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Abstract. In this paper, we focus on filtering and parameter estimation in stochastic volatility

models when observations arise from high-frequency data. We are particularly interested in

rough volatility models where spot volatility is driven by fractional Brownian motion with Hurst

index H < 1/2. Since volatility is not directly observable, we rely on particle filtering techniques

for statistical inference regarding the current level of volatility and the parameters governing

its dynamics. In order to obtain numerically efficient and recursive algorithms, we use the fact

that a fractional Brownian motion can be represented through a superposition of Markovian

semimartingales (Ornstein-Uhlenbeck processes). We analyze the performance of our approach

on simulated data and we compare it to similar studies in the literature. The paper concludes

with an empirical case study, where we apply our methodology to high-frequency data of a

liquid stock.

Keywords: high-frequency data; rough volatility; fractional Brownian motion; stochastic filtering; nested

particle filter.

1. Introduction

A stylized fact of empirical finance states that volatility fluctuates randomly and should therefore

be modeled as a stochastic process. In classical stochastic volatility models, this process is given

by the solution of a stochastic differential equation driven by a Brownian motion. More recently,

the influential paper Gatheral et al. (2018) advocates so-called rough volatility models, where

the log-volatility is driven by a fractional Brownian motion with Hurst index H < 1/2. In these

models the paths of the volatility process are Hölder-continuous for every exponent h < H and

hence less regular (rougher) than the paths of Brownian semimartingales. In order to justify the

use of rough volatility models, Gatheral et al. (2018) employ proxy data for historical volatility to

estimate the smoothness of the volatility process with a regression approach. They find that the

increments of log-volatility of various assets enjoy a monofractal scaling property; together with

the well-established fact that the distribution of these increments is approximately Gaussian,

this implies that log-volatility behaves essentially as a fractional Brownian motion. In particular,

given their estimates of the smoothness parameter, these authors claim that log-volatility can

be modeled as a fractional Brownian motion with Hurst exponent H ≈ 0.1.

These findings were challenged by Fukasawa et al. (2019) and more recently by Cont and Das

(2022) and Rogers (2023), who claim that the roughness of volatility might be spurious and due

to observation errors. These papers stress that historical volatility is not directly observable,

so that its level needs to be estimated from the observable time series of asset prices. Hence,
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volatility data entering into the regression approach of Gatheral et al. (2018) (the so-called

realized volatility data) are noisy estimates of the true spot volatility, where the estimation error

is attributed to microstructure noise. Fukasawa et al. (2019) use simulation experiments to show

that, in the presence of microstructure noise, the regression method of Gatheral et al. (2018)

leads to an estimate of Ĥ ≈ 0.1, regardless of the true value of H used in the simulation.1 In a

similar vein, Cont and Das (2022) study a nonparametric roughness estimator. Their numerical

experiments show that, in absence of microstructure noise, this estimator differentiates well

between rough and non-rough volatility. However, if volatility is estimated from simulated asset

price trajectories, this nonparametric estimator always points to a rough behavior, even if spot

volatility is modeled by a classical stochastic volatility model driven by a Brownian motion.

Identifying the ‘true’ cause for the apparent roughness in realized volatility thus constitutes a

challenging statistical problem. Fukasawa et al. (2019) tackle this problem in a setting where

the microstructure noise is modeled as an independent and identically distributed series of error

terms with decaying variance, independent of the underlying volatility process. They propose a

modified Whittle estimator for H (essentially a quasi-maximum likelihood estimator) and study

its asymptotic properties. When applying their estimator to real data, Fukasawa et al. (2019)

find that volatility is indeed rough: remarkably, their estimates for H for various stock indices

are not only smaller than 0.5, but even smaller than those of Gatheral et al. (2018). In a similar

spirit, Bennedsen et al. (2021) study a nonlinear version of the regression approach of Gatheral

et al. (2018), which is robust with respect to microstructure noise. Applying this method to

the S&P500 E-mini futures contract, they obtain estimates of the order of Ĥ ≈ 0.15 for the

roughness parameter of spot volatility.

In this paper, we propose to estimate the current level and the roughness parameter of the

spot volatility process via stochastic filtering techniques. In this way, the estimation error for

volatility is derived from the model for asset prices and not exogenously imposed. We consider a

model for high-frequency data and assume that the asset price process is piecewise constant and

jumps when new orders arrive to the market. We model these times as jump times of a doubly-

stochastic Poisson process with a stochastic intensity. For frequent small jumps – the typical

case for high frequency asset price data – this model is close to a diffusion model for volatility

where the instantaneous variance is proportional to the intensity of the jump model. To mimic

a real trading setting, we assume that the analyst observes only the price trajectory, so that

the intensity – or equivalently its logarithm – plays the role of an unobservable signal process.

To account for roughness, we model the logarithmic intensity as a fractional Brownian motion

(fBM) with a Hurst index H < 1/2. Hence the the signal process is neither a semimartingale nor

a Markov process, posing considerable challenges for filtering and parameter estimation. In fact,

even in the flexible context of particle filtering, the non-Markovianity of the signal implies that

sampling a particle at a given time instance requires calculations involving the entire trajectory

up to that point. Clearly, the practical consequence is a great increase in computational cost and

in memory allocation requirements over time. We overcome this issue by employing a suitable

approximation of the underlying non-Markovian volatility process. The starting point is the

work of Carmona and Coutin (1998) and Carmona et al. (2000), who show that an fBM with

1In particular, they consider the case where the true log-volatility process is the exponential of a standard
Ornstein Uhlenbeck process corresponding to H = 1/2.

2



H < 1/2 can be approximated by a finite superposition of Ornstein-Uhlenbeck (OU) processes

with different mean-reversion speeds but driven by the same Brownian motion. Using these

results, we obtain a finite-dimensional Markovian approximation to the log-intensity process,

which allows us to use a standard recursive particle filter to retrieve the signal. Moreover, we can

make inference about the Hurst index by adapting the nested particle filter algorithm of Crisan

and Miguez (2018) to our specific framework. In this way, we can reformulate the complex

problem of determining the roughness of a hidden path in terms of a parameter estimation

task.

Simulation experiments indicate that this approach yields satisfactory results, both in terms

of filtering and of parameter estimation, while still fully taking into account the intrinsic

unobservability of the volatility process. Next, in the spirit of Cont and Das (2022) and

Rogers (2023), we apply our methodology to synthetic data generated in a setting where (spot)

volatility is driven by a Brownian diffusion. We find that our filtering approach seems to be

less sensitive to the issue of market microstructure noise than the nonparametric roughness

estimator analyzed in Cont and Das (2022). This shows that it might indeed be possible to

detect rough volatility via stochastic filtering. We proceed with an analysis of the so-called

OU-OU model proposed in Rogers (2023). Finally, we carry out a small empirical case study

where we apply our methodology to high-frequency data for the mid-price of Apple share and

obtain an estimate for the Hurst parameter H which is substantially smaller than 1/2, suggesting

that volatility paths indeed exhibit roughness.

The remainder of this paper is as follows. Section 2 introduces the model. In Section 3

we discuss the approximation of fractional Brownian motion by a superposition of Ornstein

Uhlenbeck processes, which is a prerequisite for the filtering algorithms in Section 4. The

numerical experiments are discussed in Section 5. We present an application of the proposed

methodology to the “alternative” models of Cont and Das (2022) and Rogers (2023) in Section 6

and an empirical case study using Apple tick-by-tick data in Section 7. Section 8 concludes and

illustrates possible extensions.

2. Setup

Fix some horizon date T . We work on some underlying filtered probability space (Ω,F ,F,P),
where F = (Ft)0≤t≤T satisfies the usual conditions and where all processes are F adapted. In

this paper we consider a model for ultra high-frequency or event data. Hence we assume that

the asset price process is piecewise constant and jumps at time points where new orders arrive

to the market. We model these times as jump times of a doubly-stochastic Poisson process

D = (Dt)t≥0 with intensity driven by a stochastic process X, so that there is randomness in

market activity. We assume that the intensity of D is of the form

λt := λ(Xt) = b · exp (Xt) , (1)

where b is a positive constant. We consider the case where X is given by a fractional Brownian

motion (fBM) or a Riemann-Liouville fractional Brownian motion (RLfBM) with Hurst index

H < 1/2 (see below for a precise definition). Moreover, we assume that the price jumps are

independent and identically distributed (i.i.d.) and independent of X. The asset price S is then
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given by the following doubly-stochastic compound Poisson process

St = S0 +

Dt∑
i=1

νi, (2)

where {νi}i∈N is a sequence of i.i.d variables with variance σ2 > 0 and, for simplicity, with

mean zero. Furthermore, D and {νi}i∈N are independent. Note that (2) is an arithmetic model,

so that St can in principle become negative. Since we are interested in a relatively short time

frame of the order of one or several days, this issue can be neglected.

Remark 2.1 (Relation to diffusive stochastic volatility models). For typical event data the

price jumps {νi}i∈N are small, as prices move only by few ticks at a time; moreover, there are

many jumps, that is frequent trades, so that estimates for the constant b in Equation (1) will be

large. Hence, one expects that the model (2) is close to a stochastic volatility model with spot

variance given by σ2
t = σ2λ(Xt). This idea is formalized in Proposition A.1 in Appendix A.

In reality, volatility is not observable, which in our settings translates to the fact that X is not

observable. Hence, this paper is concerned with statistical inference for the current level of the

process X and for the Hurst parameter H using the observed path of the asset price process S

or, equivalently, the the observed path of D as input.2 Denote by FD = (FD
t )0≤t≤T the filtration

generated by the point process D, so that FD
t models the available observation at time t for

making inference about X. We are interested in two related, but distinct problems. First, the

pure filtering problem, where we want to estimate the conditional distribution of Xt given FD
t

for known parameters. Second, the parameter estimation problem, where we want to obtain an

approximation of the joint distribution of H and Xt given FD
t .

In the case where X follows a Markovian diffusion, the filtering problem was studied previously

by Frey and Runggaldier (2001) and Cvitanić et al. (2006) via standard stochastic filtering

methods. Since fractional Brownian motion is neither Markovian nor a semimartingale, in our

setup these methods cannot be applied in a straightforward way.3 To address this issue, we use

results from Carmona and Coutin (1998) and Carmona et al. (2000) to approximate X by a

finite superposition of Markov processes. Details are given in the next section.

3. Approximation by a Markovian model

In this section, we discuss the approximation of X by a finite superposition of Markov processes.

3.1. Representation of (RL)fBM. As a starting point, one considers the Mandelbrot-Van

Ness representation of a fractional Brownian motion WH , which is given by

WH
t = cH

∫ t

0
(t− s)H− 1

2 dBs + cH

∫ 0

−∞

(
(t− s)H− 1

2 − (−s)
)H− 1

2
dBs , (3)

2Observing S orD is equivalent in the context of our model since the price jumps {νi}i∈N are assumed independent
of X.
3Some theoretical results regarding nonlinear filtering for fractional Brownian motion (both in the state and in

the observation process) have been obtained for example by Decreusefond and Üstünel (1998) and Coutin and
Decreusefond (1999), but they are restricted to the case H ≥ 1/2 and thus not appropriate for the rough volatility
setting considered here.
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where B is a two-sided Brownian motion and cH a constant depending on H. In particular, the

choice

cH =

√
πH(2H − 1)

Γ(2− 2H)Γ(H + 1/2)2 sin(π(H − 1/2))
(4)

ensures that the autocovariance function of WH is given by

E{WH
t WH

s } =
1

2

{
|t|2H + |s|2H − |t− s|2H

}
. (5)

Similarly, we introduce the so-called Riemann-Liouville fractional Brownian motion V H as

V H
t = cH

∫ t

0
(t− s)H− 1

2 dBs . (6)

Now, if H < 1/2, it has been shown in Carmona and Coutin (1998) and Carmona et al. (2000)

that expressing u 7→ uH− 1
2 as a Laplace transform,

uH− 1
2 ∝

∫ ∞

0
e−xux−H− 1

2 dx ,

and applying the stochastic Fubini theorem results in an infinite dimensional Markovian representation

for WH and V H . In fact, we can express (3) as

WH
t =

∫ ∞

0

∫ t

0
e−x(t−s) dBs µ(dx) +

∫ ∞

0

(
e−xt − 1

) ∫ 0

−∞
esx dBs µ(dx) ,

where

µ(dx) = cH
x−H−1/2

Γ(1/2 −H)
dx. (7)

Define for x > 0 the process Zx with Zx
t =

∫ t
0 e

−x(t−s) dBs and note that Zx is an OU process

with Zx
0 = 0, dispersion equal to one and mean-reversion speed equal to x. Consider the infinite

dimensional Markov process (Zt)0≤t≤T with Zt = (Zx
t , x > 0) and let Qx

0 :=
∫ 0
−∞ exs dBs.

Then, for H < 1/2, we can write WH
t as function of Zt and of the family of random variables

(Qx
0 , x > 0) as follows

WH
t =

∫ ∞

0
Zx
t µ(dx) +

∫ ∞

0

(
e−xt − 1

)
Qx

0 µ(dx) . (8)

Similarly, we obtain an infinite dimensional Markovian representation for RLfBM of the form

V H
t =

∫ ∞

0
Zx
t µ(dx) . (9)

3.2. Finite-Dimensional Approximation. The representation (8) (respectively (9)) can be

exploited to obtain an approximation of WH (respectively V H) by a finite sum of Ornstein-

Uhlenbeck processes, which are all driven by the same Brownian motion. The core idea is

to approximate the measure µ in (7) by a finite sum of Dirac measures; that is, for some

J ∈ N, µ ≈
∑J

j=1 cjδκj for positive coefficients (cj)j=1,...,J and positive mean-reversion speeds

(κj)j=1,...,J . More precisely, following Carmona and Coutin (1998) and Carmona et al. (2000),

we perform the following spatial discretization. Given H ∈ (0, 1/2), fix J ∈ N and consider

a compact subset [ξ0, ξJ ] of (0,∞). Split this interval into subintervals by auxiliary terms
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0 < ξ0 < ξ1 < · · · < ξJ < ∞ and compute, for j = 1, . . . , J ,

cj =

∫ ξj

ξj−1

µ(dx) and κj =
1

cj

∫ ξj

ξj−1

xµ(dx) .

With a slight abuse of notation, now and in what follows we write Zj and Qj
0 in place of Zκj

resp. Q
κj

0 . Then, an approximation of the fBM defined by (3) is given by

WH
t ≈ W

(H,J)
t :=

J∑
j=1

cj

(
Zj
t +

(
e−κjt − 1

)
Qj

0

)
=

J∑
j=1

cjY
j
t , (10)

where Y j
t = Zj

t +
(
e−κjt − 1

)
Qj

0. Note that
(
Qj

0

)J

j=1
can be easily simulated, since (Qx

0)x>0 is

a centered Gaussian process with covariance function Γ(x, y) = 1
x+y . Similarly, we consider the

following approximation of the RLfBM:

V H
t ≈ V

(H,J)
t :=

J∑
j=1

cjZ
j
t . (11)

3.3. Choices for Spatial Discretization. It is shown in Carmona and Coutin (1998) and

Carmona et al. (2000) that the approximations (10) and (11) converge in the sense that

sup0≤t≤T |WH
t −W

(H,J)
t | converges to zero in L2 for every fixed T as the partition {ξ0, ξ1, . . . , ξJ}

converges to the identity. Further results on convergence and accuracy of this approximation

are given in Harms (2019) and in Coutin and Pontier (2007).

For the filtering applications in this paper we need an approximation involving only a moderate

number J of processes, since J determines the dimension of the state space for the particle

filter. A standard choice for spatial discretization is using a geometric partition (ξj)
J
j=0 of

ratio r ∈ (1, 2); that is, ξj = r · ξj−1 for j = 1, . . . , J . Then, the quality of the approximation

obviously depends on the chosen J and r. Numerical experiments, in agreement with theoretical

results, suggest that for large J one should choose a value of r close to 1. However, if

in practical applications we want to keep the dimension of the approximation manageable,

numerical experiments indicate that we should increase the value of r. Therefore, in this paper

we fix the number J of OU processes and a compact set [ξ0, ξJ ], which is split into subintervals

using a geometric partition with ratio r =
(
ξJ
ξ0

)1/J
. This section motivates our choices for the

dimension of the approximation J , as well as for ξ0 and ξJ .

For fixed H, the choice of J depends on the fineness of the time scale on which we want to

approximate WH or, respectively, V H . Fix a time horizon T > 0 and consider the partition

0 = t0 < t1 < · · · < tTN = T of [0, T ] with a (for simplicity constant) step size ∆ = 1/N, where

N is the number of discrete-time steps in one continuous-time unit. Then, for smaller ∆, we

need to increase J to maintain a satisfactory approximation accuracy. This is studied in detail

in Coutin and Pontier (2007). Following their results, given N and H < 1/2, we choose the

number of OU processes as

J := J(N,H) = ⌊2 ·N ζ · log(N)⌋ ∨ 16, ζ = log(1 +H) . (12)

Note that, for an efficient implementation of the nested particle filter in Section 4.3, it is helpful

to choose J independent of H, as the latter is unknown. In that case, we take the value of J
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corresponding to the midpoint H = 0.25, that is

J := J(N) = ⌊2 ·N ζ · log(N)⌋ ∨ 16, ζ = log(1 + 0.25) . (13)

Next, we turn to the choice of ξ0 and ξJ . For H close to 0.5, the mixing measure µ puts a large

mass on small values of x so that the approximation quality is improved by taking a small value

of ξ0 in that case; for H close to zero, on the other hand, it is preferable to choose a comparably

large value of ξJ . Writing α = H + 1/2, we can, for example, choose the values ξ0 = J−2α and

ξJ = J4−2α, so that
(
ξJ
ξ0

)1/J
= J4/J . Numerical experiments have shown that these choices

perform well for modest J > 16.

4. Nested Particle Filter

When discussing statistical inference for the model described in Section 2, we can distinguish two

problems: the filtering problem and the parameter estimation problem. The filtering problem

is concerned with inferring the state process conditional on the available observations and given

parameters. The parameter estimation problem, on the other hand, is concerned with the

case in which parameters values are also unknown. To deal with parameter estimation we

adapt the nested particle filtering (NPF) algorithm of Crisan and Miguez (2018) to track the

posterior distribution of the unknown parameters in our model, as well as the joint posterior

distribution of parameter and state variables, in a recursive fashion. More specifically, Crisan

and Miguez (2018) introduce a nested structure, employing two layers of particle filters: an

“outer” filter, which approximates the posterior of the (unknown) parameter vector Θ given

the observations, and a set of “inner” filters, each corresponding to a sample generated in the

outer layer and yielding an approximation of the posterior measure of the state conditional on

both the observations and the given sample of Θ.

A key feature of the algorithm is that, at each recursive step, existing parameter particles

are first jittered (that is, subjected to a small random perturbation) to restore diversity in

the sample, which might have been greatly reduced due to a previous resampling step. The

inner bootstrap filtering step is then performed by propagating existing state particles using

the jittered parameter particles, which is crucial to make the procedure recursive. Note that

this assumes that the optimal filter for the model of interest must be continuous with respect

to the parameter; that is, small changes in the parameter should lead only to small changes in

the posterior of the state given the observations. For an in-depth theoretical discussion of the

methodology, including assumptions and convergence results, we refer the reader to Crisan and

Miguez (2018), particularly Section 5.

In this section, we briefly describe the building blocks of this methodology, tailored to our

setup, starting in Section 4.1 with the approximate discrete-time model. We then describe the

standard bootstrap filtering algorithm for the state in Section 4.2. A set of these bootstrap

filters, each conditional on a given parameter sample, are then batched to build the inner layer

of the NPF algorithm, which we describe in detail in Section 4.3.

4.1. Discrete-Time Modelling Framework. First, in order to fit our setup within the

framework of Crisan and Miguez (2018), we must consider a time-discretized version of our

model. To this, we fix a time horizon T > 0 and consider the partition 0 = t0 < t1 < · · · <
7



tTN = T of [0, T ] with a (for simplicity assumed constant) step size ∆ = 1/N, where N is the

number of discrete time steps in one continuous-time unit. We only consider changes in the

unobservable state process at these discrete time points, which implies that the intensity has a

piecewise-constant form. In particular, we assume that

λu = b · exp
(
Xtn−1

)
(14)

for all u ∈ [tn−1, tn), n = 1, . . . , TN . As long as ∆ is small enough, this assumption is not

too restrictive as the choice (14) still allows to mimic true market behavior reasonably well.

Recall that here and in what follows X denotes a fBM resp. a RLfBM and, when filtering, it is

approximated by (10) resp. by (11).

Then, the approximate discrete-time model is characterized by random sequences indexed by n,

with n = 1, . . . , TN . In particular, Xn denotes the value, assumed constant, of the state process

within the continuous time interval [tn−1, tn). Similarly, λn denotes the corresponding intensity

and Zj
n (resp. Y j

n ) the j-th process used in approximating Xn. For what concerns observations,

we consider the sequence given by the increments In = Dtn −Dtn−1 , n = 1, . . . , TN . Note that

the piecewise-constant form of the intensity implies that In is Poisson distributed; in particular

we have

In|λn ∼ Pois(λn∆) . (15)

Finally, note that we adopt the usual convention that lower-case letters denote variable realizations

(this holds true for sampled particles as well). In particular, we record the values of an observed

realization of the counting processD on a grid of step size ∆ = 1/N to then obtain the observation

sequence of its increments, denoted by (in)1≤n≤TN .

4.1.1. Updating Scheme. Note that the particle filtering algorithm will require us to update the

value of J processes building the approximations (10) and (11) at discretized time instances.

Since each of the Ornstein-Uhlenbeck processes building the approximation of RLfBM given by

(11) starts at and reverts to zero and has unit variance, the dynamics of each Zj , j = 1, . . . , J

are given by

dZj
t = −κjZ

j
t dt+ dBt .

As explained in Gillespie (1996), an Euler-Maruyama discretization of these dynamics is accurate

only for a suitably small time-discretization step ∆. In particular, ∆ should be much smaller

than the reciprocal of the mean reversion speed, which is clearly problematic in our context,

given the high values of some of the κj ’s in the approximation (11). However, from the explicit

solution of the OU SDE we can express zjn given the previous realization zjn−1 as

zjn = e−κj∆zjn−1 +

√
1− e−2κj∆

2κj
v , n = 1, . . . , TN, (16)

where v is sampled from a standard normal distribution and is identical for all j, as all OU

processes in (11) are driven by the same Brownian motion.
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For what concerns the approximation of fBM given by (10), note that (16) above allows us to

recursively express yjn, conditional on the previous realization yjn−1 and on qj0, as

yjn = zjn + (e−κjn∆ − 1)qj0 = e−κj∆zjn−1 +

√
1− e−2κj∆

2κj
v + (e−κjn∆ − 1)qj0

= e−κj∆yjn−1 +

√
1− e−2κj∆

2κj
v + (e−κj∆ − 1)qj0 , (17)

where v is sampled from a standard normal distribution and is the same for all j’s. Note

that the simultaneous propagation of all J random variables zjn respectively yjn by means of a

single standard normal random variable makes for an efficient implementation of the filtering

algorithms in Section 4.2 and 4.3.

4.2. ‘Inner’ (Bootstrap) Filter. To fix notation and describe how the approximation of

(RL)fBM can be exploited in the given context, in this section we review the standard particle

filter (so-called bootstrap filter); this represents the “inner” filter of the two nested layers of

particle filters described in Crisan and Miguez (2018) and it yields, at each time point n, an

approximation πn of the posterior measure for the state, conditional on the observations up to

the time point n and the given (known or sampled) parameters.

In Algorithm 1 below we give a schematic representation of the bootstrap filtering algorithm,

tailored to our setup, for the case where the state process is a fractional Brownian motion.4 Here,

we consider both the constant b and the Hurst index H < 1/2 to be known; then, using (12) we

compute the number J = J(H,N) of mean-reverting processes needed for the approximation.

We use the following notation. We write c = (c1, . . . , cJ)
⊤ for the vector of coefficients and

κ = (κ1, . . . , κJ)
⊤ for the vector of mean reversion speeds used for the approximation (10).

Moreover, we let Yn := (Y 1
n , . . . , Y

J
n )⊤ and Q0 := (Q1

0, . . . , Q
J
0 )

⊤ denote state vectors and we

thus use the notation y
(m)
n and q

(m)
0 for vectors corresponding to the mth state particle.

4.3. Nested Particle Filter and Parameter Estimation. Denote by Θ be the vector of

model parameters to be estimated. In this paper, we aim at estimating Θ = H, the Hurst index

of the underlying fractional Brownian motion The estimation of b will not be addressed in the

specific context of this model, as it can typically be chosen to match the average number of

price movements observed in one (continuous-time) unit.

The nested particle filter for the approximation, at each discrete time point n, of the posterior

distribution of the parameter is described in Algorithm 2 below. Besides the time step size

∆ = 1/N and the recorded observations (in)1≤n≤TN , the required inputs are the value of constant

b and the number of particles K and M . Here, we consider the Hurst index H < 1/2 to be

unknown and, using (13), we compute the number J = J(N) of OU processes needed for the

approximation independently of the value of the sampled parameter particle. Note that in the

following we keep the vector notation explained in Section 4.2 and include a superscript denoting

the parameter particle index; for instance, y
(k,m)
n corresponds to the mth state particle in the

inner filter given the kth parameter particle in the outer filter.

4The algorithm for the RLfBM case can be retrieved by considering each sampled Q0 to be equal to zero.
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Algorithm 1: Bootstrap Filter Algorithm for the fBM Case

Input: number of continuous time units T , number of discrete-time steps per unit N ,
recorded observations (in)1≤n≤TN , Hurst index H ∈ (0, 1/2), constant b > 0,
number of state particles M

Initialization (n = 0)
Compute approximation dimension J = J(H,N) // See (12)

Compute coefficients c and mean-reversion speeds κ // See Section 3.2 and Section 3.3

for m = 1 to M

Sample y
(m)
0 from a suitable prior // E.g., y

(m)
0 ∼ NJ (0, σ

yI), where σy is small

Generate q
(m)
0 // q

(m)
0 ∼ NJ (0,Γ), where Γ = (γi,j)1≤i,j≤J and γi,j = (κi + κj)

−1

end

Recursive step (n ≥ 1)
Propagate

for m = 1 to M

Generate v(m) ∼ N (0, 1)

Draw ȳ
(m)
n conditional on y

(m)
n−1 and q

(m)
0 // See updating scheme (17)

Set q̄
(m)
0 = q

(m)
0

end

Compute normalized likelihood weights
for m = 1 to M

Compute x̄
(m)
n = c⊤ȳ

(m)
n // See state approximation (10)

Let λ
(m)
n = b∆exp

(
x̄
(m)
n

)
and a

(m)
n =

(
λ
(m)
n

)in
exp

(
−λ

(m)
n

)
// See (15)

Compute w̄
(m)
n = a

(m)
n /

∑M
m=1 a

(m)
n

end

Resample with replacement
for m = 1 to M

Let
(
y
(m)
n , q

(m)
0

)
=

(
ȳ
(q)
n , q̄

(q)
0

)
with probability w̄

(q)
n , q ∈ {1, . . . ,M}

end
Output: approximate state posterior distribution given observations and parameters

5. Numerical Results

In this section, we present the results of a simulation study aimed at testing the accuracy of

the presented algorithms in the context of our model. Throughout this section, we fix a time

horizon T = 1 and a small time step of size ∆ = 1/480; that is, we consider one-minute intervals

in a trading day of 8 hours. Except when analyzing the impact of the ‘informativeness’ of the

observation process, we set b = 8000 as the average amount of price changes in a given day – a

conservative choice for a liquid stock.

5.1. Bootstrap Filter for Known H. Here we consider the Hurst index H to be known and

thus we implement the bootstrap filter of Section 4.2 with M = 300 particles. We consider two

cases for the true Hurst index, H = 0.1 and H = 0.4; given the total number of time steps

N = 480, the number of OU processes building the approximation (11) is given by Equation (12)

as J(480, 0.1) = 22 and J(480, 0.4) = 98, respectively. The prior distribution for the state (that

is, for the vector of mean-reverting processes approximating X) is a centered J-dimensional

normal distribution with covariance matrix given by 0.1 · I, where I denotes the J × J identity

matrix.
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Algorithm 2: Nested Particle Filter Algorithm for the fBM Case

Input: number of continuous time units T , number of discrete-time steps per unit N ,
recorded observations (in)1≤n≤TN , constant b > 0, jittering hyperparameters,
number of parameter particles K, number of state particles M

Initialization (n = 0)
Compute approximation dimension J = J(N) // See (13)

for k = 1 to K
Sample θk0 from a suitable prior distribution // E.g., θk

0 ∼ U(0,1/2)

for m = 1 to M

Sample y
(k,m)
0 from a suitable prior // E.g., y

(m)
0 ∼ NJ (0, σ

yI), where σy is small

Generate q
(k,m)
0 // q

(k,m)
0 ∼ NJ (0,Γ), where Γ = (γi,j)1≤i,j≤J and γi,j = (κi + κj)

−1

end

end

Recursive step (n ≥ 1)
for k = 1 to K

Draw θ̄kn from κ
θkn−1

K (dθ) // See Crisan and Miguez (2018) for choices of jittering kernel κK

Given θ̄kn, compute coefficients ck and speeds κk
// See Section 3.2 and Section 3.3

for m = 1 to M
Inner filter

Propagate

Generate v(k,m) ∼ N (0, 1)

Draw ȳ
(k,m)
n conditional on y

(k,m)
n−1 , q

(k,m)
0 and κk

// See updating scheme (17)

Set q̄
(k,m)
0 = q

(k,m)
0

Compute normalized likelihood weights

Compute x̄
(k,m)
n =

(
ck

)⊤
ȳ
(k,m)
n // See state approximation (10)

Let λ
(k,m)
n = b∆exp

(
x̄
(k,m)
n

)
and a

(k,m)
n =

(
λ
(k,m)
n

)in
exp

(
−λ

(k,m)
n

)
// See (15)

Compute w̄
(k,m)
n = a

(k,m)
n /∑M

m=1 a
(k,m)
n

Resample with replacement

Let
(
ỹ
(k,m)
n , q̃

(k,m)
0

)
=

(
ȳ
(k,q)
n , q̄

(k,q)
0

)
with probability w̄

(k,q)
n , q ∈ {1, . . . ,M}

end

Compute normalized likelihood weights

Compute w̄k
n =

∑M
m=1 a

(k,m)
n /

∑K
k=1

∑M
m=1 a

(k,m)
n

Resample with replacement

Let

(
θkn,

{(
y
(k,m)
n , q

(k,m)
0

)}
1≤m≤M

)
=

(
θ̄ln,

{(
ỹ
(k,m)
n , q̃

(k,m)
0

)}
1≤m≤M

)
with

probability w̄l
n, l ∈ {1, . . . ,K}.

end

Output: approximate parameter posterior distribution µ̂n = 1
K

∑K
k=1 δθkn for each

n = 1, . . . , TN , where δθ denotes the Dirac measure at θ

Figure 1 shows simulated trajectories of RLfBM(right) resp. fBM (left) with Hurst index H =

0.1 (upper panel) resp. H = 0.4 (lower panel) as black solid lines, as well as the corresponding

filtered estimates as dotted-dashed lines (blue for the H = 0.1 case and coral for the H = 0.4

case).5 We observe that the filtered trajectory tracks the true one reasonably well in both cases.

5If Figure 1 is printed in black and white, it might be hard to distinguish the true trajectories from the filtered
ones. In that case, we recommend to look at the figure in color on screen.
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Figure 1. Upper panel: simulated (black solid line) and filtered (blue dotted-dashed line)
trajectory of RLfBM (right) resp. fBM (left) with H = 0.1. Lower panel: simulated (black
solid line) and filtered (coral dotted-dashed line) trajectory of RLfBM (right) resp. fBM (left)
with H = 0.4.

5.2. Nested Particle Filter for Unknown H. Here we consider the Hurst index H to be

unknown and thus we estimate it accordingly by implementing the nested particle filter of

Section 4.3 with K · M = 3002 particles. We consider two cases for the true Hurst index,

H = 0.1 and H = 0.4; however, unlike in the filtering experiment, we keep the number of OU

processes building the approximation (11) equal in both cases. This number depends only on

the number of time steps per continuous-time unit N = 480, and it is given by Equation (13) as

J(480) = 48. The prior distribution for the state, that is for the vector Y0 or Z0, is a centered

J-dimensional normal distribution with covariance matrix given by 0.1 · I, where I denotes the

J × J identity matrix. The prior for the parameter Θ = H is uniform between 0 and 1/2. For

what concerns the jittering kernel, we jitter each parameter particle using a Gaussian kernel κθK
with mean θ (the value of the parameter particle to be jittered) and variance K−2.

Figure 2 shows the mean (coral dotted line), the 1%- and 99%- quantiles (blue dotted lines) of

the estimated posterior distribution µn, n = 1, . . . , TN , of the unknown parameter H (the true

value of H is depicted with a solid black line). The upper panel corresponds to H = 0.1, the

lower one to H = 0.4. Moreover, the plots on the left correspond to the RLfBM case, while

those on the right to the fBM case. Overall, the behavior of parameter estimates over time is

quite satisfactory as the estimation problem at hand is relatively complex, particularly when

considering a conservative average number of trades and a short time horizon.

5.3. Sensitivity with respect to b. Next we study the influence of the parameter b on the

accuracy of the filtering algorithms. We assume that the underlying signal process is an fBM

with true Hurst index H = 0.3 and we analyze two cases, one in which the observation process

is less informative (i.e., b = 5000) and one in which it is more informative (i.e., b = 15000).
12
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Figure 2. Mean (coral dotted line), 1%- resp. 99%- quantiles (blue dotted lines) and true
value (solid black line) of the estimated posterior distribution for H. Upper panel: H = 0.1,
lower panel: H = 0.4. Right: RLfBM case, left: fBM case.

First, we consider the Hurst index to be known and thus we implement the bootstrap filter of

Section 4.2 with M = 300 particles and – as specified by Equation (12) – we use J(0.3, 480) =

OU processes to build the approximation (11). Then, we consider H to be unknown and we

estimate it by implementing the nested particle filter of Section 4.3 with K ·M = 3002 particles,

where the dimension of the approximation is given by Equation (13) as J(480) = 48.

The upper panel of Figure 3 shows the unobserved trajectory of the fBM WH with Hurst index

H = 0.3 (solid black line) and the area comprised between the 1%- and 99%-quantile of the

posterior distribution of the state process resulting from one run of bootstrap filtering (coral

corresponds to the less informative case and blue to the more informative one). The other panels

of Figure 3 show kernel density estimators of the posterior distribution of the Hurst index at

final time T , – one for each of 5 independent runs of the NPF algorithm – and the prior (dotted

line). The middle panel corresponds to the less informative case, the lower panel to the more

informative one. We observe that a higher value of b improves the accuracy in both filtering

and parameter estimation; however, results are still quite satisfactory in the less informative

case.

6. Experiments in the Context of Non-Rough Stochastic Volatility Models

In this section, in the spirit of Cont and Das (2022) and Rogers (2023) we apply our methodology

to synthetic data generated in a setting where spot volatility is driven by standard Brownian

diffusions and assess whether the resulting estimates for H are roughly consistent with such

a setup, rather than mistakenly reflecting a spurious strong roughness effect. This amounts

to modifying the continuous-time model of Section 2, discretizing it in the same fashion as in
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Figure 3. True and filtered state trajectory ofWH withH = 0.3 (upper panel) and posterior
distribution of H at final time (lower panel) in the cases b = 15000 resp. b = 5000.

Section 4.1 and estimating the unobservable volatility trajectory and the Hurst index H via the

nested particle filter algorithm of Section 4.3.

6.1. Volatility as Modulus of Brownian Motion. Motivated by Cont and Das (2022), here

we assume our observation process D to have an intensity of the form (to be compared with

(1)):

λt := λ(Wt) = b · |Wt|2 , (18)

where b is a positive constant and W is a standard Brownian motion, so that H = 1/2.

However, we consider the Hurst index H to be unknown and thus we estimate it accordingly

by implementing the nested particle filter of Section 4.3 with K ·M = 3002 particles.6 We fix

a time step of size ∆ = 1/480 (that is, we consider one-minute intervals in a trading day of 8

hours) and a time horizon of T = 5 days, so that the dimension of the approximation (10) is

given by Equation (13) as J(480) = 48.

The upper panel of Figure 4 shows a simulated trajectory of |W | (black solid line) and the

corresponding filtered estimate (coral dotted-dashed line). The lower panel shows kernel density

6We adapt the filtering algorithms accordingly; in particular, the intensity is to be computed using (18).
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estimators of the posterior distribution of the Hurst index at final time T , one for each of

3 independent runs of the NPF algorithm, and the prior (dotted line). We stress that this

experiment aims at assessing whether the resulting estimate for H reflects a spurious strong

roughness effect, attributable for instance to microstructure noise, rather than at estimating H

correctly. In fact, the value H = 1/2 can never be estimated correctly without modifying the

methodology and the algorithm substantially, as the approximations (10) and (11) are valid for

H < 1/2 and the parameter space of nested particle filtering algorithm of Section 4.3 is assumed

to be a compact subset of (0, 1/2). Overall, given these considerations, the results are quite

satisfactory, both for the filtered trajectory and for the parameter estimate, since the latter is

relatively close to 1/2 (and not erroneously estimated to be close to zero).
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Figure 4. True and filtered state trajectory of |W | (upper panel) and posterior distribution
of H at final time (lower panel).

6.2. OU-OU Model for Volatility. As an alternative to rough volatility models, Rogers

(2023) proposes the so-called OU-OU model, where spot volatility is modeled as an OU process

with high mean-reversion speed and high volatility, reverting to a level given by a second,

‘slower’ OU process. Rogers (2023) claims that the empirical properties of this model are akin

to those of rough volatility models.

To mimic this framework, we assume that observation process D has an intensity of the form:

λt := λ(Xt) = b · exp (Xt) , (19)

where X is given by the so-called OU-OU model:

dRt = −βRt dt+ σR dW ′
t ,

dXt = κ(Rt −Xt) dt+ σX dWt ,
(20)
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for independent standard Brownian motions W ′ and W . To simulate model and observations,

we choose the same parameters as in the original paper; that is, σ2
X = 20, σ2

R = 0.625, κ = 210

and β = 2.5. However, when implementing our estimation methodology, we suppose that the

unobservable process X is not of its ‘true’ form (20), but rather a fractional Brownian motion

with unknown Hurst index H, which we estimate using the nested particle filter of Section 4.3

using K ·M = 3002 particles. We fix a time horizon of T = 1 day and make two distinct choices

for the time step ∆ to analyze its impact on the estimation procedure. In particular, we consider

∆ = 1/480 (corresponding to one-minute intervals in a trading day of 8 hours) and ∆ = 1/960

(corresponding to thirty-second intervals in a trading day of 8 hours); thus, Equation (13) gives

J(480) = 48 respectively J(960) = 960.

he upper panel of Figure 5 shows simulated trajectories ofX (black solid lines) and corresponding

filtered estimates (coral dotted-dashed lines).7 The lower panel shows kernel density estimators

(in blue) of the posterior distribution, at final time, of the Hurst index – one for each of

3 independent runs of the NPF algorithm applied to observations generated by the OU-OU

model – and the prior (dotted line). In both panels, the plot on the right-hand side corresponds

to the coarser time scale case (that is, ∆ = 1/480) and the one on the left-hand side to the more

finely discretized case (that is, ∆ = 1/960). We can observe that estimates for H obtained in

the OU-OU case are consistent with roughness in volatility paths, meaning that the OU-OU

model seems to mimic that type of behavior. In particular, the model estimated on a coarser

time scale seem to correspond to an fBM with H ≈ 0.2. However, if we simulate the model

on a finer time grid and apply the corresponding algorithm, the estimate for the Hurst index

becomes more volatile. This does not seem to be the case for data generated by a ‘true’ rough

model: for comparison, we apply the NPF algorithm to observations where the signal is a fBM

with Hurst index H = 0.3, again for the two different time scales. For each of 3 independent

runs of the algorithm, we plot kernel density estimators of the posterior distribution, at final

time, of the Hurst index in the lower panel of Figure 5 in coral. Note that, when synthetic

data are generated from the correct model, estimates are far less sensitive with respect to the

fineness of the time scale considered.

7. Application to Real Data

In this section, we discuss an empirical case study where we apply our methodology to real data

from LOBSTER. More specifically, we consider event data for the mid-price of Apple from July

9th, 2012, to July 13th, 2012, and we sum all movements in mid-price occurring in a given time

interval to obtain our observation sequence (in)1≤n≤TN . Note that, since our continuous-time

unit is days, we have T = 5 and, since Apple is traded on the NASDAQ stock exchange which is

open six and a half hours per day, we have N = 390 for the one-minute intervals case, N = 780

for the thirty-second intervals case and N = 390 for the ten-second intervals case. We estimate

the value of b to be the average number of per-day price movements over this week of trading;

that is, we set b = 78291.

As H is unknown, we apply the NPF algorithm of Section 4.3 to each observation series. As in

Section 5.2 we use a total of K ·M = 3002 particles and choose the prior for the state to be a

7If Figure 5 is printed in black and white, it might be hard to distinguish the true trajectories from the filtered
ones in its upper panel. In that case, we recommend to look at the the figure in color on screen.
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Figure 5. True and filtered state trajectory of X (upper panel), posterior distribution of
H at final time (middle panel) for the OU-OU model, posterior distribution of H at final time
(lower panel) for the fBM model with H = 0.3. The plots on the left correspond to the time
step ∆ = 1/960, those on the right to ∆ = 1/480.

centered J-dimensional normal distribution with covariance matrix given by 0.1 · I, while the

prior for H is uniform on (0, 1/2). The variance of the jittering kernel is again set to K−2. In our

data application we only consider the fBM case and we approximate the signal process using

J(390) = 45 (see Equation (13)) mean-reverting processes for the one-minute intervals case,

J(780) = 58 for the thirty-second intervals case and J(2340) = 87 for the ten-second intervals

case.

The results are depicted in Figure 6 and Figure 7. Figure 6 shows the filtered estimate for the

signal trajectory (blue line) when the observation series consists of per-minute price movements.

The filtering results display U -shape behavior, in agreement with stylized facts about intra-day

trading activity. Figure 7 graphs kernel density estimators of the posterior distribution, of the

Hurst index at final time (one for each of 3 independent runs of the NPF algorithm) and the

prior (dotted line). The upper panel corresponds to the ten-second intervals case, the middle

panel to the thirty-second intervals one and the lower panel to the one-minute interval one.

Parameter estimation results are qualitatively consistent with the results of Fukasawa et al.

(2019) or Bennedsen et al. (2021), as the mean estimates for H are smaller than 0.1 in all three

time-discretization scenarios. However, estimates seem to increase slightly on a coarser the time

grid. In any case, more work is needed to truly assess this rough behavior; in particular, the

analysis should be repeated for different assets and time points; this is left for future research.

Furthermore, we caution against an interpretation of the form ‘volatility has to be modeled

by a rough process’. In fact, the choice of a model in quantitative finance always involves

a trade-off between realism and tractability, and for many tasks the improved tractability of
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standard Markovian volatility models may well outweigh the potentially greater realism of a

rough volatility model.
−
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Figure 6. Filtered state trajectory for the real data application when obersations are
recorded on a one-minute grid.
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Figure 7. Posterior distribution of H at final time for the real data application when
obersations are recorded on a ten-second (upper panel), thirty-second (middle panel) and one-
minute (lower panel) grid.

8. Conclusions and Outlook

In this paper, we discussed filtering and parameter estimation in a rough volatility model for

high-frequency data. We considered a time-discretized version of a continuous-time framework

where observations are given by a trajectory of a Cox process whose intensity is driven by a

18



‘rough’ process, such as (Riemann-Liouville) fractional Brownian motion with Hurst parameter

H < 1/2. Basing ourselves on a representation of such signal as a superposition of Ornstein

Uhlenbeck processes (as introduced by Carmona and Coutin (1998)), we detailed how it can be

filtered using standard particle filtering techniques. Moreover, we explained how to estimate H

using the nested particle filtering algorithm of Crisan and Miguez (2018). We ran a comprehensive

simulation study to test the accuracy of the algorithms and their sensitivity with respect to

specific modelling choices. We found that the results are satisfactory; in particular, we were

able to estimate the Hurst index with reasonable accuracy, while still taking the unobservability

of volatility fully into account. Moreover, the parameter estimation methodology seems to be

able to adequately distinguish between ‘true’ rough dynamics in spot volatility and spurious

roughness effects arising from microstructure noise, as documented e.g. in Cont and Das (2022).

Finally, we presented an empirical case study using real high-frequency data, from which we

could conclude that there is some evidence of roughness in volatility in real markets. However,

further analysis is needed to fully corroborate this finding.

In this paper, we focused exclusively on the short-term behavior of volatility and our modeling

framework does not allow to capture long memory, a volatility feature which is has been

investigated in several empirical studies (see, for instance, Andersen et al. (2001)) and it is

often considered a stylized fact. As explained in Gneiting and Schlather (2004), models based

on processes with the self-similarity property cannot account for both roughness and long-

run dependence. Moreover, fractional Brownian motion is not stationary, which represents a

problem when one seeks to study the long-term properties of volatility. Therefore, a possible

extension of the present work is to find an alternative model that allows for rough paths and for

a polynomial decay of the autocorrelation function ρ(s) for s → ∞ (that is, for long memory).

This is very much in the spirit of Bennedsen et al. (2021), who advocate the use of the so-called

Brownian semistationary processes (see Barndorff-Nielsen and Schmiegel (2009)).
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Appendix A. Relationship to Stochastic Volatility

Proposition A.1. Consider a sequence of models indexed by p and given by Sp
t = S0+

∑Dp
t

i=1 ν
p
i ,

where for all p

(i) Dp is a doubly-stochastic Poisson process with intensity λp(Xt);

(ii) {νi}i∈N are i.i.d. with zero mean and variance given by (σp)2;

(iii) (νpi )
2 ≤ c̄p for a sequence c̄p → 0;

(iv) (σp)2λp(x) → σ2λ(x), uniformly on compacts.

Then the pair (Sp, X) converges in distribution to (S,X), where S solves

dSt = σ
√
λ(Xt) dWt
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for a standard Brownian motion W .

Sketch of proof. We first condition on FX
∞ = σ(Xs, s ≥ 0), so that Dp is a Poisson process with

time-dependent intensity. Thus, consider the filtration {FS
t ∨ FX

∞}t≥0. Note that, for each p,

Sp is a martingale on this filtration. Moreover, it holds that

d(Sp
t )

2 = 2Sp
t− dSp

t + d[Sp]t ,

where [Sp]t =
∑Dp

t
i=1(ν

p
i )

2. That is, [Sp]t −
∫ t
0 (σ

p)2λp(Xs) ds is a martingale. It follows that

(Sp
t )

2 −
∫ t
0 (σ

p)2λp(Xs) ds is also a martingale.

By (iv), one has that
∫ t
0 (σ

p)2λp(Xs) ds →
∫ t
0 σ

2λ(Xs) ds. Moreover, for fixed T , (iii) gives

sup
t≤T

(
Sp
t − Sp

t−

)2
= sup

i≤Dp
T

(νpi )
2 ≤ c̄p → 0 .

Hence, Theorem 7.4.1 in Ethier and Kurtz (1986) gives that the law of Sp given FX
∞ converges

to the law of the process S with dSt = σ
√
λ(Xt) dWt. The claim then follows by integrating

with respect to the law of X. □
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