(τ) =
∑2

j=1 1{τ=τ j}
∑2

i=1 gjif(τ
i). In

this case, τ1 and τ2 represent low taxes and high taxes, respectively. A low tax regime (τt = τ1)

might correspond to a the decision of a government putting little emphasis on environmental

policy, a high tax regime to a government with a green policy agenda. This example will be

discussed in detail in the numerical analysis. There are many ways to represent a two state

Markov chain as a pure jump process of the form (4.2). For a speci�c construction let Z = {0, 1},
mτ (dz) = g12 δ{0}(dz) + g21 δ{1}(dz) and put

Γ(τ, 0) = [τ2 − τ ]+ − [τ1 − τ ]+ and Γ(τ, 1) = [τ − τ2]+ − [τ − τ1]+ .

Note that the function Γ is bounded and Lipschitz in τ .

4.2. Properties of the value function

We need the following set of conditions for our analysis.

Assumption 4.2. (i) Function h(x) is Lipschitz in x.

(ii) Functions β, α are continuous and globally Lipschitz.

(iii) Function Γ(t, y, τ, z) is continuous in t, y, τ, z, Lipschitz in y, τ , for all t ∈ [0, T ], and for

all z ∈ Z and satis�es |Γ(t, y, τ, z)| ≤ c(1 + ∥y∥).

Lemma 4.3. Let V be the value function of the problem (4.4). Suppose that Assumption 2.1

and Assumption 4.2 hold. Then

(i) Π∗ is Lipschitz continuous in (x, y, τ);

(ii) V is Lipschitz in x, uniformly in t, τ, y, with Lipschitz constant

LV =
LΠ∗(1− e−(r+δ)T ))

r + δ
+ Lh; (4.3)

(iii) Suppose moreover that Π∗ and h are increasing in x, then V is increasing in x as-well.

Proof. We begin with Statement (i). To prove this we will use Assumption 2.1. By direct

computations we get that∣∣Π∗(x1, y1, τ1)−Π∗(x2, y2, τ2)
∣∣ = ∣∣∣ max

q∈[0,qmax]
Π(x1, y1, τ1, q)− max

q∈[0,qmax]
Π(x2, y2, τ2, q)

∣∣∣
≤ max

q∈[0,qmax]

∣∣Π(x1, y1, τ1, q)−Π(x2, y2, τ2, q)
∣∣ .
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Moreover, we get from the de�nition of Π that∣∣Π(x1, y1, τ1, q)−Π(x2, y2, τ2, q)
∣∣ ≤ |p(y1)− p(y2)|q + |C0(q, x

1, y1)− C0(q, x
2, y2)|

+ |τ1C1(q, x
1, y1)− τ2C1(q, x

2, y2)|+ |τ1 − τ2|ν0(q)

≤ qmaxLp|y1 − y2|+ LC0(|y1 − y2|+ |x1 − x2|) + τmaxLC1(|y1 − y2|+ |x1 − x2|)

+ (||C1||∞ + ||ν0||∞)|τ1 − τ2| ,

so that Π is Lipschitz continuous in (x, y, τ) uniformly in q ∈ [0, qmax]. Here || · ||∞ represents

the supremum norm.

Next we establish (ii). By (i) we know that Π∗ is Lipschitz continuous in (x, y, τ) with Lipschitz

constant LΠ∗ . Next we letX1 andX2 be the solutions of equation (2.5) with the initial conditions

x1 ̸= x2, respectively, that is

Xi
t = xi +

∫ t

0
(γs − δXs) ds+ σWt,

for i = 1, 2. Then we get that X1
t −X2

t = (x1 − x2)e−δt for t ≥ 0 and

|V (t, x1, y, τ)− V (t, x2, y, τ)|

≤ sup
γ∈A

Et
[∫ T

t

∣∣Π∗(X1
s , Ys, τs)−Π∗(X2

s , Ys, τs)
∣∣e−r(s−t)ds+ e−r(T−t)

∣∣h(X1
T )− h(X2

T )
∣∣]

≤ sup
γ∈A

Et
[∫ T

t
LΠ∗ |X1

s −X2
s |e−r(s−t)ds+ e−(r)(T−t)Lh|X1

T −X2
T |
]

≤
∫ T

t
LΠ∗ |x1 − x2|e−(r+δ)(s−t)ds+ e−(r+δ)(T−t)Lh|x1 − x2|

= |x1 − x2|

(
LΠ∗(1− e−(r+δ)(T−t))

r + δ
+ e−(r+δ)(T−t)Lh

)
.

This shows that V γ̄ is Lipschitz in x, uniformly in t, τ, y with uniform Lipschitz constant LV .

For (iii) note that if h and Π∗ are increasing in x, the reward function (4.1) of the problem is

increasing in x, which carries over to the value function V by de�nition. □

Remark 4.4 (Comments and extensions). 1. The argument in the proof of Lemma 4.3-(i)

can be used to get regularity of the function Π∗ even in the case where an investment

may expand the maximum capacity, which makes sense for instance in the setup of the

example on two technologies.

2. It is possible to show that if Π∗ and h are concave in x, then V is also concave in x. This

situation arises, for instance, if Π(t, x, y, τ, q) is concave in x and if q∗ is a �xed quantity.

The mathematical details of these two extensions are discussed in Appendix B.1.
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4.3. Viscosity solutions

For mathematical reasons, we �rst assume that the set of admissible controls is bounded and

we denote by Aγ̄ ⊂ A the set of all adapted càdlàg processes γ with 0 ≤ γt ≤ γ̄ for all t. Let

V γ̄(t, x, y, τ) := sup
γ∈Aγ̄

Et
[∫ T

t

(
Π∗(Xs, Ys, τs)− γs − κγ2s

)
e−r(s−t)ds+ e−r(T−t)h(XT )

]
.(4.4)

As a �rst step we show that V γ̄ is the unique viscosity solution of the HJB equation

vt(t, x, y, τ) + Π∗(x, y, τ) + Lτv(t, x, τ) + LY v(t, x, y, τ) + σ2

2
vxx(t, x, y, τ)

+ sup
0≤γ≤γ̄

{
vx(t, x, y, τ)(γ − δx)− (γ + κγ2)

}
= −rv(t, x, y, τ)

(4.5)

with the terminal condition v(T, x, y, τ) = h(x).

Proposition 4.5. The function V γ̄ is Lipschitz in (x, y) and Hölder in t and the unique viscosity

solution of the equation (4.5). Moreover, a comparison principle holds for that equation.

Proof. It is easy to check that for the problem (4.4) the hypotheses (2.1)-(2.5) of Pham [23] are

satis�ed. Then, the result follows from [23, Theorem 3.1]. Note that in [23] it is assumed that

the controls take values in a compact set, so that the results of that paper apply only to the case

where γ ∈ Aγ̄ . □

Next we want to prove that V γ̄ is independent of γ̄ for su�ciently large values of γ̄. For this we

use that, in view of Lemma 4.3, the value function V γ̄ is Lipschitz in x with Lipschitz constant

LV as in equation (4.3); in particular, the Lipschitz constant may be taken independent of γ̄.

Proposition 4.6. Consider constants γ̄1 < γ̄2 such that (LV −1)+

2k < γ̄1. Then V γ̄1 = V γ̄2.

Proof. Denote for i = 1, 2 by V γ̄i(t, x, y, τ) the value function of the optimization problem with

strategies in Aγ̄i . Since γ̄1 < γ̄2, it is immediate that Aγ̄1 ⊂ Aγ̄2 and hence V γ̄2(t, x, y, τ) ≥
V γ̄1(t, x, y, τ). To establish the opposite inequality, i.e. V γ̄1(t, x, y, τ) ≥ V γ̄2(t, x, y, τ), we prove

that V γ̄1 is a viscosity supersolution of the HJB equation (4.5) with γ̄ = γ̄2.

Fix some point (t0, x0, y0, τ0). Since V γ̄1 is a viscosity solution (and hence in particular a

supersolution) of (4.5) with γ̄ = γ̄1, for every smooth function ϕ(t, x, y, τ) such that

ϕ(t, x, y, τ) ≤ V γ̄1(t, x, y, τ) for all (t, x, y, τ) and ϕ(t0, x0, y0, τ0) = V γ̄1(t0, x0, y0, τ0) (4.6)

it holds that

−
(
ϕt(t0, x0, y0, τ0) + Π∗(x0, y0, τ0) + LτV γ̄1(t, x, y, τ) + LY ϕ(t, x, y, τ) + σ2

2
ϕxx(t, x, y, τ)

+ sup
0≤γ≤γ̄1

{
ϕx(t, x, y, τ)(γ − δx)− (γ + κγ2)

}
− rV γ̄1(t, x, y, τ)

)
≥ 0 (4.7)

It follows from (4.6) that ϕx(t0, x0, y0, τ0) ≤ LV with ϕx being the partial derivative of ϕ with

respect to x. Now note that the supremum in (4.7) is attained at γ∗ = (ϕx−1)+

2k ≤ (LV −1)+

2k < γ̄1.

Hence we can replace γ̄1 with γ̄2 in (4.7) without changing the supremum. This implies that

V γ̄1 is a supersolution of (4.5) with γ̄ = γ̄2 and completes the proof. □
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Summarizing, we have the following result.

Theorem 4.7. The value function V of the optimization problem (4.1) is Lipschitz in (x, y),

Hölder in t and the unique viscosity solution of the HJB equation (4.5) for any �xed γ̄ > (LV −1)+

2k .

Proof. In the sequel we show that V (t, x, y, τ) = V γ̄(t, x, y, τ) for γ̄ > (LV −1)+

2k , hence V inherits

the regularity properties of V γ̄ from Proposition 4.5.

In view of Proposition 4.6, it remains to show that V (t, x, y, τ) = limm→∞ V m(t, x, y, τ) (V m

is the solution of (4.5) with γ̄ = m.) The inequality V (t, x, y, τ) ≥ limm→∞ V m(t, x, y, τ) is clear,

since Am ⊂ A. For the converse inequality, we observe that for all γ ∈ A there is a sequence of

strategies γm ∈ Am such that limm sup0≤t≤T |γmt − γt| = 0 P-a.s. To show this it is su�cient to

take γmt = γt∧m. Moreover, it is easily seen that the reward function is continuous with respect

to γ so that we have the convergence J(t, x, y, τ, ,γm) → J(t, x, y, τ,γ). Now we choose ε > 0

and a strategy γε ∈ A such that J(t, x, y, τ,γε) ≥ V (t, x, y, τ)− ε/2. Let {γm,ε}m∈N such that

lim
m→∞

sup
0≤t≤T

|γm,εt − γεt | = 0 P-a.s.,

hence J(t, x, y, τ,γm,ε) → J(t, x, y, τ,γε). Then, there is m∗(ε) ∈ N such that for all m > m∗(ε)

it holds that V m(t, x, y, τ) ≥ J(t, x, y, τ,γm) ≥ V (t, x, y, τ) − ε. Since ε is arbitrary we get the

result. □

4.4. Classical solution

In this paragraph we discuss conditions ensuring that the value function is a classical solution

of an HJB PIDE. We recall that it is su�cient to work under the assumption that 0 ≤ γ ≤ γ̄, in

virtue of Theorem 4.7. We consider a cumulative investment X process, the tax process τ and

the factor process Y as in our general framework, i.e. they are described by the equations (2.5),

(4.2) and (2.1), respectively.

Theorem 4.8. Assume that σ > 0 and that there is some ᾱ > 0 such that for all ξ ∈ Rd,
ξ⊤S(t, y)ξ > ᾱ||ξ||2. Then the value function V (t, x, y, τ) is the unique classical solution of the

HJB equation (4.5) for γ̄ > (LV −1)+

2κ .

The proof of this result is given in Appendix B.

Corollary 4.9. Under the assumptions of Theorem 4.8, the optimal strategy satis�es γ∗t =

γ∗(t,Xt, Yt, τt) =
(Vx(t,Xt,Yt,τt)−1)+

2κ for every t ∈ [0, T ].

Proof. Since the function V is a classical solution of the equation (4.5), we get that γ∗(t,Xt, Yt, τt)

is the optimal strategy by verifying �rst and second order conditions. □

In appendix B.3 we discuss an example which shows that the assumption σ > 0, i.e. strict

ellipticality of the generator of the controlled processX, plays a crucial role to obtain the classical-

solution characterization discussed in this section. This example illustrates in particular that,

when the assumption is not satis�ed, the value function may be a strict viscosity solution of the

HJB equation.
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5. Tax policy uncertainty and stochastic differential games

Climate policy variables such as emission tax rates are the result of unpredictable political

processes. Hence it is di�cult to come up with a `correct' probabilistic model for the evolution

of future emission tax rates. In this section we therefore study the optimal investment into

abatement technology for an uncertainty-averse producer who considers a set T of plausible tax

processes but who does not assume a precise probabilistic model for the future tax evolution.

Instead, she determines her optimal production and investment strategy as the equilibrium stra-

tegy of a stochastic di�erential game with malevolent opponent. The objective of the producer

remains that of maximizing expected pro�ts. On the other hand, the opponent chooses a tax

process from T to minimize the pro�ts of the producer. From the viewpoint of the producer the

tax process chosen by the opponent thus constitutes a worst-case tax scenario.

Stochastic di�erential games have been used before as a tool for modelling the decision making

of uncertainty averse investors. For instance, Avellaneda and Paras [5] or Herrmann et al. [17]

use stochastic di�erential games to deal with model risk in the context of pricing and hedging

positions in derivative securities. Important contributions on the mathematical theory of sto-

chastic di�erential games include Friedman [14], Fleming and Souganidis [11] or, more recently,

Possamaï et al. [25].

5.1. The di�erential game

We now describe the game between the producer and her opponent in detail. As in the tax risk

case, the producer chooses her production and her investment, whereas the opponent chooses

the tax rate. The dynamics of the factor process Y and of the stochastic investment X are

given by (2.1) and (2.5), respectively. We consider the pro�t function π(q, x, y, τ) introduced in

(2.2), where the cost function satis�es the Assumption 2.1. We specify tax rates as follows. We

assume that the set T consists of all adapted tax processes with values in a band around some

deterministic tax plan τ̄ : [0, T ] 7→ [0,∞). The tax plan τ̄ can be interpreted as the producer's

prediction of the future tax evolution or as the future carbon tax rate o�cially announced by the

government at t = 0. Given functions τmin, τmax : [0, T ] → [0,+∞) with τmin(t) ≤ τ̄(t) ≤ τmax(t)

for every t ∈ [0, T ], we de�ne T as the set of all adapted processes τ = (τt)0≤t≤T such that

τmin(t) ≤ τt ≤ τmax(t) for all t ∈ [0, T ]. Next, we denote by Q the set of all adapted production

processes q = (qt)0≤t≤T taking values in [0, qmax], for some qmax > 0 that represents the maximum

capacity of production. Finally, recall that A denotes the set admissible investment strategies,

i.e. the set of all adapted process γ = (γt)0≤t≤T with values in [0,+∞) and E
[∫ T

0 γtdt
]
<∞.

Given a tax process τ ∈ T , the producer chooses the investment rate γ ∈ A and the quantity

q ∈ Q of energy to be produced in order to maximise her expected pro�ts given by

J̃(τ ,γ, q) = E
[ ∫ T

0

(
Π(qs, Xs, Ys, τs)− γs − κγ2s

)
e−r(s−t)ds+ h(XT )e

−r(T−t)
]
.

Note that now the choice of q is a part of the game and cannot be done upfront (other than in

the tax risk case). Given an investment strategy γ and a production process q, the opponent on

the other hand chooses the tax process τ ∈ T in order to minimize the expected pro�t of the
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producer. In this problem tax processes are penalized via the function

τ 7→ ρ(τ ) = E
[ ∫ T

0
ν1(τt − τ̄(t))2 dt

]
, (5.1)

for a �xed constant ν1 > 0, that is the opponent wants to minimize J̃(τ ,γ, q) + ρ(τ ). The

interpretation is as follows: from the viewpoint of the uncertainty averse producer the tax process

τ chosen by the opponent constitutes a worst-case tax scenario. The penalty ρ(τ ) re�ects the

plausibility of di�erent tax processes from the viewpoint of the producer. In particular, a process

τ which deviates substantially from τ̄ is considered implausible by the producer and it is therefore

penalized strongly by the penalty function ρ(·). The penalization function ρ(τ ) is independent

of q and γ. Hence it can be added to the objective function of the producer without altering his

decisions. We may therefore model the game between the producer and the opponent as a zero

sum game with reward function

J(t, x, y, τ ,γ, q) =Et
[ ∫ T

t

(
Π(qs, Xs, Ys, τs) + ν1(τs − τ̄(s))2

− γs − κγ2s
)
e−r(s−t)ds+ h(XT )e

−r(T−t)
]
. (5.2)

Following Friedman [14] we call a pair of strategies (γ∗, q∗) (for the producer) and τ ∗ (for the

opponent) an equilibrium for the game if for any τ ∈ T , γ ∈ A, q ∈ Q,

J(0, X0, Y0, τ
∗,γ, q) ≤ J(0, X0, Y0, τ

∗,γ∗, q∗) ≤ J(0, X0, Y0, τ ,γ
∗, q∗) .

We then call u(t, x, y) := J(t, x, y, τ ∗,γ∗, q∗) the value of the game. In the sequel we show that

under certain regularity conditions the game (5.2) has equilibrium strategies in feedback form,

which implies that the value of the game is well de�ned.

Comments. Note that in the game (5.2), tax uncertainty is modelled by the width of the band

around τ̄ and by the size of the constant ν1 in the penalty function (5.1), where a wider band

or a smaller value of ν1 correspond to an increase in (perceived) uncertainty. Indeed, a large

value of ν1 implies that tax processes deviating strongly from τ̄ are strongly penalized and hence

rarely chosen by the opponent, so that uncertainty is reduced.

Finally, we caution against an interpretation of the opponent in this game as a regulator or the

government. Indeed, a reasonable objective function for a government that wants to maximise the

social welfare should account for relevant quantities such as overall emissions, energy production

or tax revenue which are not part of the reward function (5.2). For an example of a `reasonable'

reward function of a regulator we refer to Carmona et al. [8, Eqn. (18)] .

5.2. Characterisation of equilibrium strategies.

In the sequel we aim to characterise the value of the game and the equilibrium strategies. In

the context of stochastic di�erential games this is usually done via a suitable Bellman-Isaacs

equation. However, since in our model the tax value τ chosen by the opponent a�ects only the

running reward, the Bellman-Isaacs equation can be reduced to a standard HJB equation.

We de�ne the function

g(q, τ ;x, y) = Π(q, x, y, τ) + ν1(τ − τ̄(t))2 ,
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and recall that Π(q, x, y, τ) = p(y)q− [C0(q, x, y)−C1(q, x, y)τ ]+ν0(q)τ . In Lemma 5.2 we show

that for every �xed (x, y), the function g admits a unique saddle point (q∗, τ∗). Hence we may

de�ne functions q̂(x, y) and τ̂(x, y) that map (x, y) to the associated saddle point of g. Denote

by

G(x, y) = g(q̂(x, y), τ̂(x, y), x, y) = max
q

min
τ
g(q, τ ;x, y) = min

τ
max
q
g(q, τ ;x, y) (5.3)

the corresponding saddle value, where the maximum is taken over q ∈ [0, qmax] and the minimum

over τ ∈ [τmin, τmax]. In the next result we show that the equilibrium strategy and the value of

the game can be characterised in terms of an HJB equation with running reward given by the

function G.

Proposition 5.1. Suppose that for �xed (x, y) the function g has a saddle point (q̂(x, y), τ̂(x, y))

and that the PDE

ut(t, x, y) +G(x, y) + LY u(t, x, y) + σ2

2
uxx(t, x, y) + sup

γ≥0

(
γux(t, x, y)− γ − κγ2

)
= ru (5.4)

with the �nal condition u(T, x, y) = h(x) has a classical solution. Let γ̂(t, x, y) = (ux(t, x, y) −
1)+/(2κ). Then u is the value function of the game and the strategies q∗ = (q̂(Xt, Yt))0≤t≤T ,

γ∗ = (γ̂(t,Xt, Yt))0≤t≤T and τ ∗ = (τ̂(Xt, Yt))0≤t≤T are equilibrium strategies for the game.

Proof. This proposition can be established via classical veri�cation arguments. Suppose that the

opponent uses the strategy τ ∗ and denote by X the solution of the SDE

dXt = (γ̂(t,Xt, Yt)− δXt)dt+ σdWt .

Since (q̂(x, y), τ̂(x, y)) is a saddle point of g, we have G(x, y) = supq∈[0,qmax] g(q, τ̂(x, y);x, y),

and we may rewrite the PDE (5.4) in the form

ut(t, x, y) + LY u(t, x, y) + σ2

2
uxx(t, x, y)− δxux(t, x, y)

+ sup
q∈[0,qmax]

g(q, τ̂(x, y);x, y) + sup
γ≥0

{
γux(t, x, y)− γ − κγ2

}
= ru(t, x, y) .

Moreover u(T, x, y) = h(x), so that this is the HJB equation for the control problem

max
q∈Q,γ∈A

Et
[∫ T

t

(
g(qs, τ̂(Xs, Ys);Xs, Ys)− γs − κγ2s

)
e−r(s−t)ds+ e−r(T−t)h(XT )

]
. (5.5)

A standard veri�cation result for stochastic control problems such as Theorem 3.5.2 in Pham

[24] now shows that u is the value function for the control problem (5.5) and that q∗ and γ∗ are

an optimal strategy in (5.5). A similar argument shows that τ ∗ is optimal against q∗ and γ∗,

which completes the proof. □

Next we verify that the assumptions of Proposition 5.1 are satis�ed. We begin with the

existence of a unique saddle point for g. We omit the arguments x, y to ease the notation. For

�xed q ∈ [0, qmax] the function τ 7→ g(q, τ) is strictly convex and has a unique minimum on

[τmin, τmax] which we denote by τ(q). Similarly, the function q 7→ g(q, τ) is strictly concave and

has a unique maximum q(τ) on [0, qmax]. A saddle point (q∗, τ∗) of g is characterized by the

equations

τ∗ = τ(q∗) and q∗ = q(τ∗). (5.6)
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We use �rst order conditions to identify τ(q) and q(τ). It holds that

τ(q) =
{
τ̄ +

1

2ν1

(
C1(q)− ν0(q))

}
∨ τmin ∧ τmax (5.7)

The optimal instantaneous production q(τ) is determined as in Section 2. In particular, the

FOC characterizing q(τ) is p − ∂qC0(q) − (∂qC1(q) − ∂qν0(q))τ = 0, and q(τ) is therefore given

by (2.4). The existence of a unique solution to equation (5.6) is established in the next lemma,

whose proof is given in Appendix C.

Lemma 5.2. Suppose that the cost function C satis�es Assumption 2.1 and that the functions

C0, C1 and ν0 are moreover C2 in q. Then, for every �xed (x, y), the function g(q, τ ;x, y) has a

unique saddle point (q∗, τ∗) =: (q̂(x, y), τ̂(x, y)).

The next theorem summarises the mathematical analysis of the stochastic di�erential game.

Theorem 5.3. Suppose that σ2 > 0, that the generator LY is strictly elliptic, that the cost

function satis�es Assumption 2.1 and that C0 and C1 are moreover C2 in q. Then the PDE (5.4)

has a unique classical solution u, which is the value function of the game. Moreover, the strategies

q∗, γ∗ and τ ∗ from Proposition 5.1 are equilibrium strategies for the game.

Proof. In view of Proposition 5.1, we need to show the existence of a classical solution to the

PDE (5.4). For this we �rst show that the function G from (5.3) is Lipschitz in (x, y). The

de�nition of G implies that |G(x′, y′)−G(x, y)| ≤ sup(q,τ)∈B |g(q, τ ;x′, y′)− g(q, τ ;x, y)|, where
B = [0, qmax]× [τmin, τmax]. Now

|g(q, τ ;x′, y′)− g(q, τ ;x, y)| ≤ qmax|p(y′)− p(y)|+ |C0(q, x
′, y′)− C0(q, x, y)|

+ τmax|C1(q, x
′, y′)− C1(q, x, y)|

≤ C|(x′, y′)− (x, y)| ,

where the last inequality follows from the Lipschitz conditions in Assumption 2.1. Existence and

uniqueness of a classical solution to (5.4) now follow by similar arguments as in Section 4.4. In

fact, the analysis of (5.4) is even simpler than the analysis of the HJB equation in Section 4.4,

since there are no jump terms in the equation. □

5.3. Properties of the optimal tax rate and production

We continue with a few comments on the properties of the saddle point (τ∗, q∗) =
(
τ̂(x), q̂(x)

)
,

where we ignore the dependence on y to ease the notation. Note �rst that the rebate ν0(q) plays

an important role for the form of the saddle point. From equation (5.7) we see that τ∗ ≥ τ̄ if and

only if ν0(q
∗) ≤ C1(q

∗, x). In particular, without rebate, that is for ν0 ≡ 0, we have τ∗ ≥ τ̄ so

that the anticipated tax rate is higher than the reference tax value. Intuitively, this incentivises

the producer to invest more than she would do under the reference tax scenario, so that an

increase in uncertainty is bene�cial from a societal point of view, see Section 6.3 for a numerical

con�rmation and further discussion. This is an interesting observation which distinguishes the

stochastic di�erential game from the case where the model for the tax dynamics is known. On

the other hand, with rebate and for full abatement, that is for C1 ≡ 0, we have τ∗(q) < τ̄ . Hence
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Figure 1. Representation of the saddle point
(
τ̂(x), q̂(x)

)
for the cost function

from the two technologies example. The plots in the left panels refer to the case of

high uncertainty (small ν1), the plots in the right panels refer to low uncertainty

(large ν1). We take τ̄ = 1 in both cases. The value α = 0 corresponds to no

rebate, α = 0.5 to positive rebate. Note that the left and the right panel on the

bottom use a di�erent scale.

for full abatement the worst case tax value is lower then the reference tax. This is consistent

with the objective of the opponent who wants to minimize her payments to the producer.

These properties are illustrated in Figure 1, where we provide representations of the saddle

point
(
τ̂(x), q̂(x)

)
for a cost function corresponding to the example with two production

technologies (see Section 3.2 for the model and Section 6.2 for parameter speci�cations). We

�x a maximum capacity qmax = 10 and a minimum capacity qmin = 5. The lower bound on q

might correspond to contractual provisions stipulating a minimum amount of energy the producer

has to provide at all times. In this example tax rates take value in the interval [0.5, 1.5] and we

�x the most plausible tax rate as τ̄ = 1. We model the rebate as ν0(q) = ebQ (αq) for di�erent

values of α, and we recall that the penalization for deviating from the most plausible tax rate is

ν1(τ − τ̄)2.

The left panels corresponds to the case of high uncertainty, modeled by a small penalization

for deviating from τ̄ (ν1 = 1), and those on the right correspond to the case of low uncertainty

where deviations from τ̄ are strongly penalised (ν1 = 20). In all panels we consider the cases of

no rebate α = 0 (blue dashed line) and rebate α = 0.5 (solid red line). We see that the optimal

production q̂(x) is increasing in x. This is due to the fact that a higher investment level implies

lower tax payments and hence a lower marginal cost. Moreover, a rebate boosts production, (the

red solid line is above the dashed blue line). Note �nally, that in this example optimal production

is fairly robust with respect to the level of tax uncertainty as the function q̂ is very similar in

the left and in the right panel. The behaviour of tax rate τ̂ on the other hand is more sensitive

to the choice of ν1. In particular, for small ν1 (high uncertainty) the optimal tax rate assumes

all values in the interval [τmin, τmax] and the constraints τ ≤ τmin = 0.5 and τ ≥ τmax = 1.5
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are binding. In case of large ν1 (low uncertainty) on the other hand, these constraints are not

binding and the optimal tax value stays close to τ̄ . This behaviour is consistent with formula

(5.7). Note �nally that τ̂(·) is decreasing in x. This is natural from an economic viewpoint, since

for a high investment level emissions and hence the income from the carbon tax are low, so that

rebate and penalization lead to a lower value of τ∗.

6. Numerical experiments

In this section we report the results of numerical experiments that study the impact of

transaction cost, production technology, market structure and randomness in the tax system

on the investment strategy and the optimal electricity output of the producer. In particular we

identify certain situations where randomness in taxes reduces green investments, which is not

desirable from a societal perspective. Throughout we use the deep-learning algorithm proposed

in Frey and Köck [13] to compute the value function and the optimal investment rate. We refer

to Appendix A for the details on the numerical methodology.

In Section 6.1 we present results in the context of the �lter technology from Section 3.1, in

Section 6.2 we discuss results for the two technologies from Section 3.2. In both cases we work

under tax risk and assume that the tax process follows a Markov chain with two possible states

τ1 = 0 and τ2 > 0 and transition intensity matrix G. This is a special pure jump process with

�xed jump sizes that allows us to capture typical features of a tax process with a small number of

parameters. We study two special models for the tax evolution, namely the tax increase and the

tax reversal. In the tax increase case we assume that τ0 = 0 and that the process jumps upward

to τ2 > 0 at a random time. This is a stylized model for the situation where a government plans

to rise carbon taxes in order to comply with international climate agreements but where the

exact timing of the tax rise depends on random political factors. In the numerical experiments

we moreover assume that the high tax value is an absorbing state and we �x the transition

intensities as g12 = 0.25 and g21 = 0. In the tax reversal case the tax is initially high (τ0 = τ2)

but jumps down to τ1 at a random time. Such a downward jump might occur as a result of

lobbying activities or of a change in government composition. In our numerical experiments we

�x the transition intensities as g12 = g21 = 0.25. Note that this choice implies that taxes may

jump up again at a later time point.

In Section 6.3 we �nally discuss examples for the stochastic di�erential game in the context of

the two technologies.

6.1. Experiments for the �lter technology under tax risk

We now discuss results of numerical experiments for the �lter technology. We use the following

parameters: δ = 0.05, σ = 0.05, r = 0.02, the time horizon is T = 15 years and h(x) = 0, which

is in line with the fact that �lters loose their value at the end of the lifetime of the underlying

power plant. We consider two possible parameters for transaction costs, κ = 0.2 or κ = 0.5,

which we refer to as low and high transaction costs, respectively. The high tax value is set to

τ2 = 0.2. We work with a cost function of the form (3.1), where the cost of one unit of raw

material is constant and equal to c̄, the quantity of raw material is speci�ed as Q(q) = aq
3
2 , and
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where the abatement function is given by

e(x) =

{
e1x+

e21
4e0
x2 if x ≤ e0 ,

e0 if x > e0 .

In the numerical experiments we use the parameter values a = 1.25, c̄ = 1, e0 = 1.5, e1 =

0.5. These parameter values were chosen to obtain a qualitatively reasonable behaviour of the

production function, they were however not calibrated to a real production technology. Note

that for the chosen parameters the abatement cost is globally non-decreasing in x, concave and

di�erentiable and that the maximum abatement level is e0.

We consider two di�erent market structures. In Section 6.1.1 we study the case where the

amount of electricity to be produced is �xed; in Section 6.1.2 we assume that the electricity

output is endogenous and chosen by the pro�t-maximizing producer.

6.1.1. Fixed electricity output. In this section we assume that electricity production is �xed and

equal to qmax = 4, for instance since the producer has entered into long-term delivery contracts.

In that case the investment decision of the electricity producer is independent of the rebate and

of the form of the electricity price, so that we focus only on the randomness in the tax rate.

In Figure 2 we plot single trajectories of the cumulative investment for the tax increase (left

panel) and the tax reversal (right panel), for di�erent values of the transaction cost parameter.

In line with economic intuition, in both cases investments are larger for lower transaction costs.

Moreover, the investment level decreases as time approaches the horizon date T . This is due to

the fact that γ∗t is equal to zero for t close to T , since in that case the tax savings generated by

new investment are too small to warrant the expenditure. Finally, in both cases the producer

reacts to changes in the tax regimes. Indeed, when a change in the tax rate occurs the trajectory

of the investment process suddenly exhibits a change in the slope (i.e. a kink), which, intuitively,

corresponds to a jump in the investment rate. In particular, in the tax increase scenario the

investment rate γt jumps upward as the tax rate switches from τ1 to τ2. Interestingly, the

producer starts to invest already at t = 0, even if the tax rate is equal to zero for small t. In this

way he hedges against an anticipated tax increase. In fact, due to transaction costs it would be

too costly to wait until the upward jump in taxes actually occurs and to invest only thereafter.

This hedging behaviour distinguishes our model from the real options literature such as [15],

where it is optimal to wait if and when a regulator acts and to invest only afterwards. In the tax

reversal case, investments starts at a high rate due to the high taxation of emissions. As soon as

taxes switch to τ1 the producer reduces or even stops her investment so that Xt decreases due

to depreciation.

In Figure 3 we plot the evolution over time of the average investments E [Xt] together with the

5% and 95% quantiles of the distribution of Xt, for every t ∈ [0, T ]. For comparison purposes

we moreover plot the optimal investment in a deterministic benchmark scenario τ̄(t), which is

computed as follows: in the tax increase case we assume that τ̄(t) is linear increasing that is

τ̄(t) = bt; in the tax reversal case we assume that the reverence tax rate is constant, τ̄(t) = τ̄ . In

both cases we assume that the expected average tax rate is identical in the benchmark scenario
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Figure 2. Single trajectory of cumulative investment X for the tax increase case

(left panel) and the tax reversal case (right panel), under low transaction costs

(solid line) and high transaction costs (dashed line). The grey and the white

shaded areas correspond to time periods with high tax rate and low tax rate.

and in the case with random taxes. For the tax increase case we therefore have the condition

E
[∫ T

0
τtdt

]
= b

T 2

2
, that is b =

2

T 2
E
[∫ T

0
τtdt

]
, (6.1)

which leads to b = 0.0197. For the tax reversal scenario we have

τ̄ =
1

T
E
[∫ T

0
τt dt

]
, (6.2)

which leads to τ̄ = 0.113.

Next we report the values for the average emissions at two evaluation dates, namely after 10

and 15 years. Table 1 contains the values for the random tax increase, where the benchmark is the

deterministic increasing tax rate, see (6.1); Table 2 gives the values for the random tax reversal,

where the benchmark is the constant tax rate, see (6.2). In the �rst three columns we report the

5% quantile, the mean and the 95% quantile of the emission distribution in case of random taxes,

in the fourth column we report the level of emission for the benchmark case, for two di�erent

transaction costs parameters. The values in these tables suggest that the benchmark tax rate

always leads to emission levels that are lower than the mean emissions under random tax rates,

(in most cases emissions in the benchmark case are even below the 5% quantile of the emissions

distribution). This is in line with the intuition that randomness in future tax rates reduces

investments into carbon abatement technologies, thereby leading to higher emission levels.

In the next experiment, we study how the credibility of an announced carbon tax policy a�ects

the investment decision of the producer and hence the e�ectiveness of the policy. We begin with

the case of the random tax increase. In Figure 4 we compare a path of the cumulative investment

of a producer who does not belief in an announced future tax increase and who therefore works

with a very low intensity (g12 = 0.05) to the investment path of an investor with g12 = 0.25,
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Figure 3. Average total investment (solid red line) for the random tax increase

(left panel) and the random tax reversal (right panel), under high transaction

costs (κ = 0.5), versus total investment in the deterministic tax case (dashed

blue line). The grey shaded areas correspond to the interval between the 5% and

the 95% quantile of the investment level in the case with random taxes.

t = 10 t = 15

5% mean 95% benchmark 5% mean 95% benchmark

κ = 0.2 1.96 3.16 4.86 2.94 3.56 4.83 7.08 4.08

κ = 0.5 3.33 5.27 7.82 5.07 5.21 7.31 11.34 6.38

Table 1. Quantiles of the emissions distribution for the random tax increase

after t = 10 and t = 15 years. We assume that the quantity q is �xed and equal

to qmax = 4. The benchmark tax leads to lower emissions on average.

t = 10 t = 15

5% mean 95% benchmark 5% mean 95% benchmark

κ = 0.2 2.73 3.02 3.80 2.28 4.82 5.28 6.52 4.17

κ = 0.5 4.31 5.11 7.34 4.18 6.74 7.83 10.78 6.52

Table 2. Quantiles of the emissions distribution for the random tax reversal

after t = 10 and t = 15 years. We assume that the quantity q is �xed and equal

to qmax = 4. The constant tax leads to lower emissions on average.

both for κ = 0.5 and for the same realization of the tax process. We see that the investment of

the investor with g12 = 0.05 is substantially lower, even if the tax path is the same. This is due

to the fact that an investor who does not believe in a future tax increase does not hedge against

a future tax rise (see the discussion of Figure 2) but he invests only after the tax increase has

actually materialized. The right panel of Figure 4 corresponds to the tax reversal. We compare
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the optimal cumulative investment of an investor with g21 = 0.25 and an investor who believes

tax reversal is very likely, that is g21 = 0.5, for the same trajectory of the tax process (we take

g12 = 0.25 for both investors). We see that the producer with g21 = 0.5 invests less then the

investor with g21 = 0.25, even if both face the same tax trajectory. Table 3 and Table 4 below,

provide the quantiles and the average emissions for the tax increase case and the tax reversal case,

respectively, for a producer with a wrong belief on the tax switching intensity versus a producer

with the correct belief. These numbers show substantially larger emissions in the wrong belief

case, which con�rm the behaviour depicted in Figure 4.

These experiments underline that a carbon tax policy that is not credible (i.e. producers are

not convinced that an announced tax increase will actually be implemented or they expect that

a high tax regime will soon be reversed) is substantially less e�ective than a credible policy.
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Figure 4. Single trajectory of total investment for the tax increase case (left

panel) and the tax reversal case (right panel), under high transaction costs. Here

we compare investors with di�erent beliefs about switching intensity. In the tax

increase case we compare an investor with g12 = 0.25 and an investor who believes

tax increase is not very likely, that is g12 = 0.05 (g21 = 0 for both investors) and

we plot the investment for the same tax trajectory as in Figure 2 (left panel). In

the tax reversal case we compare an investor with g21 = 0.25 and an investor who

believes tax reversal is very likely (g21 = 0.5) (g12 = 0.25 for both investors) and

we plot the investment for the same tax trajectory as in Figure 2 (right panel).

6.1.2. Stochastic price and endogenous electricity output. Now we consider a richer setup where

the selling price of electricity is random and where the producer optimizes the instantaneous

electricity production q∗t = q∗(Xt, Yt, τt). We assume that the energy price is given by pt =

exp(Yt), where the process Y is the solution of the one-dimensional SDE

dYt = θ(µ− Yt) dt+ α dBt, Y0 = ln(p0),
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t = 10 t = 15

5% mean 95% 5% mean 95%

wrong belief 3.72 7.96 15.03 5.54 10.20 21.41

correct belief 3.33 5.27 7.82 5.21 7.31 11.34

Table 3. Quantiles of the emissions distribution for the random tax increase

after t = 10 and t = 15 years for an investor with a wrong belief versus a correct

belief on the switching intensity. We assume that the quantity q is �xed and equal

to qmax = 4. Wrong beliefs leads to substantially higher emissions.

t = 10 t = 15

5% mean 95% 5% mean 95%

wrong belief 5.13 5.93 8.67 8.05 9.23 12.86

correct belief 4.31 5.11 7.34 6.74 7.83 10.78

Table 4. Quantiles of the emissions distribution for the random tax reversal

after t = 10 and t = 15 years for an investor with a wrong belief versus a correct

belief on the switching intensity. We assume that the quantity q is �xed and equal

to qmax = 4. Wrong beliefs leads to substantially higher emissions.

for a one dimensional Brownian motion B = (Bt)t≥0 that is independent ofW . We �x µ = ln(5),

θ = 1, α = 0.1 and p0 = 5. The dynamics of X and τ are as in Section 6.1.1. In this framework

we also consider a tax rebate which is modeled by the function ν0(q) = 1
2Q(q)e0, that is the

tax payments of the producer are fully refunded when half of the emissions are abated. The

instantaneous pro�t is given by

Π(q, x, y, τ) = p(y)q −
(
Q(q)(c̄+ τ(e0 − e1x+

( e21
4e0

)
x2)+)

)
+Q(q)

e0
2
τ.

Since in this example Q(q) = aq
3
2 , we get

q∗(x, y, τ) =

 2p(y)

3a
(
c̄+ τ(e0 − e1x+

( e21
4e0

)
x2)+ − 1/2τe0

)
2

∧ qmax. (6.3)

Note that in case there is no rebate, that is when taking ν0(q) = 0, we have that

q∗(x, y, τ) =

 2p(y)

3a
(
c̄+ τ(e0 − e1x+

( e21
4e0

)
x2)+

)
2

∧ qmax. (6.4)

Figure 5 plots trajectories of the optimal production for the random tax increase (left panel)

and for the random tax reversal (right panel). In this example we set the transaction costs

parameter to κ = 0.5. We compare the cases with rebate (solid black lines) with that of no-

rebate (ν0(q) ≡ 0, solid grey lines). The plots are obtained for the same selected price trajectory.

In these experiments we see that optimal production q∗ reacts to three di�erent factors: (i) there

are instantaneous jumps occurring at tax switches; (ii) between two consecutive jumps of the tax

rate production �uctuates as it adapts to changes in the price; (iii) �nally, the reaction of q∗ to
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tax switches depends on the rebate. In particular, when a rebate is applied production is both

larger and more volatile than for ν0(q) ≡ 0. This is in line with formulas (6.3) and (6.4).
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Figure 5. Trajectory of the optimal production q∗ for the case with rebate (solid

red line) and without rebate (dashed blue line). The left panel corresponds to the

tax increase scenario and the right panel to the tax reversal case. Both panels are

obtained under the same selected price trajectory under transaction costs κ = 0.5.

The grey and white shaded areas correspond to high tax rate and low tax rate, respectively

The implications for the optimal investment are depicted in Figure 6, where we consider the

cumulative investment for the same tax trajectories as in Figure 5. We clearly see that the

producer reacts to changes in the tax regime, that the hedging e�ect (i.e. nonzero investment

under zero tax level in anticipation of a tax switch) is still present for the random tax increase

(left panel) and that hedging is more prominent when a rebate is applied. We also see that

investment levels decrease as t approaches T , however this e�ect is less pronounced than in the

case of �xed electricity output displayed in Figure 2.

Most importantly, these plots suggest that a rebate is in general bene�cial for investment. To

test our last observation we have also looked at the quantiles of the investment distribution with

and without rebate. Precisely, we have computed average investments E[Xt], the 5% quantile

and the 95% quantiles of its distribution after 10 and 15 years, and the investment values for

benchmark cases. For a better illustration of the results we have collected these numbers in

Table 5 for the tax increase and in Table 6 for the tax reversal. In both tables we compare the

case with rebate and without rebate (on the �rst and second row of each table, respectively).

The benchmark for the tax increase is computed from (6.1), the benchmark for the tax reversal is

computed from (6.2). The table supports our previous �ndings that rebate may be an important

driver for investment. Indeed, investments under rebate are always larger compared to the case

where rebate is not applied. Moreover, we again �nd that, on average, randomness in future

tax rates discourages investment. Investments in the benchmark cases, in fact, are always larger

than the average investment under random taxes and most of the times above the 95% of the

distribution.
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Figure 6. Trajectory of the optimal investment X for the case with rebate (solid

red line) and without rebate (dashed blue line). The left panel corresponds to the

tax increase scenario and the right panel to the tax reversal case. Both panels are

obtained under the same selected price trajectory under transaction costs κ = 0.5.

The grey and white shaded areas correspond to high tax rate and low tax rate, respectively

t = 10 t = 15

5% mean 95% benchmark 5% mean 95% benchmark

rebate 4.70 4.76 4.82 5.19 4.13 4.28 4.43 4.84

no-rebate 4.32 4.40 4.54 5.03 3.53 3.71 3.90 4.40

Table 5. Quantiles of the investment distribution for the random tax increase

and the investment values for the deterministic increasing benchmark after t =

10 and t = 15 years, with and without rebate, for the �lter technology with

endogenous production. On average, investment is higher in the benchmark case.

t = 10 t = 15

5% mean 95% benchmark 5% mean 95% benchmark

rebate 3.51 4.29 4.65 4.70 2.86 3.73 4.14 3.82

no rebate 3.18 4.01 4.40 4.44 2.60 3.24 3.60 3.54

Table 6. Quantiles of the investment distribution for the random tax reversal

and the investment values for the constant benchmark after t = 10 and t =

15 years, with and without rebate, for the �lter technology with endogenous

production. On average, investment is higher in the benchmark case.

6.2. Two technologies with r tax risk

This section is dedicated to the analysis of some numerical experiments for the setup described

in Example 3.2, where the producer can invest into a green production technology in addition to
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a brown one. In these experiments we assume the following form for the cost function:

C(q, x, y, τ) = (cb + ebτ)Qb
(
(q − Pg(x))

+) ,
where cb = 1, eb = 1, Qb(q) = q3/2, Pg(x) = pg(x − x̄)+. Here x̄ = 20 represents an initial

expenditure that is necessary before the green investment is actually able to produce electricity

such as the cost of buying land for solar farms or investments needed to connect a solar park to

the grid.1. We set the productivity parameter to pg = 0.2 and we �x the maximum production

capacity at qmax = 10. We moreover �x the following parameters: T = 15 years, h(x) = (0.7x)+,

δ = 0.02, σ = 0.2, r = 0.04, κ = 0.5. In addition, in the following experiments we assume

that selling price of electricity is constant and equal to p = 2.1, whereas the production q is

endogenous.

Tax risk. Similarly as in the case of the �lter technology we model the tax process as a Markov

chain with two states and we consider the same models for the tax dynamics, namely the tax

increase and the tax reversal. In this section we let τ2 = 1. In addition we consider a rebate

of the form ν0(q)τ = ebQ (αq) τ , for Q(q) = q3/2 and di�erent values of α. In particular α = 0

corresponds to the case where no rebate is enforced and α = 1
2 means that a rebate is applied.

Put in other words, rebate exceeds tax payments as soon as the producer produces more than

the fraction 1− α of the total output using green technology.

In Figure 7 we plot trajectories of optimal investments with and without rebate. The left panel

corresponds to tax increase and the right panel to tax reversal. For both tax trajectories, there

is only a moderate reaction of investment to tax switch, i.e. a slight modi�cation of the slope

of the investment trajectory when moving from the white area to the grey area and vice versa.

Note that in case of the two technologies the producer has an incentive to invest into the green

technology even for τ ≡ 0, since the green technology has zero marginal cost. Hence the impact

of carbon taxes on investment is smaller than for the �lter technology where, without taxes,

there is no economic incentive for investing into abatement technology.

Rebate is bene�cial for investment for both tax models. This e�ect is way more pronounced in

the case of the random tax increase. We o�er the following explanation. After the tax rise the

producer bene�ts substantially from a high investment level since he obtains a higher revenue

from the green electricity produced (market price plus rebate). Moreover, the producer knows

that the tax rate will not return to τ1 = 0 in the future, so that he can enjoy this high revenue

for a longer period.

Finally, similarly as in the example of the �lter technology, we provide a comparison of the

average investments, the 5% quantile and the 95% quantile of the investment distribution with

and without rebate after 10 and 15 years. We moreover report the values for the benchmark

cases which are computes using (6.1) and (6.2). The numbers for the tax increase are reported in

Table 7 and for the tax reversal in Table 8. Consistently with the results for the single trajectory,

the quantiles of the investment distribution under rebate are always higher than the quantiles

without rebate, with a more pronounced e�ect in the tax increase scenario. This holds also for

the values obtained under the benchmark tax scenarios. The two technology example con�rms

1To avoid numerical issues a smooth version of the function Pg was used.
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Figure 7. Trajectory of the optimal investment X for the case with rebate (solid

red line) and without rebate (dashed blue line) for the cost function from the two-

technologies example. The left panel corresponds to the random tax increase, the

right panel to the random tax reversal.

that the benchmarks perform better (stipulate more investment) than the average investment

with random tax rates.

t = 10 t = 15

5% mean 95% benchmark 5% mean 95% benchmark

rebate 45.18 57.35 64.16 58.87 45.28 58.47 62.65 62.19

no-rebate 40.74 43.48 45.19 43.36 39.14 41.48 43.08 41.79

Table 7. Quantiles of the investment distribution for the random tax increase

after t = 10 and t = 15 years. The linear increasing benchmark tax τ̄(t) = bt,

b = 0.0985 is computed as in Chapter 6.1.

t = 10 t = 15

5% mean 95% benchmark 5% mean 95% benchmark

rebate 35.68 40.15 44.24 42.07 35.31 39.98 44.75 42.08

no-rebate 33.89 38.09 40.79 39.78 33.66 37.03 39.40 38.49

Table 8. Quantiles of the investment distribution for the random tax reversal

after t = 10 and t = 15 years. The constant benchmark tax τ̄ = 0.565, is

computed as in Chapter 6.1.
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6.3. Two technologies with tax uncertainty

Next we report results from numerical experiments for the stochastic di�erential game where

tax rates are endogenously determined. We work in the context of Example 3.2 (the example

with two technologies), and we use the same parameters as in Section 6.2 except that we now

work wit T = 10. We assume that tax rates take value in the interval [0.5, 1.5] and we �x the

most plausible tax rate as τ̄ ≡ 1. The tax rebate is given by ν0(q)τ = ebQ (αq) τ , for α ∈ {0, 0.5},
and the penalization for deviating from τ̄ by ν1(τ − τ̄)2, where ν1 ∈ {1, 20}. The equilibrium

output q̂(x) and the equilibrium tax rate τ̂(x) for this setup are discussed in Section 5.3, see in

particular Figure 1.

In Figure 8 we plot the average investment E[Xt] under di�erent values for rebate and

penalization. The left panel corresponds to the case of high uncertainty (ν1 = 1), the right

panel corresponds to the case of low uncertainty (ν1 = 20).
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Figure 8. Average investment E[It] under tax uncertainty for di�erent values for
rebate and penalization. The left panel corresponds to the case of high uncertainty

(ν1 = 1), the right panel corresponds to the case of low uncertainty (ν1 = 20).

In this case we see that results from the tax risk paradigm are reversed. First, average

investment for high uncertainty is substantially higher than for low uncertainty. This is due

to the fact that the equilibrium tax rate for ν1 = 1 is higher than the equilibrium tax rate

for ν1 = 20, see Figure 1.2 Indeed, higher tax rate generates more investment, so that high

uncertainty is bene�cial from a societal point of view. Moreover, under tax uncertainty rebate

reduces investment whereas in the tax risk case a rebate led to an increase in investment. The

reason for this di�erence is that the introduction of a rebate leads to a lower equilibrium tax rate

in the game between producer and opponent (see again Figure 1).

2For α = 0.5 this is true only for x < 40 but this is the relevant range to incentivise the buildup of green
production capacities.
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7. Conclusion

In this paper we analyzed the impact of randomness in carbon tax policy on the investment stra-

tegy of a stylised pro�t maximising electricity producer, who has to pay carbon taxes and decides

on investments into technologies for the abatement of CO2 emissions. Adding to the existing

literature, we studied a framework where the investment in abatement technology is divisible,

irreversible and subject to transaction costs. We considered two approaches for modelling the

randomness in taxes. First we assumed a precise probabilistic model for the tax process, namely

a pure jump Markov process (so-called tax risk), which leads to a stochastic control problem

for the investment strategy. Second, we analyzed the case of an uncertainty-averse producer

who uses a di�erential game to decide on optimal production and investment. We carried out

a rigorous mathematical analysis of the producer's optimization problem and of the associated

nonlinear PDEs (the HJB equation in the case of tax risk and the Bellman-Isaacs equation in the

case of the stochastic di�erential game). In particular, we gave conditions for the existence of

classical solutions in both cases. Numerical methods were used to analyze quantitative properties

of the optimal investment strategy.

Our experiments show that under tax risk, the �rm is typically less willing to invest into

abatement technologies than in a corresponding benchmark scenario with a deterministic tax

policy. Moreover, if a tax policy that is not credible (i.e. producers are not convinced that an

announced tax increase will actually be implemented or they expect that a high tax regime will

be reversed soon), then it is substantially less e�ective. This supports the widely held belief that

randomness in carbon taxes is in general detrimental for climate policy. These �ndings have the

following implications: a climate tax policy which is very mild initially and which postpones tax

increases to random future time points may delay necessary investment in green technology. On

the other hand a policy which is too stringent initially may generate strong political pressure to

revert to lower taxes, which would be counterproductive for reducing carbon pollution.

Surprisingly, we found that under tax uncertainty results are reversed. In a scenario with

high uncertainty the producer invests more than under low uncertainty were taxes are almost

deterministic, so that an increase in uncertainty is bene�cial from a societal point of view. This

is an interesting observation, which shows that the paradigm used to model the decision making

process of the producer is a crucial determinant for the impact of randomness in climate policy. It

is beyond the reach of this paper to make a scienti�c judgement as to which of the two paradigms

(risk or uncertainty) comes closer to the real decision making of investors and it is interesting to

investigate the di�erence further. Intuitively, we believe that the recommendations from the tax

risk case are more relevant for climate policy.
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Appendix A. Details on the numerical methodology.

For the numerical experiments in Section 6, we implemented the deep splitting method that was

proposed by Beck et al. [6] and extended to partial integro-di�erential equations (PIDEs) by Frey

and Köck [13]. This approach uses deep neural networks to approximate the solution of a PIDE

together with the gradients. Hence, we are able to compute the value function for the considered

stochastic control problems and determine investments in green technology accordingly. In this

section we present the basic idea of the algorithm. We consider a PIDE of the following form{
ut(t, z) + Lu(t, ψ) = f

(
t, ψ, u(t, ψ), ∂ψu(t, ψ)

)
on [0, T )× Rn ,

u(T, ψ) = g(ψ) on Rn .

Here n = d + 2, ψ = (x, y, τ) ∈ Rn, ∂ψu is the gradient of u with respect to the space variable,

ut the derivative with respect to the time variable, and

Lu(t, ψ) := b(t, ψ) · ∂ψu(t, ψ) +
1

2

n∑
i,j=1

(ΣΣ⊤)ij(t, ψ)uψiψj
(tψiψj

, ψ)

+

∫
R
u(t, ψ + Γ̃(t, ψ, z))− u(t, ψ)m(dz) ,

where b(t, ψ) = (−δx, α(t, y), 0)⊤ ∈ Rn, Σ(t, ψ) ∈ Rn×n has components Σ1,1(ψ) = σ, Σi,j(t, ψ) =

αi−1,j−1(t, y) for i, j = 2 . . . , n− 1 and all other components equal to zero, and Γ̃(t, ψ, z) ∈ Rn =

enΓ(t, ψ, z), where en is the n-th standard vector in Rn. Next, we consider an auxiliary process,

denoted as Ψ, whose dynamics correspond to the generator L,

Ψt = Ψ0 +

∫ t

0
b(Ψs) ds+

∫ t

0
Σ(Ψs) dW̃s +

∫ t

0

∫
Rd

Γ̃(s,Ψs−, z)N(ds, dz) .

Speci�cally, in our context, Ψt = (X0
t , Yt, τt), where X

0 is the uncontrolled version of the process

X, i.e. for γt = 0. The �rst step of the considered numerical algorithm is to divide the time

horizon into N equidistant grid points 0 = t0 < t1 < · · · < tN = T , where each interval is

∆t := 1/N . Then, we discretize the process Ψ using a method such as the Euler-Maruyama

scheme along the given time grid. This discretization yields approximations for Ψti at each time

step ti. We denote these approximation points as Ψ̂ti . For the solution u we consider a BSDE
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representation. Given that the PIDE admits a classical solution, we can apply Itô's formula and

express the solution as

u(ti,Ψti) = u(ti+1,Ψti+1)−
∫ ti+1

ti

f(s,Ψs, u(s,Ψs), ∂ψu(s,Ψs)) ds−
∫ ti+1

ti

Σ(s,Ψs)
⊤∂ψu(s,Ψs) dW̃s

−
∫ ti+1

ti

∫
Rd

u(s,Ψs + Γ̃(s,Ψs−, z))− u(s,Ψs−) (N(ds, dz)−m(dz)ds) ,

Both the integral with respect to the Brownian motion and the integral with respect to the

compensated jump measure are martingales (assuming su�cient regularity of u). Taking

conditional expectations leads to

u(ti,Ψti) = E
[
u(ti+1,Ψti+1)−

∫ ti+1

ti

f(s,Ψs, u(s,Ψs), ∂ψu(s,Ψs)) ds
∣∣Ψti

]
.

The discretization allows us to approximate the integral term in the conditional expectation

by f(ti+1, Ψ̂ti+1 , u(s, Ψ̂ti+1), ∂ψu(ti+1, Ψ̂ti+1))∆t. Using the L2-minimality of conditional

expectations we represent u(ti,Ψti) as the unique solution of the minimization problem over

all C1 functions

min
U∈C1

Eti
[(
U − u(ti+1, Ψ̂ti+1) + f(ti, Ψ̂ti+1 , u(ti+1, Ψ̂ti+1), ∂ψu(ti+1, Ψ̂ti+1))∆t

)2]
This minimization problem serves as a loss function for deep neural networks in the deep splitting

algorithm, and the algorithm can be summarized as follows.

Deep splitting algorithm. Fix a class N of C1 functions U : Rd → R that are given in terms

of neural networks with �xed structure. Then the algorithm proceeds by backward induction as

follows.

(1) Let ÛN = g.

(2) For i = N − 1, . . . , 1, 0, choose Ûi as minimizer of the loss function Li : N → R,

U 7→ E
[∣∣∣Ûi+1(Ψ̂ti+1)− U(Ψ̂ti)−∆t f

(
ti, Ψ̂ti+1 , Ûi+1(Ψ̂ti+1), DxÛi+1(Ψ̂ti+1)

)∣∣∣2] .
Speci�cally, to address the numerical solution of this problem in our case studies, we generate

simulations of trajectories for the processes Ψ. These simulations were carried out over the time

interval [0, 15], discretized into 150 equally spaced time points (that is N = 150 intervals). The

inherent non-linearity of this problem is represented by the function:

f(t, x, y, τ, uψ) = Π∗(ψ) +
((∂ψ1u− 1)+)

2

4κ
= Π∗(x, y, τ) +

((∂xu− 1)+)
2

4κ
.

We use deep neural networks with 2 hidden layers, each containing 40 nodes. In total, each

experiment involves 150 networks. The neural networks are initialized with random values using

the Xavier initialization scheme. We employ mini-batch optimization with a mini-batch size of

M = 10, 000, incorporating batch normalization. The training process spans 10,000 epochs, and

the loss function is minimized through the Adam optimizer. The learning rate starts at 0.01

and with a decay of 0.1 every 4,000 steps. The activation function for the hidden layers is the

sigmoid function, while the output layer uses the identity function.
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An advantage of this methodology is �exibility. The approach allows for e�ortless

dimensionality adjustments in the state process Ψ or modi�cations of its dynamics, with the

only necessary adaptation being the Euler-Maruyama scheme for Ψ. For further details on deep

splitting algorithms for general nonlinear PIDEs we refer to Frey and Köck [13].

Appendix B. Some discussions and proofs for the tax risk setting

In this section we present various technical results that are related to the characterization of

the value function as classical solution of the HJB equation (4.5).

B.1. Comments and extensions of Lemma 4.3

We now make few comments on possible extensions of the result stated in Lemma 4.3, as

anticipated in Remark 4.4.

1. Maximum capacity expansion. In some examples it may make sense to assume that investment

can expand maximum capacity. In such case a similar argument as in the proof of lemma 4.3-(i)

can be used to get regularity of the function Π∗. How to do that is brie�y outlined next. If the

maximum capacity depends on the investment level, i.e. qmax(x), for some Lipschitz continuous,

increasing and bounded function, the above arguments can be extended. Indeed, in this case we

have ∣∣Π∗(x1, y1, τ1)−Π∗(x2, y2, τ2)
∣∣

=

∣∣∣∣ max
q∈[0,qmax(x1)]

Π(x1, y1, τ1, q)− max
q∈[0,qmax(x2)]

Π(x2, y2, τ2q)

∣∣∣∣
≤
∣∣∣∣ max
q∈[0,qmax(x1)]

Π(x1, y1, τ1, q)− max
q∈[0,qmax(x1)]

Π(x2, y2, τ2, q)

∣∣∣∣
+

∣∣∣∣ max
q∈[0,qmax(x2)]

Π(x2, y2, τ2, q)− max
q∈[0,qmax(x1)]

Π(x2, y2, τ2, q)

∣∣∣∣ .
In the last expression, the �rst term is estimated exactly as in the proof of Lemma 4.3-(i). In

the second term, Lipschitzianity in x is proved using Lipschitzianity of the function qmax(x).

2. Concavity of the value function. If Π∗ and h are concave in x, then, it can be proved that V is

also concave x. Before going to the proof of this result, we highlight that an example where Π∗

is concave arises, for instance if Π(t, x, y, τ, q) is concave in x and q∗ is a �xed quantity. Indeed,

the function Π∗(t, x, y, τ) is the result of an optimization and hence not an input variable of our

model. This implies in particular that we cannot simply impose concavity, but we need to verify

it, and, in general, even if Π is concave, the supremum over q may not be so.

To establish concavity of the value function one can follow the steps below. We let for simplicity

t = 0. Consider X1
0 , X

2
0 > 0 and strategies γ1,γ2 ∈ A. Denote by Xj , j = 1, 2, the investment

process with initial value Xj
0 and strategy γj and let for λ ∈ [0, 1], 0 ≤ t ≤ T , X̄t = λX1

t + (1−
λ)X2

t . Then it is easily seen that

dX̄t = λγ1t + (1− λ)γ2t − δX̄tdt+ σdWt
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so that X̄ is the investment process corresponding to the strategy γ̄λγ1 + (1− λ)γ2 with initial

value X̄0 (Here we use that the dynamics of X are linear). Concavity of π∗ and h now imply

that

J(0, X̄0, y, τ, γ̄) ≥ λJ(0, X1
0 , y, τ,γ

1) + (1− λ)J(0, X2
0 , y, τ,γ

2) .

Concavity of V follows from this inequality, if we choose γj as an ε-optimal strategy for the

problem with initial value Xj
0 .

B.2. Proof of Theorem 4.8

From Proposition 4.7, the function V (t, x, y, τ) is Lipschitz continuous in (x, y), Hölder in t

and the unique viscosity solution of the PIDE

vt(t, x, y, τ) + Π∗(x, y, τ) +

∫
Z
v(t, x, y, τ + Γ(t, y, τ, z))m(dz)

+

d∑
i=1

βi(t, y)vyi(t, x, y, τ) +
σ2

2
vxx(t, x, y, τ) +

1

2

d∑
i,j=1

Sij(t, y)vyiyj (t, x, y, τ)

+ sup
0≤γ≤γ̄

(γ(vx(t, x, y, τ)− 1)− κγ2)− δxvx(t, x, y, τ) = (r +m(Z)) v(t, x, y, τ),

with the terminal condition v(T, x, y, τ) = h(x). For �xed τ we de�ne the function f τ (t, x, y) :=∫
Z V (t, x, y, τ+Γ(t, y, τ, z))m(dz)+Π∗(x, y, τ). Then for every �xed τ , V τ (t, x, y) := V (t, x, y, τ)

is a viscosity solution of the equation

ut(t, x, y) +
d∑
i=1

βi(t, y)uyi(t, x, y) +
σ2

2
uxx(t, x, y) +

1

2

d∑
i,j=1

Sij(t, y)vyiyj (t, x, y, τ)

+ sup
0≤γ≤γ̄

(γ(ux(t, x, y)− 1)− κγ2)− δxux(t, x, y) + f τ (t, x, y) = Ru(t, x, y), (B.1)

with u(T, x, y) = h(x) and R = r +m(Z). Note that this is a quasilinear parabolic PDE since

there are no non-local terms and since for all p ∈ R,

sup
0≤γ≤γ̄

{pγ − γ − κγ2} =


0 if p < 1

[(p− 1)+]2

4κ
if 1 ≤ p ≤ 2κ+ 1

κγ̄2 if p > 2κ+ 1

Our goal is to show that this PDE has a classical solution which coincides with V τ . We proceed

in several steps.

Step 1. Fix K > 0 and de�ne the set QK = [0, T ]×BK , where BK = {x ∈ Rd+1 : ∥x∥2 ≤ K2},
and let GK = {T}×BK∪[0, T )×SK where SK = {x ∈ Rd+1 : ∥x∥2 = K2}. Consider the terminal

boundary value problem consisting of the PDE (B.1) and the boundary condition u = V τ on GK .
We now use Theorem 6.4 in Ladyºenskaja et al. [18, Ch. 5] to show that this terminal boundary

value problem has a classical solution that is moreover smooth on the interior of QK . For this

we formulate (B.1) as a parabolic equation in divergence form. We de�ne for y = (y1, . . . , yd),
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p2 = (p2,1, . . . , p2,d) the functions

A(t, x, y, u, p1, p2) =
d∑
i=1

βi(t, y)p2,i + sup
0≤γ≤γ̄

{γ(p1 − 1)− κγ2} − δxp1 −Ru+ f τ (t, x, y)

a(t, x, y, u, p1, p2) =A(t, x, y, u, p1, p2) +
d∑

i,j=1

∂yiSij(t, y)p2,j

a1(t, x, y, u, p1, p2) =
σ2

2
p1

a2,i(t, x, y, u, p1, p2) =
1

2

d∑
j=1

Sij(t, y)p2,j , i = 1, . . . p

Then (B.1) can be written in divergence form as in equation (6.1) of [18, Chapter 5]:

∂tu+ ∂xa1(t, x, y, u, ux, uy) +
d∑
i=1

∂yia2,i(t, x, y, u, ux, uy)− a(t, x, y, u, ux, uy) = 0.

Note that the signs di�er from those in [18] since we are dealing with a terminal value condition.

Next we show that the assumptions of Theorem 6.4 in [18, Ch. 5] are satis�ed on the domain

QK . Note �rst that the set SK is the boundary of the d + 1-dimensional circle so it is smooth

and hence satis�es condition (A) (see [18, page 9]). Moreover,

A(t, x, y, u, 0, 0)u = − (r +m(Z)) u2 + f τ (t, x, y) u ≥ −b1u2 − b2

for b1, b2 ≥ 0, since the functions f τ (t, x, y) are bounded on QK . To see the latter recall that

f τ (t, x, y) :=
∫
Z V (t, x, y, τ +Γ(t, y, τ, z))m(dz)+Π∗(x, τ, y), and Π∗(x, τ, y) and V are bounded

on the bounded set QK respectively QK× [0, τmax]. hence the inequality holds. That guarantees

that condition a) of Theorem 6.4 [18, Ch. 5] holds. Conditions (3.1), (3.2), (3.3), (3.4) [18, Ch.

5] are immediate. In particular, the condition σ2 > 0 and the strict ellipticality of S(t, y) ensure

that the crucial condition (3.1) holds. Finally, since V (t, x, y, τ) is a Lipschitz viscosity solution

of the HJB equation, the boundary condition is Lipschitz, which in particular implies condition

c) of Theorem 6.4 [18, Chapter 5]. By applying Theorem 6.4 in [18, Ch. 5], we thus get that in

any interior subdomain QK the HJB equation has a classical solution U τ (t, x, y) which coincides

with V τ (t, x, y) on the boundary GK .

Step 2. Next we show that U τ (t, x, y) = V (t, x, y, τ) in the interior of QK for every K which

allows to conclude that V (t, x, y, τ) is smooth in the interior of QK . To prove this we apply the

comparison principle given by [12, Corollary 8.1, Ch.5]. Note that inequality (7.1) on page 218

of the book is implied by in particular by Lipschitzianity of the functions α, β,Γ in y. Then we

obtain that U τ (t, x, y) = V (t, x, y, τ) on QK .

Since K was arbitrary we �nally get that V is smooth everywhere. Hence V is also a classical

solution of the HJB equation. (4.5), which concludes the proof.
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B.3. An example with strict viscosity solution

In the following section we present an example illustrating that, in general, the value function

may be non-smooth and hence a strict viscosity solution of the HJB equation. Speci�cally, we

examine the cost function associated with the �lter technology, assuming a �xed electricity price

p̄ and a �xed production quantity q̄. To present this example with minimal technical di�culties,

we make certain assumptions. We set r and δ to zero, take the residual value as h(XT ) = 0, and

assume deterministic tax rate equal to τ̄ > 0. Additionally, we adopt the abatement technology

e(x) = (1 − x)+ and assume no external variations in the investment level (σ = 0). This

assumption is crucial for our our example, since for σ > 0 the HJB equation has a classical

solution by Theorem 4.8 Section 4.4.

In this setting Xt = X0 +
∫ t
0 γsds, and the value function is given by

V (t, x) = sup
γ∈A

Et
[∫ T

t

(
p̄q̄ − q̄(c̄+ (1−Xs)

+τ̄)− γs − κγ2s
)
ds

]
=: p̄q̄ − q̄c̄+ q̄Ṽ (t, x)

where

Ṽ (t, x) = sup
γ∈A

Et
[∫ T

t
(1−Xs)

+τ̄ − γs − κγ2s ds

]
. (B.2)

In the sequel we concentrate on Ṽ . Note �rst that for x ≥ 1, the optimal strategy is γ∗ = 0,

since choosing γs > 0 is costly but generates no additional reduction in emissions. Therefore,

Ṽ (t, x) = 0 for x ≥ 1. Below we show that

Ṽ (t, x) ≤ −(1− x)
(
1 ∧ (T − t)τ̄

)
, x ≤ 1. (B.3)

Let Ṽx−(t, 1) be the left derivative of Ṽ (t, ·) at x = 1. It follows that

Ṽx−(t, 1) = lim
h→0+

1

(−h)
(Ṽ (t, 1− h)− Ṽ (t, 1)) ≥ (1 ∧ (T − t)τ̄

)
.

Hence Ṽ (t, ·) has a kink at x = 1, and from equation (B.2), we get that V is a strict viscosity

solution of the HJB equation.

Now we turn to the inequality (B.3). Obviously,

Ṽ (t, x) ≤ w(t, x) := sup
γ∈A

Et
[∫ T

t
−(1−Xs)

+τ̄ − γs ds

]
. (B.4)

Since in (B.4) transaction costs are zero, the producer can push x instantaneously to any level

x′ > x, incurring a cost of size x′ − x. It follows that for x < 1, the �limiting optimal strategy�

in (B.4) is to push the investment level to 1 immediately at t, provided the resulting tax savings

τ̄(1− x)(T − t) exceed the cost 1− x, and to choose γ ≡ 0 otherwise. This gives

u(t, x) =

{
−(1− x) if τ̄(T − t) > 1 ,

−(1− x) if τ̄(T − t) ≤ 1 ,

that is, u(t, x) = −(1− x)
(
1 ∧ (T − t)τ̄

)
, x ≤ 1, which implies (B.3).
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Appendix C. Differential game

C.1. Proof of Lemma 5.2

De�ne the compact and convex set B := [0, qmax] × [τmin, τmax] and the function F : B → B

by F (q, τ) = (q(τ), τ(q))′. Note that q(τ) and τ(q) and hence F are continuous on B (since ∂qC0

and ∂qC1 are strictly increasing and since ν1 > 0). By (5.6), (q∗, τ∗) is a saddle point of g if and

only if it is a �xed point of F on B. The existence of a �xed point of F follows immediately

from Brouwers �xed point theorem, which establishes the existence of a saddle point of g.

For uniqueness note that the pair (q∗, τ∗) is a saddle point if and only if q∗ satis�es the �xed

point relation q∗ = q(τ(q∗)) and if τ∗ = τ(q∗). De�ne the mapping φ : [0, qmax] → R with

φ(q) := p− ∂qC0(q)− (∂qC1(q)− ∂qν0(q))τ(q).

By the FOC characterizing q(τ), a solution q∗ ∈ [0, qmax] is a solution of the equation q∗ =

q(τ(q∗)) if one of the following three conditions hold (i) φ(q∗) = 0; (ii) φ(0) < 0 , in which case

q∗ = 0; (iii) φ(qmax) > 0, in which case q∗ = qmax. Below we show that φ is strictly decreasing.

It follows that there is at most one q∗ ∈ [0, qmax] that ful�lls (i), (ii) or (iii) and hence at most

one saddle point.

To show that φ is strictly decreasing we �rst we compute the derivative of φ for those values

of q with τ(q) ∈ (τmin, τmax). We get

∂qφ(q) = −∂2qC0 − (∂2qC1(q)− ∂2qν0(q))τ(q)− (∂qC1(q)− ν ′0(q))∂qτ(q)

= −∂2qC0 − (∂2qC1(q)− ∂2qν0(q))τ(q)−
1

2ν1
(∂qC1(q)− ∂qν0(q))

2 ,

which is negative due to the assumptions on C0 C1 and ν0. For values of q where the constraints

on τ bind we have ∂qτ(q) = 0 and

∂qφ(q) = −∂2qC0 − (∂2qC1(q)− ∂2qν0(q))τ(q) < 0.

It follows that φ is absolutely continuous with strictly negative derivative and hence strictly

decreasing.
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