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3.2.2 Martingale-property of the Itô-integral . . . . . . . . . . . . . . . . . 26
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Introduction

The goal of these notes is to give the reader a formal yet accessible introduction to continu-

ous time financial mathematics. Continuous-time models are admittedly more complicated

than their discrete-time counterparts. Nonetheless there are a number of good reasons to

deal with them: To begin with, on many markets with very frequent trading the assumption

of continuous security trading is closer to reality than assuming that markets are open only

at fixed time points such as once a day. Moreover, in continuous-time models we can often

get closed form solutions for derivatives prices which are not available in discrete models.

Finally continuous-time modelling is the ‘state-of-the art’ in the modern literature.

The presentation starts with a brief introduction to discrete-time models (Chapter 1).

We explain the notion of dynamic hedging and introduce the concept of an equivalent

martingale-measure. Moreover, we discuss the fundamental theorems of asset pricing and

derive the risk-neutral pricing principle. To illustrate these concepts we briefly discuss

the binomial model of Cox, Ross & Rubinstein (1979). The core part of these notes is

dedicated to models in continuous time. In Chapter 2 we give some basic facts about

stochastic processes and introduce Brownian motion. We discuss sample paths properties

and in particular the quadratic variation of Brownian motion. Chapter 3 is devoted to parts

of the ‘pathwise Itô-calculus’ of Föllmer (1981). This approach enables us to derive all the

mathematical tools necessary for an analysis of the Black-Scholes model in a rigorous but

simple way. In Chapter 4 we present a first analysis of the Black-Scholes model via partial

differential equations (PDEs), followed by a brief digression into portfolio optimization

via stochastic control methods and the HJB equation. Chapter 5 provides further tools

from stochastic calculus, most notably a discussion of the Girsanov theorem. In Chapter 6

these tools are applied to financial issues: we analyze basic principles of derivative pricing in

continuous time, discuss the Black-Scholes model from a probabilistic perspective and study

generalized Black Scholes models with more than one asset. We give a brief introduction to

portfolio optimization and dynamic programming in 7. The text closes with a discussion of

interest rate models and gives applications to interest-rate and and currency derivatives (in

Chapter 8). Finally, a short appendix contains some background material on conditional

expectations and discrete-time martingales.

There are many excellent textbooks on pricing and hedging of derivatives on various levels

available. Good elementary texts are Cox & Rubinstein (1985) or Jarrow & Turnbull

(1996); Hull (1997) is particularly popular with practitioners. Slightly more advanced

texts which give also an introduction to stochastic calculus include Lamberton & Lapeyre

(1996), Shreve (2004), Björk (2004) and Bingham & Kiesel (1998). In preparing these

notes we relied a lot on the last two texts. Advanced texts on mathematical finance are

Musiela & Rutkowski (1997) and Karatzas & Shreve (1998); Cont & Tankov (2004) gives

an excellent introduction to financial modelling with jump processes. The necessary tools

from probability theory can be found in Williams (1991) or in Jacod & Protter (2004).

Good introductions to stochastic calculus in general are (in increasing order of technicality)

Oksendal (1998), Karatzas & Shreve (1988), Protter (2005) and Revuz & Yor (1994).

These lecture notes grew out of various lecture courses taught by the author at the Vi-

enna University of Economics and Business, the University of Leipzig and the University

of Zürich; the audience consisted of master or PhD students in financial mathematics or

in quantitative finance. At this point a warning is in order. This text is not a published
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textbook. Hence some sections are more polished than others, there are (slight) inconsis-

tencies in the notation between chapters and there is ‘almost surely’ a number of errors

and typos in the text. Of course I intend to improve the text over time, and I am grateful

for any error which is being pointed out to me (ruediger.frey@wu.ac.at).

Vienna, November 2014 Rüdiger Frey
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Chapter 1

Discrete-Time Models: a Wrap-Up

In this section we give a brief introduction to the pricing and hedging of derivatives in

finite market models, i.e. models with a finite number of trading dates in which all asset

prices take on only finitely many different values. In this simple setting we can work

out the key financial and mathematical ideas underlying modern derivative asset analysis

without having to deal with the technicalities of stochastic calculus. We basically follow

the approach of Harrison & Pliska (1981).

1.1 Basic notions

We work on a probability space (Ω,F , P ) with finite state space Ω = {ω1, . . . , ωs}. We

consider a finite number of trading dates t = 0, 1, . . . N where t = N often corresponds to

the maturity of the derivative contract under consideration. As usual we use a filtration

{Fn}, n = 0, 1, . . . , N to model the information-flow over time: an event A belongs to Fn

if the agents in our model can decide from the information available to them at t = n if

the event A has occurred or not.

Assets: There are two assets in our model, a riskless money market account with price

process S0 and a risky security S1 (the stock). None of these assets is paying dividends

between t = 0 and t = N . We work with a deterministic interest rate r per period such

that S0
n = (1 + r)n. The discount factor is given by Dn = (1 + r)−n. The discounted stock

price process is given by S̃1
n := DnS

1
n; the discounted price of the money market account

obviously equals S̃0
n ≡ 1. We assume that the stock price process is adapted to {Fn}. In

the sequel we refer to the filtered probability space (Ω,F , P ), {Fn}, the set of trading dates

and the price processes of S0 and S1 together as our security market model M.

Trading strategies: The investors in our model are allowed to form dynamic portfolios

in stock and money market account. Formally a trading strategy (or dynamic portfolio

strategy) is a stochastic process (a sequence of random variables) φ = (φ0
n, φ

1
n)n=1,...,N with

the following economic interpretation: φ0
n respectively φ1

n represent the number of units

of the money market account respectively the number of shares of the stock the investor

selects for his portfolio at t = n− 1 and holds up to and including time t = n. To capture

economic reality a trading strategy should be non-anticipating, i.e. in deciding about φn at

time t = n− 1 the investor has only the information contained in Fn−1 – such as the stock

price S1
n−1 – at her disposal and not the information contained in Fn. This is formalized
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in the following definition.

Definition 1.1. Given a security market model M.

(i) A trading strategy φ = (φn)n=1,...,N is called admissible if φ0
n and φ1

n are Fn−1-

measurable for n = 1, . . . N , i.e. if φ is a predictable process.

(ii) The value of the strategy φ at time t = n equals Vn = Vn(φ) = φ0
nS

0
n + φ1

nS
1
n; the

discounted value is given by Ṽn = DnVn = φ0
n + φ1

nS̃
1
n.

(iii) An admissible strategy is called selffinancing if for all n = 1, . . . , N

Vn = φ0
nS

0
n + φ1

nS
1
n = φ0

n+1S
0
n + φ1

n+1S
1
n , (1.1)

i.e. if no funds are withdrawn from or injected into the strategy.

The following characterization of selffinancing strategies will be very convenient in the

future.

Lemma 1.2. An admissible strategy φ is selffinancing if and only if we have for all n =

1, ..., N

Vn(φ) = V0(φ) +
n∑

j=1

φ0
j(S

0
j − S0

j−1) +
n∑

j=1

φ1
j(S

1
j − S1

j−1) . (1.2)

The value of a selffinancing strategy hence consists of the initial investment V0 and the

gains (or losses) from trade in stock and money market account.

Proof. We get by definition of the value of a portfolio that

Vn+1(φ)− Vn(φ) = φ0
n+1S

0
n+1 + φ1

n+1S
1
n+1 − φ0

nS
0
n − φ1

nS
1
n . (1.3)

Now φ is selffinancing if and only if φ0
nS

0
n + φ1

nS
1
n = φ0

n+1S
0
n + φ1

n+1S
1
n for all n = 1, . . . , N .

Plugging this into (1.3) yields

Vn+1(φ)− Vn(φ) = φ0
n+1(S

0
n+1 − S0

n) + φ1
n+1(S

1
n+1 − S1

n) . (1.4)

As Vn+1(φ) = V0(φ)+
∑n

i=0

(
Vi+1(φ)−Vi(φ)

)
the lemma follows by summing over (1.4).

We can give a similar characterization of selffinancing strategies in terms of discounted

quantities.

Lemma 1.3. An admissible strategy is selffinancing if and only if we have for all n =

1, ..., N

Ṽn(φ) = Ṽ0(φ) +

n∑

j=1

φ1
j(S̃

1
j − S̃1

j−1) . (1.5)

Being similar to the proof of Lemma 1.2 the proof will be omitted.
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1.2 No-arbitrage and Equivalent Martingale Measures

Roughly speaking an arbitrage opportunity is a trading strategy which allows us to create

strictly positive profits without risk i.e. with zero initial investment.

Definition 1.4. (i) A self-financing, admissible strategy φ with V0(φ) = 0 is called an

arbitrage opportunity if VN (φ) ≥ 0 and P (VN (φ) > 0) > 0.

(ii) A security market model M is arbitrage-free, if there are no arbitrage opportunities.

Remark 1.5. 1) Of course an admissible strategy φ such that V0(φ) < 0 and VN (φ) ≥ 0

also constitutes an arbitrage opportunity as such a strategy allows an investor to consume

the positive amount U0 = (−V0(φ)) in t = 0 without any further obligations. However, it

is always possible to turn φ into an arbitrage opportunity in the sense of Definition 1.4 by

investing U0 into the riskless asset.

2) There are two different reasons for requiring that a good security market model should be

arbitrage-free. To begin with, on real markets arbitrage opportunities do usually not prevail

for long as the attempts of rational investors to exploit arbitrage opportunities makes them

disappear.1 More importantly, even if one believes that arbitrage opportunities do exist on

real markets, there are still good reasons to insist that a security market model should be

arbitrage-free. Otherwise an investor who uses this model for the pricing of derivatives will

quote prices for these products which are inconsistent and risks therefore to fall victim to

arbitrage-trades himself.

In order to characterize arbitrage-free markets, we use the concept of equivalent martingale

measures.

Definition 1.6. Given a security market model M. A probability measure Q on (Ω,F)

such that

(i) Q is equivalent to P , i.e. for all A ∈ F we have Q(A) > 0 ⇔ P (A) > 0.

(ii) The discounted stock-price S̃ is a martingale.

is called an equivalent martingale measure or a risk-neutral measure for M.

In a discrete setting condition (i) simply means that Q(ω) > 0 for all ω, i.e.under both

measures the same states of the world occur with positive probability. Condition (ii) is

equivalent to the requirement that E
(

1
1+rSn|Fn−1

)
= Sn−1 for all n = 1, . . . N . The name

risk-neutral measure stems from the fact that the existence of a risk-neutral investor whose

subjective probability distribution over future stock-prices is given by Q is consistent with

our security market model.

Next we want to show that the existence of an equivalent martingale measure excludes

arbitrage possibilities. For this we need:

Lemma 1.7. Let Q be an equivalent martingale-measure for the market M. Consider a

selffinancing, admissible trading-strategy φ. Then the discounted value process Ṽn(φ) is a

Q-martingale.

1This does not imply that real markets are always arbitrage-free as institutional constraints and trans-

action costs can make it difficult to profit from arbitrage opportunities; see for instance Liu & Longstaff

(2000) for a discussion.
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Proof. As φ is selffinancing we get from Lemma 1.3

Ṽn+1(φ) = Ṽ0(φ) +

n+1∑

j=1

φ1
j (S̃

1
j − S̃1

j−1) = Ṽn(φ) + φ1
n+1(S̃

1
n+1 − S̃1

n).

As φ is admissible, φn+1 is Fn-measurable. Hence, as S̃1 is a Q-martingale,

EQ(Ṽn+1(φ)− Ṽn(φ)|Fn) = EQ(φ1
n+1(S̃

1
n+1 − S̃1

n)|Fn) = φ1
n+1E

Q(S̃1
n+1 − S̃1

n|Fn) = 0 .

Proposition 1.8. If an equivalent martingale-measure exists for the security market model

M, the model M is arbitrage-free.

Proof. Consider a self-financing strategy φ with VN (φ) ≥ 0, P (VN (φ) > 0) > 0. We will

show that the existence of an equivalent martingale-measure Q implies V0(φ) > 0; this

shows that no arbitrage opportunities exist.

As VN (φ) and ṼN (φ) have the same sign it follows that ṼN (φ) > 0 and P (ṼN (φ) >

0) > 0. The equivalence of P and Q now implies that Q(ṼN (φ) > 0) > 0 and hence

EQ(ṼN (φ)) > 0. On the other hand, (Ṽ (φ))n=1,...,N being a Q-martingale implies that

Ṽ0(φ) = EQ
(
ṼN (φ)

)
> 0 and hence also V0(φ) > 0.

Proposition 1.9. If the market is arbitrage-free, the class of equivalent martingale-measures

is non-empty.

The proof is based on the separating hyperplane theorem; see e.g. Bingham & Kiesel

(1998), Proposition 4.2.3. Summing up, we have the so called first fundamental theorem

of asset pricing.

Theorem 1.10. A security market M is arbitrage-free if and only if there is a probability

measure Q equivalent to P such that discounted asset price processes are Q-martingales.

Remark: In this very strict form the first fundamental theorem of asset pricing holds

only in a discrete-time setting; for a version of this theorem which is valid in more general

conditions with continuous trading see Chapter 6.1 of Bingham & Kiesel (1998) and in

particular the paper Delbaen & Schachermayer (1994).

1.3 Pricing and hedging of contingent claims

We now turn our attention to the pricing of contingent claims. Formally a contingent claim

H with maturity T is an FT -measurable random variable H; H(ω) is interpreted as payoff

of the claim in state ω. A contingent claim is called a derivative if its payoff depends only

on the prices of traded securities; derivatives are obviously the most important class of

contingent claims. Contingent claims which are not derivatives are traded in the insurance

industry. For instance the payoff of so-called CAT-bonds depends essentially on the value

of some aggregated claims index, which is typically not a traded security; for more on these

claims see Canter, Cole & Sandor (1996).

The key idea underlying modern approaches to pricing contingent claims is the notion of

dynamic replication.
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Definition 1.11. Given a security market model M.

(i) A contingent claim H with maturity T ∈ {1, . . . , N} is called attainable, if there is

an admissible, selffinancing strategy φn = (φ0
n, φ

1
n) such that VT (φ) = H; φ is called

replicating strategy for the derivative.

(ii) A market is called complete, if every contingent claim is attainable.

Definition 1.12. Consider an attainable claimH with replicating strategy φ in an arbitrage-

free market model M. The fair price of this claim at time n ≤ T is Vn(φ).

This definition is motivated by the observation that by investing Vn(φ) at time t = n and

following the strategy the claim can be replicated without any further risk; a price higher

(lower) than Vn(φ) would therefore constitute a riskless profit opportunity for the seller

(buyer) of the claim.

The following theorem yields an alternative way to compute the fair price of an attainable

claim using the risk-neutral measure.

Theorem 1.13. Given an arbitrage-free market M and an attainable contingent claim H

with replicating strategy φ. Let Q be an equivalent martingale measure for M. Then the

fair price of the claim H at time n ≤ T is given by

Vn(φ) = EQ((1 + r)−(T−n)H|Fn); in particular V0(φ) = EQ((1 + r)−TH) . (1.6)

Proof. As the strategy φ duplicates the claim, we have VT (φ) = H and hence (1+r)−TH =

ṼT (φ). As (Ṽn(φ))n=0,...,T is a Q-martingale (by Lemma 1.7), we have

EQ
(
(1 + r)−TH|Fn

)
= EQ(ṼT (φ)|Fn) = Ṽn(φ) = (1 + r)−nVn(φ).

Hence Vn(φ) = EQ((1 + r)−(T−n)H|Fn).

Relation (1.6) is often referred to as risk-neutral pricing rule. Theorem 1.13 shows in par-

ticular that in an arbitrage-free market two different admissible replicating strategies for

a claim have the same value such that the definition of the fair price of a claim (Defini-

tion 1.12) is logically consistent.

While the existence of a risk-neutral measure is related to absence of arbitrage, uniqueness

of a risk-neutral measure is related to market completeness. This is the content of the

so-called second fundamental theorem of asset pricing.

Theorem 1.14. An arbitrage-free market M is complete if and only if there exists a unique

equivalent martingale measure Q.

For a proof we refer to Section 4.3 of Bingham & Kiesel (1998); generalizations to models

with continuous security trading can be found in Harrison & Pliska (1981).

1.4 The binomial Cox-Ross-Rubinstein (CRR)-model

As an example we now present the binomial model of Cox et al. (1979). This simple model

is still popular with practitioners as it yields an approximation to the Black-Scholes model
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under suitable rescaling of the model-parameters, which makes the CRR-model useful as a

tool for computing (approximate) prices of derivatives.

We consider first a simple two-period example. Fix two numbers u and d with u > 1+r > d

which model the return of the stock in the up-state and in the down-state and an initial

stock-price-level S0. In a two-period CRR-model the stock-price then evolves as depicted

in Figure ??.

S0✟
✟✟✟uS0

❍❍❍❍dS0

✟✟✟✟u2 S0

❍❍❍❍udS0

✟✟✟✟

❍❍❍❍d2 S0

Note that the tree for the evolution of the stock-price is recombining, i.e. we obtain the

same value for the stock-price at time t = 2 independent of the order in which up- and down

movements occur. This property of the model facilitates its numerical implementation.

We now give a formal description of the N -period model. As state space Ω we take the set

{u, d}N such that the elements of Ω are N -tupels with entries ωi ∈ {u, d}, i = 1, . . . , N .

Define for 1 ≤ n ≤ N jn(ω) := #{i ≤ n ; ωi = u}, such that jn(ω) gives the number of

up-movements in ω until t = n. We define the stock-price process S1 by

S1
n(ω) = S0u

jn(ω)d(n−jn(ω)) , 0 ≤ n ≤ N . (1.7)

As filtration {Fn} we take the filtration generated by the stock price process, i.e. we put

Fn = σ(S1
i , i ≤ n). The probability measure P is left unspecified, we only require that

P (ω) > 0 for all ω ∈ Ω.

Equivalent martingale measure: We start with the case N = 1. Here the equivalent

martingale measure Q must satisfy EQ((1+ r)−1S1
1) = S0. If we define π := Q(ω1 = u) we

obtain the following condition for π

1

1 + r
(πuS0 + (1− π)dS0) = S0 and hence π =

(1 + r)− d

u− d
. (1.8)

It is immediate that π ∈ (0, 1) if and only if u > 1 + r > d; moreover, in that case π

is uniquely determined. If N > 1 we use our results from the one-period case to define

transition probabilities. We put

Q(ωn+1 = u|Fn) := π and Q(ωn+1 = d|Fn) = 1− π . (1.9)

The probability of any ω ∈ Ω is hence given by Q(ω) = πjN (ω)(1 − π)N−jN (ω). Relation

(1.8) implies that the discounted stock price process is a martingale. The uniqueness of π

in the one-period case implies that (1.9) is the only choice of transition probabilities which

makes S̃1 a martingale, such that Q is unique. Note that under the risk-neutral measure

Q the projections ωn on the components of ω form a sequence of two-valued iid random

variables.

Replicating strategies and market completeness: Our binomial model is complete

in the sense of Definition 1.11. This follows from the uniqueness of the equivalent martingale
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measure and Theorem 1.14. Alternatively, using the backward-induction principle we can

give an explicit recursive construction for hedging strategies for arbitrary claims. For

simplicity we explain the approach in the two-period model of Figure ??; the extension to

N periods is obvious. Consider some claim which matures in t = 2 and has payoff H(ω).

At time t = 2 the value of this claim is equal to its payoff. At t = 1 we have to distinguish

between the up-state (ω1 = u) and the down-state (ω1 = d).

In the up-state our replicating portfolio (φ0
1(u), φ

1
1(u)) must satisfy the following system of

equations.

φ0
1(u)(1 + r)2 + φ1

1(u)u
2S0 = H(u, u)

φ0
1(u)(1 + r)2 + φ1

1(u)udS0 = H(u, d) .

As u > d this linear system of equations has a unique solution given by

φ1
1(u) =

H(u, u) −H(u, d)

uS0(u− d)
, φ0

1(u) =
−dH(u, u) + uH(u, d)

(u− d)(1 + r)2
. (1.10)

The value of the hedge-portfolio equals

V1(u) = φ0
1(u)(1 + r) + φ1

1(u)uS0 =
1

1 + r
(πH(u, u) + (1− π)H(u, d)) ,

which is in line with the risk-neutral pricing rule. In the down-state we can compute a

hedging portfolio (φ0
1(d), φ

1
1(d)) using a similar argument. The value of the portfolio at

t = 1 is given by

V1(d) =
1

1 + r
(πH(d, u) + (1− π)H(d, d)) .

We now determine a hedging portfolio at time t = 0. To finance our hedge in t = 1 the

value of our portfolio must be V1(u) if the up-state occurs and V1(d) in the down-state.

Hence our hedge (φ0
0, φ

1
0) must solve the equations

φ0
0(1 + r) + φ1

0uS0 = V1(u) and φ0
0(1 + r) + φ1

0dS0 = V1(d) ,

which determines uniquely φ0
0, φ

1
0 and V0.

As the CRR-model is complete we may use the risk-neutral pricing rule to price arbitrary

contingent claims. In case of a European call option we obtain the following

Proposition 1.15. In a binomial CRR model with up-state-return u, down-state return d

and interest-rate r such that u > 1 + r > d the arbitrage price Cn at t = n of a European

call with strike price K and maturity N equals

Cn =
1

(1 + r)N−n

N−n∑

j=0

(
N − n

j

)
πj(1− π)N−n−j

(
Sn(ω)u

jdN−n−j −K
)+

.

Proof. We get from the risk-neutral pricing rule (1.6) that

Cn =
1

(1 + r)N−n

∑

ω∈Ω
Q(ω|Fn)(SN (ω)−K)+ .
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Now note that for ω with jN (ω) − jn(ω) = j (exactly j up-movements between now and

maturity) we obtain Q(ω|Fn) = πj(1 − π)N−n−j . Moreover, for these paths we have

SN (ω) = Sn(ω)u
jdN−n−j. Hence we obtain

Cn =
1

(1 + r)N−n

N−n∑

j=0

#{ω, jN (ω)− jn(ω) = j}πj(1− π)N−n−j
(
Sn(ω)u

jdN−n−j −K
)+

.

Now #{ω, jN (ω)− jn(ω) = j} is given by the binomial coefficient
(N−n

j

)
, which yields the

result.
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Chapter 2

Stochastic Processes in Continuous

Time

2.1 Stochastic Processes, Stopping Times and Martingales

2.1.1 Basic Notions

We work on a probability space (Ω,F , P ) with filtration {Ft}. Recall that a filtration is

a family of σ-fields {Ft, t ≥ 0} such that Ft ⊆ Fs for s > t. As usual Ft is interpreted

as the set of events which are observable at time t such that the filtration represents

information-flow over time.

A stochastic process X = (Xt)t≥0 is a family of random variables on (Ω,F , P ). We intro-

duce the following notions:

• The process X is called adapted, if for all t > 0 the random variable (rv) Xt is

Ft-measurable.

• The marginal distribution of the process at a given t ≥ 0 is the distribution µ(t) of

the rv Xt.

• Consider a finite set of time points (t1, ..., tn) in [0,∞). Then (Xt1 , ...,Xtn ) is a random

vector with values in Rn and distribution µ(t1, ..., tn), say. The class of all such

distributions is called the set of finite-dimensional distributions of X. The finite-

dimensional distributions satisfy a set of obvious consistency requirements, moreover,

they determine the stochastic properties of a stochastic process; see for instance

Chapter 2 of Karatzas & Shreve (1988).

• Fix some ω ∈ Ω. The mapping

X·(ω) : [0,∞) → R, t → Xt(ω)

is called trajectory or sample path of X; a stochastic process can be viewed as random

draw of a sample-path. We are only interested in processes whose sample paths have

certain regularity properties. Of particular interest will be processes with continuous

sample paths like Brownian motion or right continuous with left limits (RCLL) such

as the Poisson process (see below).
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Equality of stochastic processes. There are two notions of equality for stochastic

processes.

Definition 2.1. Given two stochastic processes X and Y . Then X is called modification

of Y if for all t ≥ 0 we have

P
(
{ω ∈ Ω: Xt(ω) = Yt(ω)}

)
= 1.

The processes are called indistinguishable if

P
(
{ω ∈ Ω: Xt(ω) = Yt(ω)∀t > 0}

)
= 1.

We obviously have that if X and Y are indistinguishable then X is a modification of Y .

For the converse implication extra regular assumptions on the trajectories are needed.

Lemma 2.2. Suppose that X and Y have right-continuous trajectories and that X is

a modification of Y . Then X and Y are indistinguishable.

Proof. Put Nt := {ω ∈ Ω: Xt(ω) 6= Yt(ω)} and let N :=
⋃

q∈Q∩[0,∞)Nq. Since Q is

countable and since X is a modification of Y we have 0 = P (Nq) = P (N). We want to

show that for ω ∈ Ω\N we have Xt(ω) = Yt(ω) ∀t ≥ 0. This is clear for t ∈ Q. For t ∈ R\Q
there is a sequence qn ∈ Q with qn ↓ t. By definition of N we have Xqn(ω) = Yqn(ω) for

all ω ∈ Ω\N . Since X and Y have right-continuous trajectories we moreover get

Xt(ω) = lim
n→∞

Xqn(ω)) = lim
n→∞

Yqn(ω) = Yt(ω),

which proves the claim.

2.1.2 Classes of Processes

1. Martingales: An adapted stochastic process X with E(|Xt|) < ∞ for all t > 0 is

• a submartingale if ∀t, s with t > s we have E(Xt|Fs) ≥ Xs.

• a supermartingale if ∀t, s with t > s we have E(Xt|Fs) ≤ Xs.

• a martingale if X is both a sub- and a supermartingale, i.e. if E(Xt|Fs) = Xs for all

t, s.

Important examples for martingales are the Brownian motion and the compensated Poisson

process. Both processes will be introduced below.

2. Semimartingales In financial modelling we often encounter processes which are the

sum of a completely unpredictable part – modelled by a martingale – and a systematic

predictable component such as the long-term growth rate of an asset. If the systematic

component of such a process satisfies certain regularity properties these processes are called

semimartingales. A formal definition of semimartingales is given in Definition 3.12 below.

3. Markov-Processes: An adapted stochastic process X is called Markov process, if for

all t, s > 0 and all bounded functions f : R → R

E(f(Xt+s) | Ft) = E(f(Xt+s) | σ(Xt)). (2.1)
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Here σ(Xt) denotes the σ-field generated by the rvXt, a notation which we will use through-

out these notes. Intuitively speaking a process is Markovian if the conditional distribution

of future values Xt+s, s ≥ 0, of the process is completely determined by the present value Xt

of the process; in particular given the value of Xt, past values Xu, u < t of the process do

not contain any additional information which is useful for predicting Xt+s.

Remark 2.3. A Markov process X is called a strong Markov-process, if (2.1) holds for

all stopping-times τ and not only for deterministic times t.1 All Markov-processes we will

encounter are also strong Markov processes, but there are a few ‘pathological’ exceptions.

4. Diffusions: A diffusion is a strong Markov process with continuous trajectories such

that for all (t, x) the limits:

µ(t, x) = lim
h→0

1

h
E(Xt+h −Xt|Xt = x) and (2.2)

σ2(t, x) = lim
h→0

1

h
E((Xt+h −Xt)

2|Xt = x) (2.3)

exist. Then µ(t, x) is called the drift, σ2(t, x) the diffusion coefficient. The name diffu-

sion stems from applications in physics; the most important mathematical examples are

solutions to stochastic differential equations.

5. Point processes and the Poisson process: Assume that certain relevant ‘events’

— for instance claims in an insurance context or defaults of counterparties in a financial

context — occur at random points in time τ0 < τ1 < . . .. The corresponding point pro-

cess Nt is then given by Nt := sup{n, τn ≤ t}, i.e. Nt measures the number of events which

have occurred up to time t.

The Poisson process is a special point process. To construct it we take a sequence Yn of

independent exponentially distributed random variables with P (Yn ≤ x) = 1 − e−λx and

define τn :=
∑n

j=1 Yj , such that Yn is the waiting time between event n− 1 and event n.

The process Nt = sup{n : τn ≤ t} is then a Poisson process with intensity λ. It has among

others the following properties

• P (Nt = k) = e−λt (λt)
k

k! , k = 0, 1, . . . , t ≥ 0.

• Nt+u − Nt is independent of Ns for s ≤ t and Poisson-distributed with parameter

(λu).

• The compensated Poisson processMt := Nt−λt is a martingale; in particular E(Nt) =

λt.

2.2 Stopping Times and Martingales

Throughout this section we work on a probability space (Ω,F , P ) with filtration {Ft}.

2.2.1 Stopping Times

Definition 2.4. A rv τ : Ω → [0,∞] is called stopping time wrt. {Ft} if for all t ≥ 0 it

holds that {τ ≤ t} ∈ Ft.
1As in discrete time a random variable τ with values in [0,∞] will be called a stopping time if for all t ≥ 0

the set {ω , τ (ω) ≤ t} belongs to the sigma-field Ft; see Section 2.2 below.
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Remark 2.5. τ can be interpreted as the time of the occurrence of an observed event.

{τ = ∞} means that the event never occurs.

Lemma 2.6. Let {Ft} be right-continuous, i.e. Ft =
⋂

ε>0 Ft+ε, for all t ≥ 0. Then

τ : Ω → [0,∞] is a stopping time if and only if {τ < t} ∈ Ft, ∀t ≥ 0.

Proof. It holds {τ ≤ t} =
⋂

ε>0{τ < t+ ε}. Let {τ < t} ∈ Ft, ∀t ≥ 0. Hence {τ < t+ ε} ∈
Ft+ε and {τ ≤ t} ∈ ⋂

ε>0
Ft+ε = Ft. For the converse statement note that

{τ < t} =
⋃

ε∈Q+

{τ ≤ t− ε}︸ ︷︷ ︸
∈Ft−ε⊆Ft

∈ Ft .

The most important example for stopping times are first hitting times for Borel sets.

Definition 2.7. Given a stochastic process X and a Borel set A in R. Define τA := inf{t ≥
0: Xt ∈ A}. Then the rv τA is called first hitting time into the set A.

✻

✲

c

t

Xt(ω)

τA(ω)

A := {x ∈ R : x > c}

Next we address the question if τA is a stopping time.

Lemma 2.8. Let X be {Ft}-adapted and right-continuous and let A ⊆ Rd be open. If the

filtration {Ft} is right-continuous, then the hitting time τA is a stopping time.

Proof. Suppose, that {Ft} is right-continuous. We only have to show {τA < t} ∈ Ft for all

t > 0. Since X is right-continuous and A is open, it holds that

{τA < t} =
⋃

q∈[0,t)∩Q
{Xq ∈ A} .

As {Xq ∈ A} ∈ Fq ⊆ Ft and as the union of countable sets from Ft also belongs to Ft, the

claim follows.

Lemma 2.9. Let X be continuous and A ⊆ R closed. Then τA is a stopping time.

Proof. Define open sets An ⊇ A by An := {x : d(x,A) < 1/n}. Since X is continuous and

A is closed, it holds that

{ω : τA(ω) ≤ t} = {ω : ∃s ∈ [0, t], Xs(ω) ∈ A} = {ω : ∀n ∈ N ∃s ∈ [0, t] withXs(ω) ∈ An}.

14



As all An are open, the last set equals

{ω : ∀n ∈ N∃q ∈ Q ∩ [0, t],Xq(ω) ∈ An} =
⋂

n∈N

⋃

q∈Q∩[0,t]
{ω : Xq(ω) ∈ An}︸ ︷︷ ︸

∈Fq⊆Ft

.

The right-hand side consists of countably many operations on sets from Ft, hence it belongs

to Ft.

The sigma-field Fτ . Next, we define the σ-field generated by all observable events up

to a stopping time τ .

Definition 2.10. Given a stopping time τ . Then we call

Fτ :=
{
A ∈ F : A ∩ {τ ≤ t} ∈ Ft ∀t ≥ 0

}
(2.4)

the σ-field of the events which are observable up to τ .

Fτ is indeed a σ-field as is easily checked; a more intuitive characterization of Fτ will be

given in Lemma 2.17 below. It is easily seen that the rv ω → τ(ω) is Fτ -measurable: For

all t0 ≥ 0 we have

{τ ≤ t0} ∩ {τ ≤ t} = {τ ≤ (t0 ∧ t)} ∈ Ft0∧t ⊆ Ft .

Let S and T be stopping times, where S ≤ T . Intuitively, we can say, that if event A is

observable up to time S, then event A is also observable up to T , so that one would expect

the inclusion FS ⊆ FT . This is indeed true.

Lemma 2.11. Given two stopping times S and T with S ≤ T . Then FS ⊆ FT .

Proof. Since S ≤ T , it holds {T ≤ t} ⊆ {S ≤ t}. Using this we have for A ∈ FS :

A ∩ {T ≤ t} = A ∩ {S ≤ t}︸ ︷︷ ︸
∈Ft, as A∈FS

∩ {T ≤ t}︸ ︷︷ ︸
∈Ft, as T

stopping time

,

and hence, A ∈ FT .

Lemma 2.12. Given two stopping times S and T . Then

i) S ∧ T := min{S, T} is a stopping time.

ii) S ∨ T := max{S, T} is a stopping time.

iii) FS∧T = FS ∩ FT .

Proof. We have {S ∧ T ≤ t} = {S ≤ t} ∪ {T ≤ t}, {S ∨ T ≤ t} = {S ≤ t} ∩ {T ≤ t}. As

S and T are stopping times, that means {S ≤ t} ∈ Ft and {T ≤ t} ∈ Ft, claims i) and ii)

are proved.

iii) is proved as follows. From Lemma 2.11 we see, that, FS∧T ⊆ FS and FS∧T ⊆ FT ,

hence FS∧T ⊆ FS ∩ Ft. Now, let A ∈ FS ∩ FT . As S and T are stopping times we have

A ∩ {S ≤ t} ∈ Ft and A ∩ {T ≤ t} ∈ Ft. It holds

(A ∩ {S ≤ t}) ∪ (A ∩ {T ≤ t}) = A ∩ ({S ≤ t} ∪ {T ≤ t}) = A ∩ {S ∧ T ≤ t} ∈ Ft,

and hence A ∈ FS∧T .
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Let (Xt)t≥0 be a right-continuous stochastic process and let T be a stopping time. We

define the stopped rv XT by

XT (ω) := XT (ω)(ω) · 1{T<∞}(ω), ω ∈ Ω. (2.5)

Example 2.13. Set A := (c,∞) and T = τA.

In the following pictures it holds XT (ω1) = c and XT (ω2) > c.

✻

✲

c

τA(ω1)

Xt(ω1)

✻

✲

c

τA(ω2)

◦

×

Xt(ω2)

Lemma 2.14. Let (Xt)t≥0 be an {Ft}-adapted and right-continuous stochastic process and

let T be a stopping time. Then the rv XT is FT -measurable.

For a proof we refer to Protter (2005) or to Karatzas & Shreve (1988).

Definition 2.15. Given a right-continuous stochastic process (Xt)t≥0 and a stopping time

T . Then the in T stopped process XT = (XT
t )t≥0 is defined by

XT
t (ω) := Xt∧T (ω)(ω) =

{
XT (ω)(ω), T (ω) ≤ t.

Xt(ω), T (ω) > t.
(2.6)

✻

✲

T (ω)

t

XT
t (ω)

Xt(ω)

XT

t
(ω) = Xt(ω)

Lemma 2.16. If X is adapted and right-continuous, then the stopped process XT is

adapted.
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Proof. We have XT
t = Xt ·1{t<T}+XT ·1{t≥T}. The first summand is Ft-measurable, since

it is a product consisting of two Ft-measurable rvs. For the second summand we conclude

as follows. XT · 1{t≥T} = XT∧t · 1{t≥T}. The rv XT∧t is FT∧t-measurable and FT∧t ⊆ Ft.

The rv 1{t≥T} is Ft-measurable, as T is a stopping time.

Finally we give a more intuitive interpretation of FT , which legitimates the description

“σ-field of the observable events up to time T”.

Lemma 2.17. Let T be a stopping time. If P (T < ∞) = 1, then FT = σ(XT , X adapted and cadlag).

Proof. Let X be adapted and cadlag. Then the rv XT
t = XT∧t is FT∧t-measurable. Since

FT∧t ⊆ FT the rv XT
t is also FT -measurable, hence FT ⊇ σ(XT , X adapted and cadlag).

Now, let A ∈ FT and define a stochastic process X = (Xt)t≥0 by Xt(ω) = 1A(ω) ·
1{T≤t}(ω). The process X is cadlag. It holds {Xt = 1} = A ∩ {T ≤ t} ∈ Ft, hence

X is adapted. Moreover we have A =
⋃

n{Xn(ω) = 1}, since T is finite. Hence, A ∈
σ(XT , X adapted and cadlag).

2.2.2 The optional sampling theorem

The following result gives a crucial link between stopping times and martingales.

Theorem 2.18 (Optional sampling theorem). Consider an adapted stochastic process X =

(Xt)t≥0 with E(|Xt|) < ∞, t ≥ 0. Then the following statements are equivalent.

(1) X is a martingale.

(2) For all bounded stopping times τ (τ(ω) ≤ C for some C > 0, all ω ∈ Ω) one has

E(Xτ ) = E(X0).

(3) Given two stopping times S and T such that S ≤ T ≤ C for some C > 0. Then

E(XT | FS) = XS .

We omit the proof; see for instance Protter (2005), Section I.2.

Corollary 2.19. Let X be a martingale with right-continuous trajectories and let τ be a

stopping time. Then the stopped process Xτ with Xτ
t = Xt∧τ is also a martingale.

See again Protter (2005), Section I.2 for a proof.

Corollary 2.20 (Martingale inequality). Let X be a right-continuous martingale such that

Xt > 0 a.s. Then we have for C > 0

P

(
sup
t≥0

Xt > C

)
≤ 1

C
E(X0).

Proof. Put TC := inf{t ≥ 0: Xt > C}. Since Xt > 0, we have for an arbitrary n ∈ N

P

(
sup

0≤t≤n
Xt > C

)
≤ E

(
1

C
XTC∧n

)
=

1

C
E(X0),

where the last equality is due to Theorem 2.18, (2). For n → ∞ we obtain the result by

monotone convergence.
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2.3 Brownian Motion

Brownian motion is the most important building block for continuous-time asset pricing

models. It has a long history in the modelling of random events in science. Around

1830 R. Brown, a Scottish botanist, discovered that molecules of water in a suspension

perform an erratic movement under the buffeting of other water molecules. While Brown’s

research had no relation to mathematics this observation gave Brownian motion its name.

In 1900 Bachelier introduced Brownian motion as model for stock-prices; see Bachelier

(1900). In 1905 Einstein proposed Brownian motion as a mathematical model to describe

the movement of particles in a suspension. The first rigorous theory of Brownian motion is

due to N. Wiener (1923); therefore Brownian motion is often referred to as Wiener process.

2.3.1 Definition and Construction

Definition 2.21. A stochastic processX = (Xt)t≥0 on (Ω,F , P ) is standard one-dimensional

Brownian motion, if

(i) X0 = 0 a.s.

(ii) X has independent increments: for all t, u ≥ 0 the increment Xt+u−Xt is independent

of Xs for all s ≤ t.

(iii) X has stationary, normally distributed increments: Xt+u −Xt ∼ N(0, u).

(iv) X has continuous sample paths.

In honor of Brown and Wiener Brownian motion is often denoted by (Bt)t≥0 or by (Wt)t≥0.

Definition 2.22. Standard Brownian motion in Rd is a d-dimensional process Wt =

(W 1
t , ...,W

d
t ) where W 1, ...,W d are d independent standard Brownian motions in R1.

Definition 2.21 has some elementary consequences:

(i) Wt = Wt −W0 is N(0, t)-distributed.

(ii) Let t > s. Then the covariance of Wt and Ws is given by cov(Wt,Ws) = E(WtWs) =

E
(
(Wt −Ws)Ws

)
+ E(W 2

s ) = E(Wt −Ws)E(Ws) + s = s.

(iii) The finite-dimensional distributions of W are multivariate normal distributions with

mean 0 and covariance matrix given in (ii).

Theorem 2.23. A stochastic process with the properties of Definition 2.21 exists.

Remarks: 1) There are various methods to construct Brownian motion and hence to prove

Theorem 2.23, which are also useful for simulating Brownian sample paths; see for instance

Karatzas & Shreve (1988).

2) Theorem 2.23 is more than a mere exercise in mathematical rigour: if we replace the nor-

mal distribution in Definition 2.21 (iii) by a fat-tailed α-stable distribution, the correspond-

ing process – referred to as α-stable motion – necessarily has discontinuous trajectories;

see for instance Section 2.4 of Embrechts, Klüppelberg & Mikosch (1997) for details.
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2.3.2 Some stochastic properties of Brownian motion:

Proposition 2.24. Let Wt be standard Brownian motion and define Ft := σ(Ws, s ≤ t).

Then a) (Wt)t≥0 b) (W 2
t − t)t≥0 and c) exp(σWt − 1/2σ2t) are martingales with respect to

the filtration {Ft}.

Proof. We start with claim a). Let t > s; by point (ii) of Definition 2.21 the increment

Wt −Ws is independent of Fs. Hence we get

E(Wt|Fs) = E(Wt −Ws +Ws|Fs) = E(Wt −Ws) +Ws = Ws .

To prove claim b) we first show that E(W 2
t −W 2

s |Fs) = E((Wt −Ws)
2|Fs). We have

E((Wt −Ws)
2|Fs) = E(W 2

t − 2WtWs +W 2
s |Fs) = E(W 2

t |Fs)− 2WsE(Wt|Fs) +W 2
s

= E(W 2
t |Fs)− 2W 2

s +W 2
s = E(W 2

t −W 2
s |Fs).

The claim is proved if we can show that E(W 2
t −W 2

s |Fs) = (t− s). By the first step of the

proof this is equivalent to E
(
(Wt −Ws)

2|Fs

)
= (t − s). Now Wt −Ws is independent of

Fs; hence E((Wt −Ws)
2|Fs) = E((Wt −Ws)

2) = t− s, as Wt −Ws ∼ N(0, t− s).

Sketch of c) Let Gt = e(Wt−Ws− 1
2
(t−s)). Then we have, that E(Gt) = GsE(e(Wt−Ws− 1

2
(t−s))).

Moreover, we get, using properties of lognormal distributions and the fact that Wt −Ws is

independent of Ws, that

E(Gt|Fs) = GsE(e(Wt−Ws− 1
2
(t−s))|Fs) = GsE(e(Wt−Ws− 1

2
(t−s))) = Gs

2.3.3 Quadratic Variation

Fix some point in time T , which represents the time-point where our model ends. To define

first and quadratic variation we need the notion of a partition of the interval [0, T ].

Definition 2.25. A partition τ of [0, T ] is a set of time-points t0 = 0 < t1 < . . . < tn = T .

The mesh of this partition is given by |τ | := sup1≤i≤n |ti − ti−1|.
Definition 2.26 (First Variation). Consider a function X : [0, T ] → R. The first variation

of X on [0, T ] is defined as

Var(X) := sup

{
∑

ti∈τ
|X(ti)−X(ti−1)| , τ a partition of [0, T ]

}
∈ [0, ∞] . (2.7)

If Var(X) < ∞ X is said to be of finite variation.

Remarks on notation: 1) Following standard conventions we denote by Var(f) the first

variation of a function f , whereas var(Y ) stands for the variance of a random variable Y .

2) Whenever a summation formula such as (2.7) contains the index t−1 it is understood

that the corresponding summand is equal to zero.

Definition 2.27 (Quadratic Variation). Consider again a function X : [0, T ] → R and a

sequence (τn)n∈N of partitions of [0, T ] such that |τn| → 0 as n → ∞. Define for t ∈ [0, T ]

the quadratic variation of X along the partition τn by

V 2
t (X; τn) :=

∑

ti∈τn; ti<t

(X(ti)−X(ti−1))
2 .
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Assume that for all t ∈ [0, T ] the limit [X]t := limn→∞ V 2
t (X; τn) exists. In that case X is

said to admit the quadratic variation [X]t. If the function t → [X]t is moreover continuous,

we say that X has continuous quadratic variation.

In principle [X]t might depend on the sequence (τn)n∈N. However, we are mainly interested

in the case where X is a sample path of a continuous semimartingale such as Brownian

motion. It can be shown that in this case [X]t is independent of the sequence of partitions

used in its definition. Obviously [X]t is increasing in t and hence in particular of finite

variation.

We now discuss the relation between first and quadratic variation.

Proposition 2.28. If X : [0, T ] → R is continuous and of finite variation, its quadratic

variation [X]t is zero.

By negating this result we have

Corollary 2.29. If X is continuous and if the function t → [X]t is strictly increasing, X

is of infinite first variation on every subinterval [a, b] of [0, T ].

Proof. (of Proposition 2.28) Choose a sequence of partitions τn of [0, T ] such that limn→∞ |τn| =
0. Then

∑

ti∈τn; ti≤t

(X(ti)−X(ti−1))
2 ≤ sup

ti∈τn
|X(ti)−X(ti−1)|

∑

ti∈τn
|X(ti)−X(ti−1)|

≤ sup
ti∈τn

|X(ti)−X(ti−1)|Var(X). (2.8)

Now note that Var(X) < ∞ and that supti∈τn |X(ti) −X(ti−1)| → 0 for n → ∞ as X is

continuous and as limn→∞ |τn| = 0. Hence the right side of (2.8) converges to zero which

proves the proposition.

The following result allows us to conclude that the quadratic variation of the sample paths

of a continuous semimartingale is determined by the quadratic variation of its martingale

part.

Proposition 2.30. Assume that X is continuous with quadratic variation [X]t and con-

sider a continuous function A : [0, T ] → R which is of finite first variation. Let Yt :=

Xt +At, t ≥ 0. Then we have [Y ]t = [X]t.

Proof. We have
∑

ti∈τn; ti≤t

(Yti − Yti−1)
2 =

∑

ti∈τn; ti≤t

(Xti −Xti−1)
2 +

∑

ti∈τn; ti≤t

(Ati −Ati−1)
2

+ 2
∑

ti∈τn; ti≤t

(Xti −Xti−1)(Ati −Ati−1)

Now
∑

ti∈τn; ti≤t(Xti −Xti−1)
2 converges to [X]t by assumption and

∑
ti∈τn(Ati − Ati−1)

2

converges to zero as A is continuous and of finite variation. The last term can be estimated

as follows:
∑

ti∈τn; ti≤t

(Xti −Xti−1)(Ati −Ati−1) ≤ sup
ti−1∈τn

|Xti −Xti−1 |Var(A),

which converges to zero as X is continuous.
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Now we deal with quadratic variation of the sample paths B·(ω) of Brownian motion.

Roughly speaking, for (almost) all ω ∈ Ω we have [B·(ω)]t = t. The following theorem

makes this relation precise.

Theorem 2.31. Consider a sequence of partitions τn of [0, T ] such that limn→∞ |τn| = 0.

Then we have for all t ∈ [0, T ] that E
((

V 2
t (B·(ω); τn)− t

)2)→ 0 as n → ∞.

Proof. For a fixed partition τn we have

E


( ∑

ti∈τn,ti≤t

(Bti −Bti−1)
2 − t

)2

 = E


( ∑

ti∈τn,ti≤t

((Bti −Bti−1)
2 − (ti − ti−1))

)2



=
∑

ti,tj∈τn,ti,tj≤t

E
((

(Bti −Bti−1)
2 − (ti − ti−1)

)(
(Btj −Btj−1)

2 − (tj − tj−1)
))

=
∑

ti∈τn,ti≤t

E
(
(Bti −Bti−1)

2 − (ti − ti−1)
)2

.

For the last equality we have used that (Bti − Bti−1) and (Btj − Btj−1) are independent

for i 6= j and that moreover E
(
(Bti − Bti−1)

2 − (ti − ti−1)
)
= 0, so that the mixed terms

vanish. Now note that

E
((

(Bti −Bti−1)
2 − (ti − ti1)

)2)
= var

(
(Bti −Bti−1)

2
)
.

It is well known that for a N(µ, σ2)-distributed rv ζ we have var(ζ2) = 2σ4. Hence var(Bti−
Bti−1)

2 = 2(ti − ti−1)
2, and we get

E


( ∑

ti∈τn,ti≤t

(Bti −Bti−1)
2 − t

)2

 = 2

∑

ti∈τn,ti≤t

(ti − ti−1)
2 ≤ 2|τn|t → 0 ,

which proves the theorem.

The type of convergence in Theorem 2.31 is known as L2-convergence. It implies in par-

ticular that V 2
t (B·(ω); τn) converges to t in probability as n → ∞. By exploiting the fact

that every sequence of random variables which converges in probability has a subsequence

which converges almost surely we obtain the following

Corollary 2.32. There exists a sequence τn of partitions of [0, T ] with limn→∞ |τn| = 0

such that almost surely V 2
t (B·(ω); τn) → t for every t ∈ [0, T ].

This corollary is important as it shows that the pathwise Itô-calculus developed in Section 3

below applies to sample paths of Brownian motion.

Combining Theorem 2.31 and Corollary 2.29 yields another surprising property of Brownian

sample paths.

Corollary 2.33. Sample paths of Brownian motion are of infinite first variation.

Remark 2.34. The sample paths of Brownian motion have many surprising properties.

We refer the reader to Karatzas & Shreve (1988) and in particular to Revuz & Yor (1994)

for further information.
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We have seen that Brownian motion is a martingale with continuous trajectories and

quadratic variation [B·(ω)]t = t. The following theorem, which is usually referred to as

Levy’s characterization of Brownian motion, establishes the converse:

Theorem 2.35. If M is a martingale with continuous trajectories such that M0 = 0 and

[M ]t = t ∀t then M is Brownian motion.
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Chapter 3

Pathwise Itô-Calculus

Motivation. Consider a function f : R → R which is once continuously differentiable

(abbreviated f is a C1-function) with derivative f ′ and a C1-function X : R+ → R with

derivative Ẋ := ∂
∂tX(t). The fundamental theorem of calculus yields

f(X(t))− f(X(0)) =

∫ t

0
f ′(X(s))Ẋ(s)ds =:

∫ t

0
f ′(Xs)dXs. (3.1)

A similar expression for the difference f(Xt)− f(X0) can be given if X is not C1 but only

continuous and of finite variation:

Proposition 3.1. Consider a continuous function X : [0, T ] → R which is of finite varia-

tion and a C1-function f : R → R with derivative f ′. Let τn denote a sequence of partitions

of [0, T ] with limn→∞ |τn| = 0. Then we have that

lim
n→∞

∑

ti∈τn,ti≤t

f ′(Xti−1)(Xti −Xti−1) =:

∫ t

0
f ′(Xs)dXs (3.2)

exists. Moreover, we have the change of variable rule

f(Xt) = f(X0) +

∫ t

0
f ′(Xs)dXs. (3.3)

Proposition 3.1 is a special case of Itô’s formula (Theorem 3.2 below), hence we omit the

proof.

3.1 Itô’s formula

In this section we derive the Itô-formula – in financial texts often referred to as Itô’s Lemma

– which extends the chain-rule (3.3) to functions with infinite first but finite quadratic vari-

ation. Our exposition is based on the so-called pathwise Itô-calculus developed by Föllmer

(1981); this approach allows us to give an elementary and relatively simple derivation of

most results from stochastic calculus which are needed for the Black-Scholes option pricing

model without having to develop the full theory of stochastic integration.
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Throughout this section we consider a continuous function X : [0, T ] → R which admits

a continuous quadratic variation [X]t in the sense of Definition 2.27. As shown in Corol-

lary 2.32 this is true for paths of Brownian motion. More generally, it can be shown that the

sample paths of every continuous semimartingale admit a continuous quadratic variation.

As [X]t is increasing in t, the integral
∫ t
0 g(s)d[X]s is defined for every continuous function

g : [0, T ] → R in the ordinary ‘Riemann-sense’; as [X]t is continuous this integral is

moreover a continuous function of the upper bound t. Now we can state

Theorem 3.2 (Itô’s formula). Given a continuous function X : [0, T ] → R with continuous

quadratic variation [X]t. Let F : R → R denote a twice continuously differentiable function.

Then we have for t ≤ T

F (Xt) = F (X0) +

∫ t

0
F ′(Xs)dXs +

1

2

∫ t

0
F ′′(Xs)d[X]s (3.4)

where ∫ t

0
F ′(Xs)dXs := lim

n→∞

∑

ti∈τn; ti≤t

F ′(Xti−1)(Xti −Xti−1). (3.5)

Remarks: 1) The existence of the limit in (3.5) is shown in the proof of the theorem.

The integral
∫ t
0 F

′(Xs)dXs is called Itô-integral; it is a continuous function of the upper

boundary t as is immediately apparent from (3.4).

2) The classical case of Proposition 3.1, where X is of finite variation is a special case of

Theorem 3.2. If [X]t is non-zero the additional ‘correction-term’ 1
2

∫ t
0 F

′′(Xs)d[X]s enters

our formula for the differential F (Xt) − F (X0). We will see that this term is of crucial

importance for most results in continuous-time finance.

3) Note that the sums used in defining the Itô-integral are non-anticipating, i.e. the in-

tegrand F ′(Xs) is evaluated at the left boundary of the interval [ti−1, ti]; we will see in

Section 4.2 below that this makes the Itô-integral the right tool for the modeling of gains

from trade.

4) Often formula (3.4) is expressed in the following short-hand notation: dF (Xt) = F ′(Xt)dXt+
1
2F

′′(Xt)d[X]t.

5) It is possible to give extensions of this theorem to the case where X has discontinuous

sample paths; see for instance Chapter II.7 of Protter (2005).

Proof. As a first step we establish the following

Lemma 3.3. For every piecewise continuous function g : [0, T ] → R we have

lim
n→∞

∑

ti∈τn; ti≤t

g(ti−1)(Xti −Xti−1)
2 =

∫ t

0
g(s)d[X]s. (3.6)

Proof of the Lemma. Recall the definition of V 2
t (X; τn) in Definition 2.27. For indicator

functions of the form g(t) = 1(a,b](t) the convergence in (3.6) translates as

lim
n→∞

(
V 2
b (X; τn)− V 2

a (X; τn)
)
= [X]b − [X]a ,
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which is satisfied by definition, as X admits the continuous quadratic variation [X]t. For a

general piecewise continuous function g the claim of the Lemma follows if we approximate

g by piecewise constant functions.

Now we turn to the theorem itself. Consider ti, ti−1 ∈ τn, such that ti ≤ t and denote by

(∆X)i,n the increment Xti −Xti−1 . We get from a Taylor-expansion of F

F (Xti)− F (Xti−1) = F ′(Xti−1)(∆X)i,n +
1

2
F ′′(Xt̃)(∆X)2i,n

= F ′(Xti−1)(∆X)i,n +
1

2
F ′′(Xti−1)(∆X)2i,n +Ri,n ,

where t̃ is some point in the interval (ti−1, ti), and whereRi,n := 1
2(F

′′(Xt̃)−F ′′(Xti−1))(∆X)2i,n.

Define δn := max{|Xt −Xti−1 | , t ∈ [ti−1, ti], ti ∈ τn}. As X is continuous and as |τn| → 0

for n → ∞ we have δn → 0, n → ∞. Moreover,

|Ri,n| ≤
(
1

2
max

|x−y|<δn
|F ′′(x)− F ′′(y)|

)
(∆X)2i,n =: εn(∆X)2i,n .

Now εn → 0, for n → ∞ as F ′′ is uniformly continuous and as δn → 0. Hence
∣∣∣∣∣
∑

ti∈τn
Ri,n

∣∣∣∣∣ ≤
∑

ti∈τn
|Ri,n| ≤ εn

∑
(∆X)2i,n → 0 as n → ∞ ,

as X admits the continuous quadratic variation [X]t. Now

F (Xt)− F (X0) = lim
n→∞

∑

ti∈τn; ti≤t

F (Xti)− F (Xti−1)

= lim
n→∞

∑

ti∈τn; ti≤t

F ′(Xti−1)(∆X)i,n +
1

2

∑

ti∈τn; ti≤t

F ′′(Xti−1)(∆X)2i,n +
∑

ti∈τn; ti≤t

Ri,n .

We have just shown that the sum over the Ri,n tends to zero. Moreover, by Lemma 3.3∑
ti∈τn; ti≤t F

′′(Xti−1)(∆X)2i,n converges to
∫ t
0 F

′′(Xs)d[X]s. Hence the limit

∫ t

0
F ′(Xs)dXs := lim

n→∞

∑

ti∈τn; ti≤t

F ′(Xti−1)(Xti −Xti−1)

exists, and we obtain the Itô-formula (3.4).

Some Examples:

1) Take F (x) = xn. Applying the Itô-formula yields

Xn
t = Xn

0 + n

∫ t

0
Xn−1

s dXs +
n(n− 1)

2

∫ t

0
Xn−2

s d[X]s .

In short notation this can be written as dXn
t = nXn−1

t dXt +
n(n−1)

2 Xn−2
t d[X]t. In the

special case where X is a sample path of a Brownian motion B with B0 = 0 we obtain

B2
t = 2

∫ t

0
BsdBs +

∫ t

0
d[B]s = 2

∫ t

0
BsdBs + t

2) Take F (x) = ex. We get eXt = eX0 +
∫ t
0 e

XsdXs +
1
2

∫ t
0 e

Xsd[X]s, or in short notation

deXt = eXtdXt +
1
2e

Xtd[X]t.

25



3.2 Properties of the Itô-Integral

3.2.1 Quadratic Variation

Throughout this section we consider a continuous function X(t) with continuous quadratic

variation [X]t.

Proposition 3.4. Let F ∈ C1(R); then the function t → F (Xt) has quadratic variation∫ t
0 (F

′(Xs))
2 d[X]s.

Corollary 3.5. For f ∈ C1(R) the Itô-integral It :=
∫ t
0 f(Xs)dXs is well-defined; its

quadratic variation equals [I]t =
∫ t
0 f

2(Xs)d[X]s.

Proof. Denote by (τn)n∈N a sequence of partitions of [0, T ] with |τn| → 0. Then

∑

ti∈τn; ti≤t

(
F (Xti)− F (Xti−1)

)2
=

∑

ti∈τn; ti≤t

(
F ′(Xt̃i

)(∆X)i,n
)2

, t̃i ∈ (ti−1, ti)

=
∑

ti∈τn; ti≤t

F ′(Xti−1)
2(∆X)2i,n +

∑

ti∈τn; ti≤t

(F ′(Xt̃i
)2 − (F ′(Xti−1))

2

︸ ︷︷ ︸
→ 0, n → ∞

(∆X)2i,n .

The first sum converges to
∫ t
0 (F

′(Xs))
2 d[X]s by Lemma 3.3; a similar argument as in the

proof of Theorem 3.2 shows that the second sum converges to zero as n → ∞.

To proof the Corollary we define F (x) =
∫ x
0 f(y)dy, such that F ′ = f . As F is a C2-function

the existence of the integral It =
∫ t
0 F

′(Xs)dXs follows from Theorem 3.2. Moreover, we

get from Itô’s formula that

F (Xt) = F (X0) +

∫ t

0
f(Xs)dXs +

1

2

∫ t

0
f ′(Xs)d[X]s =: F (X0) + It +At .

As the function A is of finite variation we get [I]t = [F (X)]t. By Proposition (3.4), we

know that [F (X)]t =
∫ t
0 f

2(Xs)d[X]s, which proves the corollary.

Example: We compute the quadratic variation of the square of Brownian motion B. We

have B2
t =

∫ t
0 2BsdBs + t. Define It :=

∫ t
0 2BsdBs. We get [B2]t = [I]t =

∫ t
0 4B

2
sds.

3.2.2 Martingale-property of the Itô-integral

Up to now we have only used analytic properties of the function X such as the fact that X

admits a continuous quadratic variation in our analysis of the Itô-integral. If X(t) is the

sample path of a stochastic process such as Brownian motion we may study probabilistic

properties of the process It(ω) =
∫ t
0 f(Xs(ω))dXs(ω). In particular we may consider the

case that our integrator is a martingale.

If M is a martingale with trajectories of continuous quadratic variation and f a C1 func-

tion we expect the Itô-integral It :=
∫ t
0 f(Ms)dMs to inherit the martingale property

from M , as It is defined as limit of non-anticipating sums, It = limn→∞ Int with Int =∑
ti∈τn; ti≤t f(Mti−1)(Mti −Mti−1) . The martingale property of the Int is just a variation of

the ‘you can’t gain by betting on a martingale’ argument used already in our proof that
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the discounted gains from trade of an admissible selffinancing strategy are a martingale

under an equivalent martingale measure in Chapter 1 (Lemma 1.7). Unfortunately some

integrability problems arise when we pass from the approximating sums to the limit such

that only a slightly weaker result is true. To state this result we need the notion of a local

martingale.

Definition 3.6. A stochastic process M is called a local martingale, if there are stopping

times T1 ≤ . . . ≤ Tn ≤ . . . such that

(i) limn→∞ Tn(ω) = ∞ a.s.

(ii) (MTn∧t)t≥0 is a martingale for all n.

Obviously every martingale in the sense of Section 2.1.2 (every true martingale) is a local

martingale. The opposite assertion is not true; see for instance Remark 3.10 below.

Theorem 3.7. Consider a local martingale M with continuous trajectories and continuous

quadratic variation [M ]t and a function f ∈ C1(R). Then It(ω) =
∫ t
0 f(Ms(ω))dMs(ω) is a

local martingale.

Partial proof. We restrict ourselves to the case where M is a bounded martingale and

where f is bounded; the general case follows by localization (introduction of an increasing

sequence of stopping time (Tn)n∈N ). The proof goes in two steps.

a) Let (τn)n∈N be a sequence of partitions with |τn| → 0, and fix n. Then the discrete-time

process Ink :=
∑

ti∈τn, i≤k f(Mti−1)(Mti − Mti−1), k ≤ n, is a martingale wrt the discrete

filtration {Fn
k }k with Fn

k := Ftk , as can be seen from the following easy argument.

E(Ink − Ink−1|Fn
k−1) =E(f(Mtk−1

)(Mtk −Mtk−1
)|Ftk−1

) = f(Mtk−1
)E((Mtk −Mtk−1

)|Ftk−1
),

and the last term is obviously equal to zero as M is a martingale. Note that here we have

used the fact that the Itô-integral is non-anticipating.

b) Let s < t. We will show that E(It1A) = E(Is1A) for all A ∈ Fs, as this implies that

E(It|Fs) = Is. Choose tn, sn ∈ τn with tn ց t, sn ց s and tn > sn. By Step a) we have

E(Itn1A) = E(Isn1A);

moreover Itn → It, Isn → Is, as I has continuous paths. Moreover, one can show that

(Itn)n and (Isn)n are uniformly integrable (using the boundedness of M and f), so that

the claim follows from the theorem of Lebesgue.

Remark 3.8. If f is defined only on a subset G ⊆ R the process It =
∫ t
0 f(Ms)dMs can

be defined up to the stopping-time τ = inf{t > 0, Mt /∈ G} and it can be shown that It is

a local martingale until τ .

In applications one often needs to decide if a local martingale M is in fact a true martingale.

The following Proposition provides a useful criterion for this

Proposition 3.9. Let M be a local martingale with continuous trajectories. Then the

following two assertions are equivalent.

(i) M is a true martingale and E(M2
t ) < ∞ ∀t ≥ 0.
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(ii) E([M ]t) < ∞ ∀t.

If either (i) or (ii) holds, we have E
(
(Mt −M0

)2
) = E([M ]t).

For a proof and a generalization to discontinuous martingales see Chapter II.6 of Protter

(2005).

Remark 3.10. The following process is an example of a local martingale which is not a

true martingale. Consider a three-dimensional Brownian motion Wt = (W 1
t ,W

2
t ,W

3
t ) with

W0 = (1, 1, 1) and define

Mt =
1

||Wt||
=

1√
(W 1

t )
2 + (W 2

t )
2 + (W 3

t )
2
.

Then M is a local martingale, as can be checked using the Itô-formula in higher dimensions,

but it is not a full martingale; see again Chapter II.6 of Protter (2005) for details.

The following Proposition shows that interesting martingales with continuous trajectories

are necessarily of infinite variation.

Proposition 3.11. Consider a local martingale M with continuous trajectories of finite

variation Then the paths of M are constant, i.e. Mt = M0 almost surely.

Note that there are martingales with discontinuous non-constant trajectories of finite vari-

ation; an example is provided by the compensated Poisson process; see Section 2.1.2.

Proof. By Itô’s-formula we get for M2
t

M2
t = M2

0 + 2

∫ t

0
MsdMs + [M ]t = M2

0 + 2

∫ t

0
MsdMs ,

as [M ]t = 0 by Proposition 2.28. The martingale-property of the Itô-integral implies that

M2
t is a local martingale. Assume that both Mt and M2

t are a real martingales.1 Then we

have

0 ≤ E
(
(Mt −M0)

2
)
= E

(
M2

t − 2MtM0 +M2
0

)
= M2

0 − 2M2
0 +M2

0 = 0 ,

which shows that E (Mt −M0)
2 = 0 so that Mt = M0 a.s.

We close this section with a formal definition of semimartingales.

Definition 3.12. A stochastic process X with RCLL paths is called a semimartingale if

X has a decomposition of the form Xt = X0 +Mt +At where M is a local martingale and

A is an adapted process with continuous trajectories of finite variation; M is called the

martingale part of X, A the finite variation part.

Note that the decomposition of X into a martingale part and a finite variation part is

unique by Proposition 3.11.

1For an argument how to deal with the case where M2
t is only a local martingale we refer the reader to

Protter (2005).
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3.3 Covariation and d-dimensional Itô-formula

3.3.1 Covariation

Fix a sequence τn of partitions of [0, T ] with τn → 0 and continuous functions X,Y which

admit a continuous quadratic variation [X]t and[Y ]t along the sequence τn.

Definition 3.13. Assume that for all t ∈ [0, T ] the following limit exists:

lim
n→∞

∑

ti∈τn; ti≤t

(Xti −Xti−1)(Yti − Yti−1) =: [X,Y ]t.

Then [X,Y ]t is called covariation of X and Y .

Theorem 3.14. [X,Y ]t exists if and only if [X + Y ]t exists; in that case we have the

following so-called polarization-identity

[X,Y ]t =
1

2
([X + Y ]t − [X]t − [Y ]t) . (3.7)

Proof. Recall the notation (∆X)i,n = Xti −Xti−1 , for ti, ti−1 ∈ τn. We have

[X + Y ]t = lim
n→∞

∑

ti∈τn; ti≤t

((∆X)i,n + (∆Y )i,n)
2

= lim
n→∞





∑

ti∈τn; ti≤t

(∆X)2i,n +
∑

ti∈τn; ti≤t

(∆Y )2i,n + 2
∑

ti∈τn; ti≤t

(∆X)i,n(∆Y )i,n





= [X]t + [Y ]t + 2 lim
n→∞

∑

ti∈τn; ti≤t

(∆X)i,n(∆Y )i,n . (3.8)

Hence the last limit on the right hand side of (3.8) exists iff [X + Y ]t exists. Solving for

this limit yields the polarization identity.

Note that [X,Y ]t is of finite variation as it is the difference of monotone functions. We now

use the polarization identity to compute the covariation for a few important examples.

1) IfX is a continuous function with continuous quadratic variation [X]t and A a continuous

function of finite variation we have [X +A]t = [X]t and hence [X,A]t = 0.

2) Consider two independent Brownian motions B1, B2 on our probability space (Ω,F , P ).

Then [B1·(ω), B2·(ω)]t = 0. To prove this claim we have to compute [B1 +B2]t. Note that

(B1
t + B2

t )/
√
2 is again a Brownian motion and has therefore quadratic variation equal to

t. Hence
1

2
([B1 +B2]t − [B1]t − [B2]t) =

1

2
(2t− t− t) = 0 .

3) Consider a continuous function X with continuous quadratic variation, and C1-functions

f and g. Define Yt :=
∫ t
0 f(Xs)dXs and Zt :=

∫ t
0 g(Xs)dXs. Then [Y,Z]t =

∫ t
0 f(Xs)g(Xs)d[X]s.

This follows from the polarization identity and the following computation:

[Y + Z]t =

∫ t

0
(f + g)2(Xs)d[X]s = [Y ]t + [Z]t + 2

∫ t

0
f(Xs)g(Xs)d[X]s.

Example 3) is a special case of a more general rule for stochastic Itô-integrals.
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3.3.2 The d-dimensional Itô-formula

Theorem 3.15 (d-dimensional Itô-formula). Given continuous functions X = (X1, . . . ,Xd) :

[0, T ] → R with continuous covariation

[Xk,X l]t =

{
[Xk]t, k=l,

1/2
(
[Xk +X l]t − [Xk]t − [X l]t

)
, k 6= l

and a twice continuously differentiable function F : Rd → R. Then

F (Xt) = F (X0) +

d∑

i=1

∫ t

0

∂

∂xi
F (Xs)dX

i
s +

1

2

d∑

i,j=1

∫ t

0

∂2

∂xi∂xj
F (Xs)d[X

i,Xj ]s .

Remark on notation: For ∂
∂xi

F we often write Fxi
, ∂2

∂xi∂xj
F is denoted by Fxi,xj

. In

short-notation the d-dimensional Itô-formula hence writes as:

dF (Xt) =
d∑

i=1

Fxi
(Xt)dX

i
t +

1

2

d∑

i,j=1

Fxi,xj
(Xt)d[X

i,Xj ]t .

Example: Let W = (W 1, . . . ,W d) be d-dimensional Brownian motion so that that

[W k,W l]t = δklt where δkl = 1 if k = l and δkl = 0 otherwise. Hence we have

F (Wt) = F (W0) +

d∑

i=1

∫ t

0
Fxi

(Ws)dW
i
s +

1

2

d∑

i=1

∫ t

0
Fxi,xi

(Ws)ds . (3.9)

Corollary 3.16 (Itô’s product formula). Given X,Y with continuous quadratic variation

[X]t, [Y ]t and covariation [X,Y ]t. Then

XtYt = X0Y0 +

∫ t

0
XsdYs +

∫ t

0
YsdXs + [X,Y ]t.

Proof. Apply Theorem (3.15) to F (x, y) = xy.

In short notation the product formula can be written as d(XY )t = XtdYt+YtdXt+d[X,Y ]t.

Corollary 3.17 (Itô-formula for time-dependent functions). Given a continuous function

X with continuous quadratic variation [X]t and a function F (t, x) which is once continu-

ously differentiable in t and twice continuously differentiable in x. Then

F (t,Xt) = F (0,X0) +

∫ t

0
Ft(s,Xs)ds +

∫ t

0
Fx(s,Xs)dXs +

1

2

∫ t

0
Fxx(s,Xs)d[X]s.

We now consider several applications of the d-dimensional Itô-formula.

1) Geometric Brownian motion: Given a Brownian motion W , an initial value S0 > 0 and

constants µ, σ with σ > 0 we define geometric Brownian motion S by

St = S0 exp
(
σWt + (µ− 1/2σ2)t

)
.

Geometric Brownian motion will be our main model for the fluctuation of asset prices

in Section 4. Using the Itô-formula we now derive a more intuitive expression for the
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dynamics of S. Define Xt := σBt and Yt := (µ − 1/2σ2)t and note that [X]t = σ2t and

[Y ]t = [X,Y ]t = 0. Let F (x, y) := S0 exp(x + y) such that Fx = Fy = Fxx = F . By

definition St = F (Xt, Yt), and we get

St = S0 +

∫ t

0
F (Xs, Ys)dXs +

∫ t

0
F (Xs, Ys)dYs +

1

2

∫ t

0
F (Xs, Ys)d[X]s

= S0 +

∫ t

0
F (Xs, Ys)σdBs +

∫ t

0
F (Xs, Ys)(µ− 1

2
σ2)ds +

1

2

∫ t

0
F (Xs, Ys)σ

2ds

= S0 +

∫ t

0
σSsdBs +

∫ t

0
µSsds . (3.10)

In our short-notation the equation solved by S can be written as dSt = µStdt + σStdBt.

In the special case where µ = 0 we get that St = S0 +
∫ t
0 σSsdBs is a local martingale.2

2) Brownian motion and the reverse heat-equation. Consider a function F (t, x) that solves

the reverse heat-equation Ft(t, x) + 1/2Fxx(t, x) = 0 and a Brownian motion B. Then

F (t, Bt) is a local martingale. The proof is again based on Itô’s formula. We get

F (t, Bt) = F (0, B0) +

∫ t

0
Fx(s,Bs)dBs +

∫ t

0
Ft(s,Bs)ds+

1

2

∫ t

0
Fxx(s,Bs)d[B]s

= F (0, B0) +

∫ t

0
Fx(s,Bs)dBs +

∫ t

0
(Ft +

1

2
Fxx)(s,Bs)ds

= F (0, B0) +

∫ t

0
Fx(s,Bs)dBs .

In case that Fx(t, Bt) is sufficiently integrable F (t, Bt) is even a real martingale. In that

case one easily obtains a probabilistic representation of the solution of the reverse heat

equation. For more on the interplay between solutions of partial differential equations and

stochastic processes we refer to Chapter 4 and 5 of Karatzas & Shreve (1988).

2It can be shown that in that case S is even a true martingale.
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Chapter 4

The Black-Scholes Model: a

PDE-Approach

We now have all the mathematical tools at hand we need to study pricing and hedging of

derivatives in the classical Black-Scholes model.

4.1 Asset Price Dynamics

As in the classical paper Black & Scholes (1973) we consider a market with two traded

assets, a risky non-dividend-paying stock and a riskless money market account. The price

of the stock at time t is denoted by S1
t , the price of the money market account by S0

t . For

simplicity we work with a deterministic continuously compounded interest rate r such that

S0
t = exp(rt). We now look for appropriate models for the dynamics of the stock-price.

As usual we work on a filtered probability space (Ω,F , P ), {Ft} supporting a standard

Brownian motion Wt representing the uncertainty in our market.

In his now famous PhD-thesis Bachelier (1900) proposed to model asset prices by an arith-

metic Brownian motion, i.e. he suggested the model S1
t = S0 + σWt + µt for constants

µ, σ > 0. While this was a good first approximation to the dynamics of stock prices, arith-

metic Brownian motion has one serious drawback: as S1
t is N(S0 + µt, σ2t) distributed,

the asset price can become negative with positive probability, which is at odds with the

fact that real-world stock-prices are always nonnegative because of limited liability of the

shareholders.

Samuelson (1965) therefore suggested replacing arithmetic Brownian motion by geometric

Brownian motion

S1
t = S1

0 exp
(
σWt + (µ − 1

2
σ2)t

)
. (4.1)

We know from (3.10) that this model solves the linear stochastic differential equation (SDE)

dS1
t = µS1

t dt+ σS1
t dWt .

Geometric Brownian motion - often referred to as Black-Scholes model - is nowadays widely

used as reference model both in option pricing theory and in the theory of portfolio-

optimization; we therefore adopt it as our model for the stock price dynamics in this
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section. Model (4.1) implies that log-returns

lnS1
t+h − lnS1

t = σ(Wt+h −Wt) + (µ − 1

2
σ2)h

are N((µ− 1
2σ

2)h, σ2h)-distributed; in particular the volatility σ is the instantaneous stan-

dard deviation of the log-returns. Moreover, under (4.1) log-returns over non-overlapping

time periods are stochastically independent.

There are a number of practical and theoretical considerations which make geometric Brow-

nian motion attractive as a model for stock price dynamics.

• Geometric Brownian motion fits asset prices data reasonably well, even if the fit is far

from perfect. For an overview the empirical deficiencies of the Black-Scholes model

we refer to Chapter I of Cont & Tankov (2004) or Section 4.1 of McNeil, Frey &

Embrechts (2005).

• Geometric Brownian motion allows for explicit pricing formulae for a relatively large

class of derivatives.

• The Black-Scholes model is quite robust as a model for hedging of derivatives: if real

asset-price dynamics are ‘not too different from geometric Brownian motion’ hedging

strategies computed using the Black-Scholes model perform reasonably well. There

is now a large literature on model risk in derivative pricing; see for instance the

collection of papers in Gibson (2000) or Cont (2006); we present a brief discussion of

the model-risk related to volatility-misspecification in Subsection 4.4.2 below.

There are also a number of theoretical considerations in favour of the Black-Scholes model.

• The model is in line with the efficient markets hypothesis. Moreover, there are a

number of economic models which show that the Black-Scholes model can be sustained

as a model for economic equilibrium; see for instance He & Leland (1993) for a

rational expectations model and Föllmer & Schweizer (1993) for a model based on

the temporary equilibrium concept.

• The Black-Scholes model is an arbitrage-free and complete model, making derivative

pricing straightforward from a conceptual point of view.

4.2 Pricing and Hedging of Terminal Value Claims

Consider now a contingent claim with maturity date T and payoff H. As in the discrete-

time setup of Chapter 1 we want to find a dynamic trading strategy replicating the claim;

such a strategy can be used for pricing and hedging purposes. It can be shown that in the

framework of the Black-Scholes model such a strategy exists for every claim whose payoff

is measurable with respect to the information generated by the asset price. However, such

a result requires the notion of the stochastic Itô-integral
∫ t
0 ξsdS

1
s for general predictable

processes ξ which we do not have at our disposal. We therefore restrict our analysis to

so-called terminal value claims whose payoff is of the form H = h(S1
T ). For these claims one

can find Markov hedging strategies which are functions of time and the current stock-price.
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This includes most examples which are relevant from a practical viewpoint; as shown in

Section 4.4.1 extensions to path-dependent derivatives are also possible. For the general

theory we refer the reader to Bingham & Kiesel (1998) or to the advanced text Karatzas

& Shreve (1998).

4.2.1 Basic Notions

Trading strategy: A Markov trading strategy is given by a pair of smooth functions

(φ(t, S), η(t, S)), where φ(t, S1
t ) and η(t, S1

t ) give the number of stocks respectively of units

of the money market account in the portfolio at time t. The value at time t of this strategy

is given by V (t, S1
t ) = S1

t φ(t, S
1
t ) + η(t, S1

t )S
0(t). Note that the strategy can alternatively

be described by specifying the functions φ(t, S) and V (t, S); the position in the money

market account is then given by the function η(t, S) := (V (t, S)− Sφ(t, S)) /S0(t).

Gains from trade: To motivate the subsequent definitions we introduce piecewise con-

stant approximations to our trading strategies. Consider a sequence τn of partitions with

|τn| → 0 and define

φn
t (ω) =

∑

ti∈τn
φ(ti−1, S

1
ti−1

(ω)) 1(ti−1 ,ti](t) (4.2)

ηnt (ω) =
∑

ti∈τn
η(ti−1, S

1
ti−1

(ω)) 1(ti−1 ,ti](t) (4.3)

and V n
t = φn

t S
1
t +ηnt S

0
t . A well-known argument from discrete-time finance now yields that

this piecewise constant strategy is selffinancing if and only if we have for all ti ∈ τn

V n
ti = V0 +Gn

t , where Gn
t =

i∑

j=1

(
φn
tj (S

1
tj − S1

tj−1
) + ηntj (S

0
tj − S0

tj−1
)
)
.

Now recall that by definition of the Itô-integral Gn
t converges to

∫ t
0 φ(s, S

1
s )dS

1
s+
∫ t
0 η(s, S

1
s )dS

0
s .

Hence the following definition is natural.

Definition 4.1. Given a Markov trading strategy (φ(t, S1
t ), η(t, S

1
t )) induced by smooth

functions φ, η : [0, T ]× R+ → R.

(i) The gains from trade of this strategy are given by

Gt =

∫ t

0
φ(s, S1

s )dS
1
s +

∫ t

0
η(s, S1

s )dS
0
s .

(ii) The strategy is selffinancing, if V (t, S1
t ) = V (0, S0) +Gt for all t ≤ T .

(iii) Consider a terminal value claim with payoff h(S1
T ). A selffinancing strategy is a

replicating strategy for the claim if V (T, S) = h(S) for all S > 0; in that case V (t, S1
t )

is the fair price of the claim at time t.

4.2.2 The pricing-equation for terminal-value-claims

We now derive a partial differential equation (PDE) for the value of the replicating strategy.

We have the following
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Theorem 4.2. Let V : [0, T ]× R+ → R be a continuous function which solves the PDE

Vt(t, S) +
1

2
σ2S2VSS(t, S) + rSVS(t, S) = rV (t, S) , (t, S) ∈ [0, T ) ×R+ . (4.4)

Then the hedging strategy with stock-position φ(t, S) = VS(t, S) and value V (t, S) is self-

financing. If V satisfies moreover the terminal condition V (T, S) = h(S), the strategy

replicates the terminal value claim with payoff h(S1
T ) and the fair price at time t of the

claim equals V (t, S1
t ).

Proof. As a first step we compute the quadratic variation of geometric Brownian motion.

Recall that

S1
t = S0 +

∫ t

0
σS1

sdWs +

∫ t

0
µS1

sds =: Mt +At .

As A is of finite variation we get [S1]t = [M ]t =
∫ t
0 σ

2(S1
s )

2ds.

Now we turn to the first claim. We get from Itô’s formula

V (t, S1
t ) = V (0, S1

0 ) +

∫ t

0
VS(s, S

1
s )dS

1
s +

∫ t

0
Vt(s, S

1
s )ds+

1

2

∫ t

0
VSS(s, S

1
s )d[S

1]s

= V (0, S1
0 ) +

∫ t

0
VS(s, S

1
s )dS

1
s +

∫ t

0

(
Vt(s, S

1
s ) +

1

2
σ2(S1

s )
2VSS(s, S

1
s )

)
ds .

Using the PDE (4.4) and the definition of φ this equals

= V (0, S1
0 ) +

∫ t

0
φ(s, S1

s )dS
1
s +

∫ t

0
r(V (s, S1

s )− φ(s, S1
s )S

1
s )ds

= V (0, S1
0 ) +

∫ t

0
φ(s, S1

s )dS
1
s +

∫ t

0
η(s, S1

s )dS
0
s ,

where η(t, S1
t ) = (V (t, S1

t )−φ(t, S1
t )S

1
t )/S

0(t) is the position in the money-market account

which corresponds to our strategy. Hence our strategy is selffinancing. The remaining

claims are obvious.

4.3 The Black-Scholes formula

4.3.1 The formula

To price a European call option we have to solve the PDE (4.4) with terminal condition

h(S) = (S − K)+. To solve this problem analytically one usually reduces the PDE (4.4)

to the heat equation by a proper change of variables. This technique is useful also for the

implementation of numerical schemes to solve the pricing PDE; see for instance Wilmott,

Dewynne & Howison (1993). Details are given in the following Lemma.

Lemma 4.3. Define τ(t) = σ2(T − t) and z(t, S) = lnS + (r − 1
2σ

2)(T − t). Denote

by u(t, z) : [0, T/σ2] × R → R the solution of the heat-equation ut = 1
2uzz with initial

condition u(0, z) = (ez −K)+. Then C(t, S) := e−r(T−t)u(τ(t), z(t, S)) solves the terminal

value problem for the price of a European call.
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Proof. We have C(T, S) = u(τ(T ), z(T, S)) = u(0, lnS) = (S −K)+, so that the function

C has the right value at maturity. Moreover,

∂C

∂t
= e−r(T−t)

(
ru− σ2uτ + (1/2σ2 − r)uz

)

∂C

∂S
= e−r(T−t)uz1/S ,

∂2C

∂S2
= e−r(T−t)

(
uzz(1/S)

2 − uz(1/S)
2
)

Next we plug these expressions into the PDE (4.4). We get (omitting the arguments (t, S)

respectively (τ(t), z(t, S)) )

∂C

∂t
+ rS

∂C

∂S
+

1

2
σ2S2∂

2C

∂S2
− rC

= e−r(T−t)

(
ru− σ2uτ + (1/2σ2 − r)uz + ruz +

1

2
σ2(uzz − uz)− ru

)

= e−r(T−t)σ2

(
−uτ +

1

2
uzz

)
,

and the last term is obviously equal to zero as u solves the heat equation.

It is well-known that the solution u of the heat-equation with initial condition u(0, z) =

u0(z) equals

u(τ, z) =
1√
2πτ

∫ ∞

−∞
u0(x)e

− (z−x)2

2τ dx.

From this follows after tedious but straightforward computations (see for instance Sand-

mann (1999) or Wilmott et al. (1993))

Theorem 4.4. Denote by N(·) the standard normal distribution function. The no-arbitrage

price of a European call with strike K and time to maturity T in the Black-Scholes model

with volatility σ and interest rate r is given by

CBS(t, S;σ, r,K, T ) := SN(d1)− e−r(T−t)KN(d2) , (4.5)

with

d1 =
lnS/K + (r + 1

2σ
2)(T − t)

σ
√
T − t

and d2 = d1 − σ
√
T − t . (4.6)

The corresponding hedge-portfolio consists of ∂
∂SCBS = N(d1) units of the risky asset and

(CBS(t, S)−N(d1)S)/e
rt = −e−rTKN(d2) units of the money market account.

A probabilistic derivation of the Black-Scholes formula is given in Section 6.2 below.

4.3.2 Properties of option prices and the Greeks

Option prices. According to the Put-Call parity there is the following relation between

the price in t of a European call (denoted Ct) and the price of a European put with the

same characteristics K,T (denoted Pt): Ct + e−r(T−t)K = St + Pt. This gives for the

Black-Scholes price of a European Put

PBS(t, S;σ, r,K, T ) = −StN(d1) +Ke−r(T−t)N(−d2) ,

where d1 and d2 are as in (4.6). The next two pictures give the call and put price as a

function of the current stock price:
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Preis einer Call−Option in t im Black−Scholes Modell (K=100, r=0.03, sigma=0.2)
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Preis einer Put−Option in t im Black−Scholes Modell (K=100, r=0.03, sigma=0.2)
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The hedge ratio or ∆ of an option. The delta of an option is the derivative wrt the

price of the underlying. In the Black Scholes model we have

∆C =
∂C

∂S
= N(d1) and ∆P =

∂P

∂S
= ∆C − 1 = −N(−d1)

The Delta is relevant for so-called delta-hedging:

• The hedge-portfolio for a call consists of ∂
∂SCBS = N(d1) units of S

1 and (CBS(t, S)−
N(d1)S)/e

rt = −e−rTKN(d2) units of S
0.

• The hedge-portfolio for a put consists of ∂
∂SPBS = −N(−d1) units of S

1 and of

(PBS(t, S) + (1−N(d1))S)/e
rt = e−rTKN(−d2)

units of S0. Note that Delta is increasing and that 0 < ∆C < 1 and −1 < ∆P < 0.

The Gamma of an option. The Gamma of an option is the second derivative wrt the

underlying: ΓC = ∂2C
∂S2 . It holds that

ΓC = ΓP =
ϕ(d1)

Stσ
√
T − t

,

where ϕ denotes the density of the standard normal distribution. The Gamma measures

how fast the Delta changes and hence how often a hedge needs rebalancing. A large Gamma

means that small changes in the price of the underlying lead to large changes in the hedge

portfolio; options with a large Gamma are therefore difficult to hedge in practice.

Further Greeks. The other partial derivatives of the option price with respect to the

input parameters have (pseudo) Greek names as well. Most relevant is the so-called Vega

(not really a Greek letter). Vega is the derivative wrt volatility: VegaC = ∂C
∂σ . It holds that

VegaC = VegaP = Stϕ(d1)
√
T − t. Vega is always positive, as a higher volatility makes

hedging more expensive, see also Section 4.4.2 below.
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Delta einer Call−Option im Black−Scholes Modell (K=100, r=0.03, sigma=0.2)
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Gamma einer Call−Option im Black−Scholes Modell (K=100, r=0.03, sigma=0.2)
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Figure 4.1: Delta (left) and Gamma (right) for a Call as a function of current price S for

sevaral values of T − t

Vega einer Call− oder Put−Option im Black−Scholes Modell (K=100, r=0.03, sigma=0.2)
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Figure 4.2: Vega of a call/put as a function of S for different T − t (left) and as a function

of σ for different S (right)
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Figure 4.3: Theta of a call (left) and of a put (right). Note that the Theta of a put can

become positive for small S.

Finally, we give the other Greeks.

ΘC =
∂C

∂t
= −Stσϕ(d1)

2
√
T − t

− rKe−r(T−t)N(d2)(sensitivity wrt calender time)

ΘP =
∂P

∂t
= −Stσϕ(d1)

2
√
T − t

+ rKe−r(T−t)N(−d2)

ρC =
∂C

∂r
= K(T − t)e−r(T−t)N(d2) Rho (interest-rate sensitivity)

ρP =
∂P

∂r
= −K(T − t)e−r(T−t)N(−d2)

4.3.3 Volatility estimation

For an extensive discussion how the Black-Scholes formula can be applied in practice we

refer to Cox & Rubinstein (1985) and Hull (1997). Here we content ourselves with a few

remarks about possible approaches to determine the volatility σ. As volatility is not directly

observable – in contrast to the other parameters in the Black-Scholes formula – finding a

‘good’ value for σ is by for the most problematic part in applying the Black-Scholes formula.

The fact that in real markets volatility is rarely constant but tends to fluctuate in a rather

unpredictable manner makes matters even worse.1 There are two common approaches to

determining σ.

1) Historical volatility: This approach is based on statistical considerations. Recall

that under (3.10) log-returns over non-overlapping periods of length ∆ are independent

and N((µ− 1
2σ

2)∆, σ2∆) distributed. Given asset price data at times ti, i = 1, . . . , N with

ti − ti−1 = ∆ (e.g. daily returns) define Yi = lnSti − lnSti−1 . The standard estimator

from elementary statistics for σ∆, the volatility of the log-returns over the time-period ∆

is given by

σ̂∆ =

(
1

N − 1

N∑

i=1

(
Yi − Y

)2
) 1

2

, where Y =
1

N

N∑

i=1

Yi.

1The stochastic nature of volatility has given rise to the development of the stochastic volatility models;

see for instance Frey (1997) for an overview.
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Estimated historical volatility is then given by σ̂hist = σ̂∆/
√
∆.

2) Implied volatility The idea underlying the implied volatility concept is the use of

observed prices of traded derivatives to find the ‘prediction of the market’ for the volatility

of the stock. To explain the concept we consider the following example:

Assume that a call option with strike K and maturity T is traded at time t and at a given

stock-price (S1
t )

∗ for a price of C∗
t . The implied volatility σ̂impl is then given by the solution

to the equation

CBS(t, (S
1
t )

∗; σ̂impl,K, T ) = C∗
t .

As CBS is strictly increasing in σ a unique solution to this equation exists; it is usually

determined by numerical procedures.

In practice traders tend to use a combination of both approaches, implied volatility being

the slightly more popular concept.

4.4 Further applications

4.4.1 Path-dependent derivatives – the case of barrier options

The approach of Section 4.2 can be extended to many exotic options with path-dependent

payoff; see for instance Wilmott et al. (1993). Here we content ourselves with a simple

example.

Consider a so-called down-and-out call with strike price K and barrier M . The down-and

out call is a particular barrier option; the payoff of this contract equals

H =

{
(ST −K)+, if S1

t > M for all t ∈ [0, T ],

0 if S1
t < M for some t ∈ [0, T ].

Define the stopping-time τ = inf{t > 0 , S1
t < M} and denote by V (t, S1

t ) the value of the

down-and-out option on the set τ > t, i.e. provided that the stock-price has not yet crossed

the barrier. Again, we are looking for a selffinancing strategy which replicates this payoff.

We have the following

Proposition 4.5. Assume that V (t, S) solves the following boundary value problem

Vt(t, S) +
1

2
σ2S2VSS(t, S) + rSVS(t, S) = rV (t, S) for (t, S) ∈ [0, T )× (M,∞) (4.7)

with terminal condition V (T, S) = (S −K)+ and boundary condition V (t,M) = 0. Then

the fair price of the down-and-out call equals V (t, S1
t ) if τ > t and 0 if τ ≤ t; if τ > t the

stock-position of the replicating strategy consists of φ(t, S1
t ) := VS(t, S

1
t ) shares of stock.

The proof is similar to the proof of Theorem 4.2.

4.4.2 Model Risk

We finally study the implications of volatility misspecification and stochastic volatility

for the performance of hedging strategies. For more on this issue we refer to El Karoui,

Jeanblanc-Picqué & Shreve (1998) and to the papers collected in Gibson (2000).
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We assume that the asset price follows the SDE

dS1
t = µS1

t dt+ σtS
1
t dWt

for some – possibly stochastic – volatility σt. For simplicity we assume that r = 0. We

consider a trader who uses the Black-Scholes model with volatility σ∗ in pricing and hedging

a terminal value claim and who maintains a self-financing portfolio. Denote by hBS the

solution of the PDE terminal value problem from Theorem 4.2 for r = 0, i.e.

hBS
t (t, S) +

1

2
(σ∗)2S2hBS

SS = 0 , hBS(T, S) = h(S) . (4.8)

We assume that the trader follows the Black-Scholes model and holds hBS
S (t, S1

t ) shares

of stock at time t. If he maintains a selffinancing portfolio the actual value at T of his

portfolio equals

VT = V0 +

∫ T

0
hBS
S (t, S1

t )dS
1
t .

Definition 4.6. The tracking error of the hedge is given by eT = h(ST )− VT .

Note that the hedge produces a loss if eT > 0 and a gain if eT < 0. We have the following

expression for the tracking error.

Proposition 4.7. The tracking error equals

eT =
1

2

∫ T

0
(S1

t )
2
(
σ2
t − (σ∗)2

)
hBS
SS (t, S

1
t )dt.

The proposition shows that the tracking error is proportional to (σ2
t −(σ∗)2), the estimation

error for volatility, and to the average of the ‘Gamma’ hBS
SS (t, S

1
t ) over the future path of the

stock-price process. If hBS
SS (t, S

1
t ) > 0 the hedge looses (gains) money if σt > σ∗ (σt < σ∗);

if hBS
SS (t, S

1
t ) < 0 the hedge looses (gains) money if σ < σ∗ (σt > σ∗).

Proof. As hBS(T, S) = h(S) we get from Itô’s formula:

h(ST ) = hBS(0, S0) +

∫ T

0
hBS
S (t, S1

t )dS
1
t +

∫ T

0

(
hBS
t (t, S1

t ) +
1

2
σ2
t (S

1
t )

2hBS
SS (t, S

1
t )

)
dt .

This implies that

eT =

∫ T

0

(
hBS
t (t, S1

t ) +
1

2
σ2
t (S

1
t )

2hBS
SS (t, S

1
t )

)
dt .

By the Black-Scholes PDE (4.8) we have hBS
t (t, S) = −1

2(σ
∗)2S2hBS

SS (t, S); hence

eT =
1

2

∫ T

0
(S1

t )
2(σ2

t − (σ∗)2)hBS
SS (t, S

1
t )dt .
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Chapter 5

Further Tools from Stochastic

Calculus

5.1 Stochastic Integration for Continuous Martingales

In this section we want to define the stochastic integral
∫ t
0 HsdXs for semimartingales of

the form X = X0 + M + A, where M is a continuous martingale and A is a continuous

FV-process, and where H is a suitable limit of integrands of the form

Hn
t =

n−1∑

i=0

hti(ω)1(ti,ti+1](t), ti ∈ τn,

where τn is a fixed partition of (0, T ], and where each of the hti is Fti-measurable. This

extends the pathwise Itô calculus to a larger class of integrands. This is reasonable from a

financial viewpoint, as we want to work with a larger class of trading strategies than just

Markov strategies of the form Φ(t, St). The key point is to define the integral
∫ t
0 HsdMs, as

M will typically have paths of infinite first variation, so that standard Stieltjes integration

does not apply. To overcome these problems we use special properties of the space M2 of

square integrable martingales.

5.1.1 The Spaces M2 and M2,c

Throughout we work on a given a filtered probability space (Ω,F , P ), {Ft} with fixed

horizon T .

Definition 5.1. The space of all martingales M = (Mt)0≤t≤T with M0 = 0 and E(M2
T ) <

∞ is denoted M2; M2,c ⊆ M2 denotes the subspace of all martingales with continuous

trajectories.

Note that the Jensen inequality gives for M ∈ M2, t ≤ T that

E(M2
t ) = E

(
(E(MT |Ft))

2
)
≤ E

(
E(M2

T |Ft)
)
= E(M2

T ),

so that Mt is square integrable for all 0 ≤ t ≤ T .

Recall that a Hilbert space H is a linear space with scalar product 〈·, ·, 〉H that is complete

in the associated norm ‖x‖H = 〈x, x〉1/2H .
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Lemma 5.2. M2 is a Hilbert-space with scalar product

〈M,N〉M2 = E(MTNT ) = 〈MT , NT 〉L2 .

Proof. 〈M,N〉M2 is a scalar product. In particular, if 〈M,M〉M2 = 0, we have MT = 0 a.s.

which yields Mt = E(MT |Ft) = 0 for all t. The Hilbert-space property is obvious, as M2

can be identified with L2(Ω,FT , P ) by identifying a martingale (Mt)t≤T with its terminal

value MT via Mt = E(MT |Ft).

The following result establishes a link between the pathwise supremum the and the terminal

value of a martingale.

Theorem 5.3 (Doob inequality). Let p > 1 and (Mt)0≤t≤T be a martingale. Define q by
1
p + 1

q = 1. Then we have for t ≤ T

‖ sup
s≤t

|Ms|‖Lp ≤ q‖Mt‖Lp . (5.1)

In particular we get with M∗
T := supt≤T |Mt| that

E
(
(M∗

T )
2
)
≤ 4E

(
M2

T

)
. (5.2)

We omit the proof.

Lemma 5.4. M2,c is a closed subspace of M2 and hence a Hilbert-space.

Proof. Consider a sequenceMn ∈ M2,c withMn → M , i.e. with limn→∞E
(
(Mn

T −MT )
2
)
=

0. We want to show that the limit (Mt)t≥0 with Mt = E (MT |Ft) has continuous sample

paths. By Doob’s inequality we get

E
(
((Mn −M)∗T )

2
)
≤ 4E

(
(Mn

T −MT )
2
)
→ 0,

i.e. (Mn−M)∗T = supt≤T |Mn
t −Mt| → 0 in L2(Ω,FT , P ). It follows that (Mn′ −M)∗T con-

verges to zero a.s. for a subsequence n′, which implies the result, as the limit of continuous

functions in the supremum-norm is continuous.

Quadratic variation. Recall the definition

V 2
t (M ; τn) :=

∑

ti∈τn; ti<t

(Mti −Mti−1)
2 =

∑

ti∈τn; ti<t

(∆Mi,n)
2 , (5.3)

for the quadratic variation of M along a partition τn of [0, T ].

Theorem 5.5. Consider a sequence (τn)n of partitions of [0, T ] such that |τn| → 0 and let

M ∈ M2. Then

1. V 2
t (M, τn) converges in probability to an increasing process [M ]t with [M ]0 = 0 and

with ∆[M ]t = (∆M)2t .

2. M2
t − [M ]t is a martingale, in particular we have E

(
M2

t

)
= E ([M ]t), t ≤ T .
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3. [M ]t is uniquely defined by the requirements

(i) [M ]t is increasing, ∆[M ]t = (∆M)2t , and [M ]0 = 0.

(ii) M2
t − [M ]t is a martingale.

Remark 5.6. 1. The hard parts of the theorem are 1 and 2; the uniqueness of [M ]t follows

immediately from the fact that a continuous martingale with trajectories of finite variation

is a.s. constant.

2. The convergence of V 2
t (M, τn) → [M ]t in probability implies that V 2

t (M, τn′) → [M ]t
almost surely for a subsequence n′; hence the pathwise Itô-calculus of Chapter 3 applies to

martingales from M2,c

3. For M ∈ M2,c (continuous trajectories) it holds that [M ]t is continuous.

Example 5.7. For a standard Brownian motion W we obviously have [W ]t = t; for a

compensated Poisson-process with parameter λ given by Mt = Nt − λt for N a Poisson

process with parameter λ we have [M ]t = N .

Recall that for two functions X,Y : (0, T ] → R such that [X]t and [Y ]t exist, the quadratic

covariation

[X,Y ]t = lim
n→∞

∑

ti∈τn; ti≤t

∆Xi,n∆Yi,n

exists if and only if [X + Y ]t exists and that [X,Y ]t =
1
2 ([X + Y ]t − [X]t − [Y ]t), the so-

called polarization identity. Now for M,N ∈ M2,c, M +N ∈ M2,c and [M +N ]t exists by

Theorem 5.5. Hence we get

Corollary 5.8. For M,N ∈ M2 the covariation

[M,N ]t = lim
n→∞

∑

ti∈τn; ti≤t

∆Mi,n∆Ni,n

exists. [M,N ] is characterized by the following properties

(i) [M,N ]t is a FV-process with [M,N ]0 = 0 and with ∆[M,N ]t = ∆Mt∆Nt.

(ii) MtNt − [M,N ]t is a martingale.

The result follows from Theorem 5.5 and the polarization identity.

Note that [·, ·] is bilinear and symmetric onM2, i.e. [αM1+βM2, N ] = α[M1, N ]+β[M2, N ].

Note that for M,N ∈ M2,c, [M,N ] gives the conditional covariance of the increments of

M and N , i.e. we have for 0 ≤ s ≤ t ≤ T that

E ((Mt −Ms) (Nt −Ns) |Fs) = E ([M,N ]t − [M,N ]s|Fs) . (5.4)

The proof of (5.4) is easy. We have

E ((Mt −Ms)(Nt −Ns)|Fs) = E (MtNt −MtNs −MsNt +MsNs|Fs)

= E (MtNt|Fs)− (E (MtNs|Fs) + E (MsNt|Fs))︸ ︷︷ ︸
=2MsNs

+E (MsNs|Fs)︸ ︷︷ ︸
=MsNs

= E (MtNt|Fs)−MsNs

= E ([M,N ]t − [M,N ]s|Fs) ,

where we have used the fact that MtNt − [M,N ]t is a martingale.
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Example 5.9 (Constructing correlated Brownian motions.). Let W1 and W2 be indepen-

dent Brownian motions and recall from Section 3.3.1 that [W1,W2]t = 0. Put B1 = W1,

B2 = ρW1+
√

1− ρ2W2. Then B1 and B2 are standard one-dimensional Brownian motions,

and [B1, B2]t = ρ[W1,W1]t +
√

1− ρ2[W2,W1]t = ρt.

5.1.2 Stochastic Integrals for elementary processes

Consider a martingale M ∈ M2,c. In this section we sketch the construction of the integral∫ t
0 HsdMs. In principle the same arguments go through for M ∈ M2; we omit the details.

We begin by taking H from the class of elementary processes, defined as follows:

ξ :=
{
H : Ht(ω) =

n−1∑

i=0

hti(ω)1(ti,ti+1](t)
}
, (5.5)

for deterministic time points 0 = t0 < t1 < ... < tn−1 < T = tn, n ∈ N, and bounded,

Fti-measurable random variables hti , 0 ≤ i ≤ n − 1. Note that the elements of ξ are

bounded and left-continuous. From a financial point of view, elements of ξ correspond to

simple, piecewise constant trading strategies.

Definition 5.10. For H ∈ ξ and M ∈ M2,c we define the stochastic integral (H.M) by

(H.M)t :=

∫ t

0
HsdMs :=

∑

0≤i≤n

hti
(
Mti+1∧t −Mti∧t

)
, t ≤ T ;

H is called integrand, M integrator.

Lemma 5.11 (Properties of (H.M) for H ∈ ξ). We have (H.M) ∈ M2 and the quadratic

variation is given by [ (H.M) ]t =
∫ t
0 H

2
s d[M ]s.

Corollary 5.12 (Itô-isometry). We have

E
(
(H.M)2t

)
= E

(
(

∫ t

0
HsdMs)

2

)
= E

(∫ t

0
H2

sd[M ]s

)
. (5.6)

Proof of Lemma 5.11. The continuity of (H.M) is obvious, as M is continuous. In order

to show that (H.M) is a martingale, by the optional sampling theorem we have to show

that for all bounded stopping times τ with τ ≤ T a.s. we have E ((H.M)τ ) = (H.M)0.

Now (H.M)0 is obviously equal to zero. Moreover,

E
(
(H.M)τ

)
= E


 ∑

0≤i≤n

hti(Mti+1∧τ −Mti∧τ )




=
∑

0≤i≤n

E
(
htiE

(
Mti+1∧τ −Mti∧τ |Fti

))
.

By the optional sampling theorem E
(
Mti+1∧τ −Mti∧τ |Fti

)
= 0, and the martingale prop-

erty of (H.M) follows. In order to show that [(H.M)]t =
∫ t
0 H

2
s d[M ]s, we show that

(H.M)2t −
∫ t
0 H

2
sd[M ]s is a martingale, which gives the result by Statement 3 of Theorem

5.5. Again we use the optional sampling theorem. Consider a stopping time τ ≤ T . We

have

E
(
(H.M)2τ

)
=

n+1∑

i,j=1

E
(
hti−1htj−1∆M τ

i ∆M τ
j

)
, (5.7)

45



where ∆M τ
i = Mti∧τ −Mti−1∧τ . Suppose that i < j. By conditioning on Ftj−1 we see that

E
[
hti−1htj−1∆M τ

i ∆M τ
j

]
= 0. Hence (5.7) equals

n+1∑

i=1

E
(
h2ti−1

(∆M τ
i )

2
)
=

n+1∑

i=1

E
(
h2ti−1

(
[M τ ]ti − [M τ ]ti−1

))
,

using (5.4). Now we obviously have [M τ ]t = [M ]τ∧t , so that

n+1∑

i=1

E
(
h2ti−1

(
[M τ ]ti − [M τ ]ti−1

))
=

n+1∑

i=1

E
(
h2ti−1

(
[M ]ti∧τ − [M ]ti−1∧τ

))

= E

(∫ τ

0
H2

t d[M ]t

)
.

The relation E
(
(H.M)2T

)
= E

(∫ T
0 H2

s d[M ]s

)
, which we obtain by putting τ ≡ T , shows

that (H.M)T ∈ L2(Ω,FT , P ), as H is bounded and as E ([M ]T ) = E
(
M2

T

)
< ∞ since

M ∈ M2.

5.1.3 Extension to General Integrands

The Itô-isometry to extend the integral (H.M) from ξ to a larger class of integrands that

is defined next.

Definition 5.13. Fix some martingale M ∈ M2,c. Then ξ denotes the set of all adapted,

left-continuous processes H such that E
(∫ T

0 H2
s d[M ]s

)
< ∞.

The following theorem shows that the stochastic integral (H.M) can be defined for H ∈ ξ:

Theorem 5.14. Fix M ∈ M2,c and consider an adapted, left-continuous processes H ∈ ξ,

i.e. with E
(∫ T

0 H2
s d[M ]s

)
< ∞.

i) There exists a sequence of simple predictable strategies Hn with

lim
n→∞

E

(∫ T

0
(Hn

s −Hs)
2 d[M ]s

)
= 0.

ii) There is a process (H.M) ∈ M2,c with limn→∞ ‖(Hn.M) − (H.M)‖M2 = 0, and

(H.M) is independent of the sequence Hn.

Definition 5.15. (H.M) is called stochastic integral of H with respect to M ; H is called

integrand, M is the integrator.

Proof. The proof of (i) is quite technical, see for instance Karatzas & Shreve (1988), Chap-

ter III. In order to establish (ii) we begin with an abstract interpretation of E
(∫ T

0 H2
s d[M ]s

)

for M ∈ M2,c fixed.

Put Ω̄ = Ω× [0, T ], F̄ = FT ⊗ B([0, T ]) and define a measure P̄M on Ω̄, F̄ by

P̄M (A) = E

(∫ T

0
1A(ω, t) d[M ]t

)
, A ∈ F̄ . (5.8)

46



With this definition we have for H ∈ ξ

‖H‖L2(Ω̄,F̄ ,P̄M ) = ĒM

(
H2
)
= E

(∫ T

0
H2

s d[M ]s

)

i.e. E
(∫ T

0 H2
s d[M ]s

)
is the L2-norm of H (regarded as a random variable on Ω̄, F̄) with

respect to the measure P̄M . By Corollary 5.8 the mapping

I : ξ → M2,c, H 7→ (H.M)

is therefore an isometry from (ξ, ‖ · ‖L2(Ω̄,F̄ ,P̄M)) to (M2,c, ‖ · ‖M2).

Consider now H ∈ ξ. By Statement (i) there exists a sequence Hn ∈ ξ with Hn → H in

L2(Ω̄, F̄ , P̄M ); in particular the sequence Hn is Cauchy. By the Itô-isometry the sequence

I(Hn) = (Hn.M) is therefore Cauchy in M2,c. Since M2,c is a Hilbert space (Lemma 5.2),

the limit limn→∞(Hn.M) =: (H.M) exists in M2,c

Corollary 5.16. Let M ∈ M2,c, H1,H2 ∈ ξ and α1, α2 ∈ R. Then we have

• Linearity of (H.M): (α1H
1 + α2H

2 .M) = α1(H
1 .M) + α2(H

2 .M) and

• Itô-isometry: E
[
(H.M)2t

]
= E

[∫ t
0 H

2
s d[M ]s

]
, for t ≤ T .

Extensions. The definition of the stochastic integral (H.M) can be extended in a number

of ways.

a) Localisation. If H is adapted, leftcontinuous and M is a continuous local martingale

with
∫ T
0 H2

s d[M ]s < ∞ P -a.s. we may find an increasing sequence of stopping times

τn ր T such that M τn ∈ M2,c, E
[∫ T

0 H2
s d[M

τn ]s

]
< ∞. Then, for t < τn we put

(H.M)t = (H.M τn)t, (5.9)

where the right hand side is defined by Definition ??. It is easily shown that (5.9) gives

a consistent definition of (H.M)t, and that (H.M)t is a continuous local martingale.

b) Semimartingales as integrators. Let X = X0 + M + A, where M is a continuous

local martingale and A a continuous FV-process. Then one defines for H adapted

and left continuous such that
∫ T
0 H2

s d[M ]s +
∫ T
0 |Hs| d|A|s < ∞,

∫ t

0
Hs dXs =

∫ t

0
Hs dMs +

∫ t

0
Hs dAs,

where the integral with respect to M is constructed as before and
∫ t
0 Hs dAs is an

ordinary Stieltjes integral.

5.1.4 Kunita-Watanabe characterization

Theorem 5.17 (Kunita-Watanabe characterization). Let H ∈ ξ, M ∈ M2,c. Then we

have for all N ∈ M2,c

[(H.M), N ]t =

∫ t

0
Hs d[M,N ]s. (5.10)

Conversely if L ∈ M2,c satisfies [L,N ]t =
∫ t
0 Hs d[M,N ]s, t ≤ T for all N ∈ M2,c, we have

L = (H.M).
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Partial proof. Establishing (5.10) for H ∈ ξ is a technical approximation argument and

will be omitted. Uniqueness of a process L that satisfies (5.10) is easy to show. (5.10)

implies that

E [LTNT ] = E [[L,N ]T ] = E

[∫ T

0
Hs d[M,N ]s

]
for all N ∈ M2,c,

i.e. the scalar product [L,N ]M2 is determined from (5.10) for all N ∈ M2,c, , so that L is

uniquely determined. �

Further Properties of (H.M). Theorem 5.17 allows us to establish a number of very

useful properties of the stochastic integral (H.M).

Quadratic covariation. If we put N = M we get

[(H.M),M ]t =

∫ t

0
Hs d[M,M ]s =

∫ t

0
Hs d[M ]s,

and hence

[(H.M)]t = [(H.M), (H.M)]t =

∫ t

0
Hs d[H.M,M ]

=

∫ t

0
Hs d

( ∫ s

0
Hu d[M ]u

)
(5.11)

=

∫ t

0
H2

s d[M ]s,

by the chain-rule of Stieltjes-calculus, i.e. we have shown that [(H.M)]t =
∫ t
0 H

2
s d[M ]s for

H ∈ ξ (and not just in ξ).

Chain rule of stochastic integration. Consider two integrands H1,H2 ∈ ξ such that

E
[∫ T

0 (H1,sH2,s)
2 d[M ]s

]
< ∞. Then we have (H1 . (H2 .M)) = (H1H2 .M) or, in the long

version, ∫ t

0
H1,s d(H2 .M)s =

∫ t

0
H1,sH2,s dMs. (5.12)

Relation (5.12) is the chain rule of stochastic integration.

Proof. Let L = H1 . (H2 .M). By Theorem 5.17 we get

[L,N ]t =

∫ t

0
H1,s d[(H2 .M), N ]s =

∫ t

0
H1,s d

∫ s

0
H2,u d[M,N ]u

=

∫ t

0
H1,sH2,s d[M,N ]s = [(H1H2 .M), N ]t.

Hence Lt =
∫ t
0 H1,sH2,s dMs as claimed.

The next result is important in the context of incomplete markets.
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Theorem 5.18 (Kunita Watanabe decomposition). Consider martingales N,M1, . . . ,Mn ∈
M2,c. Then there is a unique decomposition of the form

Nt = N0 +

n∑

i=1

∫ t

0
Hs,idMs,i + Lt, t ≤ T,

with H1, . . . ,Hn ∈ ξ and L ∈ M2,c strongly orthogonal to M1, . . . ,Mn, that is with [L,Mi] ≡
0 for all 1 ≤ i ≤ n.

Note that L is also weakly orthogonal to M1, . . . ,Mn, that is E(LTMT,i) = L0M0,i = 0 as

LMi is a martingale.

Sketch of the proof. We let n = 1. By the Itô-isometry, the space of stochastic integrals

MH = {(H.M) : H ∈ ξ} is a closed subspace of M2,c. Hence we can project the rv NT −N0

on that space, that is there is a representation

NT = N0 +

∫ T

0
HsdMs + LT

and E(L
∫ T
0 HsdMs) = 0 for all H ∈ ξ. Define the martingale L via Lt = E(LT | Ft). Then

L is the desired martingale. It remains to show that [L,M ] ≡ 0. Here one uses that MH is

stable under stopping, i.e. M̃ ∈ MH implies that also the stopped martingale M̃ τ ∈ MH

for an arbitrary stopping time τ ; we omit the details.

5.2 Itô Processes and the Feynman-Kac formula

Itô processes. Itô processes are solutions of stochastic differential equations driven by

Brownian motion; they will be our basic model for asset price dynamics.

Definition 5.19. Given a d-dimensional Brownian motion W = (Wt,1, ...,Wt,d)t≥0, a time

point t0 ≥ 0, some vector x ∈ Rn and functions µ : R+×Rn → Rn and σ : R+×Rn → Rn×d.

Then the n-dimensional process X = (Xt,1, ...,Xt,n)t≥0 is called an Itô process with initial

value t0, x, drift µ and dispersion matrix σ if X satisfies the SDE

Xt,i = xi +

∫ t

t0

µi(s,Xs) ds +

d∑

j=1

∫ t

t0

σij(s,Xs) dWsj , t ≥ t0 . (5.13)

In short notation (5.13) is often written in the form dXt = µ(t,Xt) dt + σ(t,Xt) dWt.

Moreover, one frequently takes t0 = 0.

An intuitive way to understand the SDE (5.13) is the Euler approximation. For a small

time step ∆t one has with tn = n∆t

Xtn+1 = Xtn + µ(tn,Xtn)∆t+

d∑

j=1

σj(tn,Xtn)ǫn,j (5.14)

where ǫn,j are iid ∼ N(0,∆t). (5.14) can be used to generate (approximations of) the

trajectories of X on a computer.
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Define the n× n matrix C(t,X) = σ(t,X)σ′(t,X). Then we have

[Xi,Xj ]t = [

d∑

k=1

∫ ·

0
σik dWs,k ,

d∑

l=1

∫ ·

0
σjl dWs,l ]t

=
d∑

k,l=1

∫ t

0
σikσjl d [Wk,Wl]s︸ ︷︷ ︸

=δkl s

=

d∑

k=1

∫ t

0
σikσjk ds

=

∫ t

0
Cij(s,Xs) ds.

Hence C is sometimes called instantaneous covariance matrix of X.

Let f : Rn → R be a smooth function and define the differential operator A by

Af(t, x) =

n∑

i=1

µi(t, x)
∂f

∂xi
(x) +

1

2

n∑

i,j=1

Cij(t, x)
∂2f

∂xi∂xj
(t, x). (5.15)

A is known as generator of the Ito process X. We have

Lemma 5.20. For f : R+ × Rn → R smooth such that f its derivatives are bounded the

process Mf
t = f(t,Xt)−

∫ t
0

∂f
∂t (s,Xs) +Af(s,Xs) ds is a martingale.

Proof. For simplicity we consider only the time-independent case. Applying Itô’s formula

in n dimensions we get

f(Xt) = f(X0) +

n∑

i=1

∫ t

0

∂f

∂xi
(Xs) dXs,i +

1

2

n∑

i,j=1

∫ t

0

∂2f

∂xixj
(Xs) d[Xi,Xj ]s

= f(X0) +

n∑

i=1

∫ t

0

∂f

∂xi
(Xs)µi(s,Xs) ds +

n∑

i=1

d∑

j=1

∫ t

0

∂f

∂xi
(Xs)σij(s,Xs) dWs,j

+
1

2

n∑

i,j=1

∫ t

0

∂2f

∂xi∂xj
Cij(s,Xs) ds

= f(X0) +
n∑

i=1

d∑

j=1

∫ t

0

∂f

∂xi
(Xs)σi(s,Xs) dWs,j +

∫ t

0
Af(s,Xs)ds.

Hence f(Xt)−
∫ t
0 Af(Xs) ds can be represented as a sum of stochastic integrals wrt Brow-

nian assumed motion, and is therefore a local martingale. Since f and its derivatives are

bounded by assumption, this expression is a true martingale and the claim follows.

In the following theorem we give conditions ensuring that a solution to the SDE (5.13)

exists.

Theorem 5.21. Suppose that µ, σ satisfy Lipschitz and growth conditions of the form

‖µ(t,X)− µ(t, Y )‖ ≤ K‖X − Y ‖, t ≥ 0,

‖σ(t,X) − σ(t, Y )‖ ≤ K‖X − Y ‖, t ≥ 0,

‖µ(t,X) + σ(t,X)‖ ≤ K(1 + ‖X‖), t ≥ 0.
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Then for all initial values (t0, x) ∈ [0,∞)×Rn a unique solution to (5.13) exists. Moreover,

this solution is (FW
t )-adapted, where FW

t = σ(Ws,i : 1 ≤ i ≤ d, s ≤ t).

The Feynman Kac formula. Lemma 5.20 forms the basis for a close interplay between

stochastic processes and solution of parabolic PDEs, which is extremely fruitful in financial

mathematics. The basic result is the celebrated Feynman-Kac formula.

Consider an n dimensional Ito process X with drift vector µ(t, x), dispersion matrix σ(t, x),

instantaneous covariance matrix C(t, x) = σσ′(t, x) and recall that for F : [0, T ]× Rn → R

smooth the generator of X is given by

AF (t, x) =

n∑

i=1

µi(t, x)
∂F

∂xi
(x) +

1

2

n∑

i,j=1

Cij(t, x)
∂2F

∂xi∂xj
(t, x).

Given functions φ : Rn → R (the payoff) and r : [0, T ]×Rn → R (the interest rate), suppose

that F is a solution to the terminal value problem

∂F

∂t
(t, x) +AF (t, x) =r(t, x)F (t, x), F (T, x) = φ(x). (5.16)

Then we can express F as an expectation involving the processX as we now show. Consider

the process Zt = exp(−
∫ t
t0
r(s,Xs)ds)F (t,Xt) and let Dt = exp(−

∫ t
t0
r(s,Xs)ds). An

application of the Ito formula yields that

dZt = d(DtF (t,Xt)) = F (t,Xt)dDt +DtdF (t,Xt) + d[D,F (t,X)]t.

NowD is an FV-process which solves the ODE dDt = −r(t,Xt)Dtdt, so that the covariation

[D,F (t,X)]t ≡ 0. Moreover, since A is the generator of X we have that

dF (t,Xt) = (
∂F

∂t
+AF )(t,Xt)dt+ dMt

for some local martingale M . Hence we get, using the chain rule for stochastic integration

dZt =− r(t,Xt)F (t,Xt)Dtdt+
(∂F
∂t

+AF
)
(t,Xt)Dtdt+DtdMt.

Using the PDE (5.16) for F we see that the dt terms vanish. Hence Z is a (local) martingale

and a true martingale given sufficient integrality, which we assume form now on. Moreover,

by definition Dt0 = 1 so that Zt0 = F (t0,Xt0). The martingale property of Z now gives,

using ZT = exp
(
−
∫ T
t0
r(s,Xs)ds

)
φ(XT ) and the terminal condition F (T, xT ) = φ(XT )

F (t0,Xt0) = Zt0 = Et0,x(ZT ) = Et0,x

(
exp

(
−
∫ T

t0

r(s,Xs)ds
)
φ(XT )

)
. (5.17)

Formula (5.17) is called Feynman-Kac formula. It can be used in two ways:

• We can use probabilistic techniques or Monte-Carlo simulation to compute the expec-

tation on the rhs of (5.17) in order to solve numerically the terminal value problem

(5.16).

• We can try to solve the terminal value problem (5.16) perhaps numerically, in order

to compute the expectation on the rhs of (5.17).
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Both approaches are frequently used in financial mathematics. For a generalization of

(5.17) to multi-dimensional processes and for a precise statement of the necessary integrality

conditions we refer to Section 5.7 of Karatzas & Shreve (1988).

Example 5.22 (The Black-Scholes PDE). In Theorem 4.2 we showed that the fair price

Vt = µ(t, St) of a terminal-value claim with payoff h(ST ) in the Black-Scholes Model solves

the terminal value problem

ut + rSuS +
1

2
σ2S2uSS = ru, u(T, S) = h(S).

In order to give a probabilistic interpretation we consider the SDE

dSt = rStdt+ σStdWt

with generator A = rS ∂
∂S + 1

2σ
2S2 ∂2

∂S2 , and we obtain from (5.17)

u(t0, S) = Et0,S

(
e−r(T−t0)h(ST )

)
, t0 ≤ T. (5.18)

This can be viewed as risk-neutral pricing formula in continuous time. In the next Chapter

we give a derivation of (5.18) using only probabilistic techniques.

5.3 Change of Measure and Girsanov Theorem for Brownian

motion

5.3.1 Motivation

In discrete-time models, it was shown that the price in t < T of any attainable claim with

FT -measurable payoff H is given by the risk-neutral pricing formula

Ht = St,0 E
Q

(
H

ST,0
| Ft

)
, t ≤ T. (5.19)

Here St,0 > 0 represents the numeraire at time t (often St,0 = exp(rt)), and Q satisfies the

following properties:

(i) Q ∼ P , i.e. Q(A) > 0 ⇔ P (A) > 0, A ∈ FT .

(ii) The discounted price processes S̃t,i = St,i/St,0, 1 ≤ i ≤ n, are Q-martingales, i.e.

EQ
(
S̃t,i|Fs

)
= S̃s,i , 0 ≤ s ≤ t ≤ T .

In this section we provide the mathematical tools for extending (5.19) to continuous-time

models driven by Brownian motion.

By the Radon-Nikodym theorem, the equivalence of P and Q implies the existence of an

FT -measurable rv Z with P (Z > 0) = 1 such that for all A ∈ FT

Q(A) = EP (Z1A) = EP (Z;A) . (5.20)

In particular, we get EP (Z) = Q(Ω) = 1. Conversely, any FT -measurable rv Z with

E(Z) = 1 and P (Z > 0) = 1 can be used to define a measure Q on FT via (5.20); P

and Q are obviously equivalent. Z is called the (Radon-Nikodym) density of Q wrt P ,

denoted by Z = dQ
dP . Note that (5.20) implies that for every FT -measurable X ≥ 0 we have

EQ(X) = EP (ZX) (by measure theoretic induction).
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Example 5.23. For finite Ω = {ω1, ..., ωk} two measures P and Q are equivalent if for

1 ≤ i ≤ k : P ({ωi}) > 0 ⇔ Q({ωi}) > 0; it is immediate from (5.20) that dQ
dP (ω) =

Q({ω})/P ({ω}) in that case.

In the next Example we show how a change-of-measure can be used to alter the mean of a

normally distributed random variable.

Example 5.24. Let X ∼ N(0, σ2) on some (Ω,F , P ). Define a random variable Z by

Z = exp
(

µ
σ2X − 1

2
µ2

σ2

)
. Then we get, using standard rules for the mean of lognormal

random variables

E(Z) = exp

(
−1

2

µ2

σ2

)
exp

(
E
( µ

σ2
X
)
+

1

2
var
( µ

σ2
X
))

= exp

(
−1

2

µ2

σ2

)
exp

(
1

2

µ2

σ2

)
= 1,

so that we can define a measure Q by putting dQ
dP = Z. Note that we have for any bounded

measurable g : R → R:

EQ (g(X)) = EP (Zg(x)) =
1√
2πσ2

∫ ∞

−∞
g(x) exp

(
µ

σ2
x− 1

2

µ2

σ2

)
e−

x2

2σ2 dx

=
1√
2πσ2

∫ ∞

−∞
g(x) exp

(
−(x− µ)2

2σ2

)
dx,

which shows that X ∼ N(µ, σ2) under Q.

The main result of this section, Girsanov’s theorem for Brownian motion, can be thought

of as the infinite-dimensional analogue of this example: by a proper change of measure it

is possible to alter the drift of an Itô process. In particular, by choosing Q ∼ P properly,

it is usually possible to turn an asset price into a martingale.

5.3.2 Density martingales

Now we return to the change of measure for stochastic processes. Suppose that we have

a filtered probability space (Ω,F , P ), (Ft)0≤t≤T , and a strictly positive, FT -measurable

random variable Z with E(Z) = 1, and define the measure Q by EQ(X) = EP (XZ), X

bounded, FT -measurable. Define the associated density martingale by

Zt = EP (Z|Ft) , 0 ≤ t ≤ T. (5.21)

Lemma 5.25. (Zt)0≤t≤T is a martingale, and for every Ft-measurable random variable Y

we have EQ (Y ) = EP (Y Zt), t ≤ T .

Proof. The martingale property of (Zt)t≥0 is obvious. For the second claim note that by

iterated conditioning

EQ(Y ) = EP (Y Z) = EP
(
EP (Y Z|Ft)

)
= EP

(
Y EP (Z|Ft)

)
= EP (Y Zt) .

The next lemma extends this result to conditional expectations.
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Lemma 5.26 (abstract Bayes formula). Given 0 ≤ s ≤ t ≤ T and let Y be some Ft-

measurable integrable random variable. Then

EQ (Y |Fs) =
1

Zs
EP (Y Zt|Fs) (5.22)

Proof. We have to check that the right hand side of (5.22) satisfies the characterizing

equation of conditional expectations, i.e.

EQ

(
1

Zs
EP (Y Zt|Fs) 1A

)
= EQ (Y 1A) , A ∈ Fs.

Using Lemma 5.25, the left hand side equals, as A ∈ Fs,

EP

(
Zs

1

Zs
EP (Y Zt|Fs) 1A

)
= EP

(
EP (Y Zt1A|Fs)

)
= EP (Y Zt1A) ,

which is equal to EQ(Y 1A) by Lemma 5.25.

Lemma 5.27. Let Q ∼ P with dQ
dP = Z. An adapted process (Mt)0≤t≤T is a Q-martingale

if and only if the process (MtZt)0≤t≤T is a P -martingale.

Proof. By the Bayes formula (5.22) we have for t ≤ T with ZT := Z

EQ (MT |Ft) =
1

Zt
EP (MTZT |Ft) . (5.23)

If (MtZt)0≤t≤T is a P -martingale the right hand side equals 1
Zt
MtZt = Mt and M is a Q-

martingale. Conversely, ifM is a Q-martingale the left hand side equals Mt and multiplying

(5.23) with Zt gives MtZt = EP (MTZT |Ft).

5.3.3 The Girsanov Theorem

We begin with the one-dimensional version. Let (Wt)0≤t≤T be a one-dimensional Brownian

motion on the filtered probability space (Ω,F , P ), (Ft)0≤t≤T . Let (θt)0≤t≤T be an adapted

process, and define

Zt = exp

(∫ t

0
θs dWs −

1

2

∫ t

0
θ2s ds

)
, 0 ≤ t ≤ T. (5.24)

We show that Zt can be written as a stochastic integral with respect to W . Define Xt =∫ t
0 θs dWs − 1

2

∫ t
0 θ

2
s ds. Then

[X]t = [

∫ .

0
θs dWs]t =

∫ t

0
θ2s ds,

and since Zt = exp (Xt), Itô’s formula gives with f(x) = ex:

dZt = f ′(Xt) dXt +
1

2
f ′′(Xt) d[X]t

= eXt dXt +
1

2
eXtθ2t dt

= Zt dXt +
1

2
θ2tZt dt

= θtZt dWt −
1

2
θ2tZt dt+

1

2
θ2tZt dt,
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so that Zt = Z0 +
∫ t
0 θsZs dWs. It follows that Z is a nonnegative local martingale and

therefore a supermartingale by a version of the Fatou lemma. Hence Z is a true martingale

if and only if the mapping t 7→ E(Zt) is non-decreasing, that is for E(ZT ) = Z0 = 1. In

that case Z can be used as a Radon-Nikodym density.

Theorem 5.28 (Girsanov). Suppose that (Zt)0≤t≤T defined in (5.24) is a martingale.

Define a probability measure Q on FT by putting dQ
dP = ZT . Then the process W̃ defined by

W̃t = Wt −
∫ t

0
θs ds, 0 ≤ t ≤ T (5.25)

is a Brownian motion under Q.

Remark 5.29. The process Wt = W̃t +
∫ t
0 θs ds is under Q a Brownian motion with drift

(θt)0≤t≤T ; in that sense Theorem 5.28 generalises Example 5.24.

Proof. The proof is based on the Levy-characterization of Brownian motion:

Theorem 5.30 (Levy). Given a filtered probability space (Ω,F , P ), (Ft)t≥0. An adapted

process M = (Mt)t≥0 with continuous trajectories is a one-dimensional Brownian motion

if and only if the following conditions hold:

1. M is a local martingale.

2. [M ]t = t, where [M ] is the pathwise quadratic variation defined for instance in (5.3).

Condition 2 is easily verified: Since
∫ t
0 θs ds is FV, we have [W ]t = [W̃ ]t, and since W is

a P -Brownian motion, we have [W ]t = t P -a.s. and hence also Q-a.s. (as P ∼ Q). The

theorem is proven if we can show that W̃ is a Q-local martingale. By Lemma 5.27 this

is equivalent to showing that (W̃tZt)0≤t≤T ia a P -local martingale. Recall that Z has the

representation Zt = Z0 +
∫ t
0 θsZs dWs. Hence we get, using Itô’s product formula

dW̃tZt = W̃t dZt + Zt dW̃t + d[W̃ , Z]t.

Now we have

[W̃ , Z]t
(i)
= [W,Z]t = [W,

∫ .

0
θsZs dWs]t

(ii)
=

∫ t

0
θsZs d[W,W ]s

=

∫ t

0
θsZs ds, (5.26)

using (i) that W and W̃ differ only by a continuous FV process and (ii) the Kunita-

Watanabe characterization (Theorem 5.17). Hence we get, using (5.26) and the chain-rule

for stochastic integrals (5.13),

dW̃tZt = W̃tθtZt dWt + Zt dWt − Ztθt dt+ Ztθt dt

= (W̃tθtZt + Zt) dWt.

This shows that the product W̃tZt has a representation as an integral with respect to the

P -Brownian motion (Wt)0≤t≤T and is therefore a P -local martingale, proving the result.
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Theorem 5.28 is easily extended to the case of a d-dimensional Brownian motion.

Theorem 5.31 (Girsanov, d-dimensional version.). Consider a d-dimensional Bownian

motion on (Ω,F , P ), (Ft)0≤t≤T and some adapted process θ = (θt,1, . . . , θt,d)
′. Define

Zt = exp
( d∑

i=1

∫ t

0
θs,idWs,i −

1

2

∫ t

0
‖θs‖2 ds

)
.

Suppose that Z is a martingale (and not only a local martingale) so that E(ZT ) = 1. Define

a probability measure Q on FT by putting dQ
dP = ZT . Then the process W̃ defined by

W̃t,i = Wt,i −
∫ t

0
θs,i ds, 0 ≤ t ≤ T (5.27)

is a Brownian motion under Q.

Remark 5.32. The following conditions are sufficient to ensure that (Zt)0≤t≤T is a mar-

tingale, so that Theorem 5.28 respectively Theorem 5.31 applies.

(a) E
(∫ T

0 ‖θs‖2 Z2
s ds

)
< ∞ (integrable quadratic variation).

(b) E (ZT ) = 1. (This is necessary and sufficient.)

(c) Novikov-criterion: E
(
exp

(
1
2

∫ T
0 ‖θs‖2 ds

))
< ∞.

We discuss two mathematical applications of Theorem 5.28.

1. Solution of SDEs via change of measure. Given some function b(s,X) : R+ → R,

bounded (but not Lipschitz). We want to construct a solution X of the SDE

dXt = b(t,Xt) dt+ dWt, 0 ≤ t ≤ T, (5.28)

with W some Brownian motion. Start with some probability space (Ω,F , P ), (Ft)0≤t≤T ,

supporting a Brownian motion (Xt)0≤t≤T . Define a measure Q via

dQ

dP

∣∣∣∣
FT

= ZT := exp

(∫ T

0
θ(s,Xs) dXs −

1

2

∫ T

0
θ2(s,Xs) ds

)
.

By Theorem 5.28, Wt := Xt −
∫ t
0 θ(s,Xs) ds is a Q-Brownian motion; hence

Xt = Wt +

∫ t

0
θ(s,Xs) ds

solves equation (5.28) for a Q-Brownian motion W .

2. Maximum-likelihood estimation for a Brownian motion with drift. We ob-

serve a process Xt = Wt + µt, µ ∈ R a constant and W a Brownian motion and want to

estimate the unknown parameter µ. A possible approach is maximum-likelihood estimation

(MLE):
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Consider some ‘random variable’ X with values in the space (Ω̃, F̃) whose distribution Pµ

on (Ω̃, F̃) depends on an unknown parameter µ ∈ Aµ. Suppose moreover, that there is a

common reference measure P̃ on (Ω̃, F̃) such that Pµ ∼ P̃ and

dPµ

dP̃
= L(X;µ), µ ∈ Aµ.

Given some observation X̂ of X, the (abstract) ML-estimator µ̂ for µ is given by

µ̂ = arg max
µ∈Aµ

L(X̂, µ), (5.29)

i.e. µ̂ is the value of µ that makes the observation X̂ most likely. ML-estimators typically

have desirable properties such as asymptotic normality and consistency.

Let us apply the approach to the Brownian motion with drift X. In that case we choose

Ω̃ = C([0, T ],R), P̃ equal to the Wiener measure, and we let Xt(ω̃) = ω̃(t) (the so-called

coordinate process on C([0, T ],R)). Moreover, we define Pµ by

dPµ

dP̃
= exp

(
µXT − 1

2
µ2T

)
, µ ∈ R, (5.30)

By definition of the Wiener measure, X is a P̃ Brownian motion. Moreover, as in the

previous application, Xt−µt is a Pµ-Brownian motion, so that under Pµ Xt = (Xt−µt)+µt

is a Brownian motion with drift µ. Given an observed trajectory (X̂t)0≤t≤T of X, the ML-

estimator is hence given by

µ̂ = argmax
µ∈R

exp

(
µX̂T − 1

2
µ2T

)

= argmax
µ∈R

µX̂T − 1

2
µ2T. (5.31)

Differentiating (5.31) with respect to µ gives X̂T − µ̂T = 0 and hence the ML-estimator

µ̂ = X̂T

T .
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Chapter 6

Financial Mathematics in

Continuous-Time

6.1 Basic Concepts

6.1.1 The Model

We start with a general model for a frictionless security market with continuous trading.

Fix some horizon date T and consider some probability space (Ω,F , P ) with a filtration

{Ft}0≤t≤T . There are d+ 1 traded assets with price process S = (S0, . . . , Sd). We assume

throughout that S0, . . . , Sd follow semimartingales with continuous trajectories. We assume

that S0(t) > 0 P a.s. for all t and use S0 as numeraire; often S0(t) = exp(
∫ t
0 rsds) for some

adapted process r with rs ≥ 0. In that case S0 represents the so-called savings account

and r is the short rate of interest.

Selffinancing trading strategies: A Rd+1-valued adapted and left-continuous pro-

cess φ(t) =
(
φ0
t , . . . , φ

d
t

)
is called a trading strategy; φi

t represents the number of units of

security i in the portfolio at time t. We assume that φi is sufficiently integrable so that the

stochastic integral
∫ t
0 φ

i
sdS

i
s is well defined.

Definition 6.1. (i) The value of the portfolio at time t equals Vt = V φ
t =

∑d
i=0 φ

i
tS

i
t ;

V φ = (V φ
t )0≤t≤T is called value process of the strategy.

(ii) The gains process of the strategy is given by

Gφ
t =

∫ t

0
φudSu :=

d∑

i=0

∫ t

0
φi
udS

i
u

(iii) The strategy is called selffinancing, if for all t ∈ [0, T ] V φ
t = V φ

0 +Gφ
t .

The economic justification of (ii) and (iii) is the same as in the case of the Markov strategies

discussed in Chapter 4.

Numeraire invariance: We choose S0 as our numeraire and introduce the discounted

price process

S̃t = (1, S1
t /S

0
t , . . . , S

d
t /S

0
t ), (6.1)
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and the discounted value process Ṽ φ
t = V φ

t /S0
t =

∑d
i=0 φ

i
tS̃

i
t . Intuitively, one would expect

that a change of numeraire has no substantial economic implications. The next result

confirms this fact.

Proposition 6.2 (Numeraire Invariance). Selffinancing strategies remain selffinancing af-

ter a change of numeraire.

Proof. Let Xt =
(
S0
t

)−1
. We have, using Itô ’s product formula, that

dS̃k
t = dSk

t Xt = Sk
t dXt +XtdS

k
t + d[Sk,X]t. (6.2)

By definition we have V φ
t =

∑d
k=0 φ

k
t S

k
t . Moreover, as φ is selffinancing, it holds that

dV φ
t =

∑d
k=0 φ

k
t dS

k
t . This gives the following dynamics of the discounted wealth Ṽ :

dṼ φ
t = V φ

t dXt +XtdV
φ
t + d[X,V φ]t

=
( d∑

k=0

φk
t S

k
t

)
dXt +Xt d

d∑

k=0

φk
t dS

k
t +

d∑

k=0

φk
t d[X,Sk]t

=

d∑

k=0

(
φk
tS

k
t dXt +Xtφ

k
t dS

k
t + φk

t d[S
k,X]t

)

=
d∑

k=0

φk
t d
(
Sk
t dXt +XtdS

k
t + d[Sk,X]t

)
(6.3)

=

d∑

k=0

φk
t dS̃

k
t ,

as follows by comparing (6.3) and (6.2). Hence we have shown that dṼ φ
t =

∑d
k=0 φ

k
t dS̃

k
t so

that the discounted value process can be represented as sum of the discounted initial value

and of the gains process wrt the discounted securities prices.

Corollary 6.3. (i) A trading strategy φ is selffinancing if and only if

Ṽ φ = Ṽ φ
0 + G̃φ

t with G̃φ
t =

d∑

k=1

∫ t

0
φk
t dS̃

k
t . (6.4)

(ii) A selffinancing strategy is completely determined by the initial investment V0 and the

position φ1, . . . , φd in the assets S1, . . . , Sd.

Proof. Statement (i) follows immediately from the numeraire invariance (note that S̃0
t ≡ 1,

so that
∫ t
0 φ

0
t dS̃

0
t ≡ 0).

For the second statement note that V0 and φ1, . . . , φd uniquely determine the discounted

wealth process Ṽ φ
t by (6.4) and hence the undiscounted valued process V φ

t ; the position φ0
t

is then given by

φ0
t = (S0

t )
−1{V φ

t −
d∑

k=1

φk
t S

k
t }.
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6.1.2 Martingale Measures and Arbitrage Opportunities

Definition 6.4 (Arbitrage). A selffinancing portfolio such that P (V φ
t ≥ 0 for all 0 ≤

t ≤ T ) = 1, V φ
0 = 0 and P (V φ

T > 0) > 0 is an arbitrage opportunity.

Arbitrage opportunities represent a chance to create risk free profits and should not exist

in a well-functioning market.

Definition 6.5 (Martingale measure). A probability measure Q is called an equivalent

martingale measure if

(i) Q ∼ P on FT , i.e. for every A ∈ FT , Q(A) = 0 ⇔ P (A) = 0.

(ii) The discounted price processes S̃k, 1 ≤ k ≤ d are Q-local martingales.

Note that a martingale measure is always related to a given numeraire (due to the discount-

ing in (ii)). If the numeraire is of the form S0
t = exp(

∫ t
0 rsds), r the spot rate of interest, Q

is also called spot martingale measure. Often we are interested in the situation where the

asset prices are true martingales (and not just local ones); this will be mentioned where

appropriate.

Lemma 6.6. Q is a spot martingale measure, if and only if every price process Si has

Q-dynamics of the form

dSi
t = rtS

i
tdt+ dM i

t , 0 ≤ i ≤ d, (6.5)

where M0, . . . ,Md are Q-local martingales.

Proof. We get, as (S0
t )

−1 = exp(−
∫ t
0 rsds), that d(S0

t )
−1 = −rt(S

0
t )

−1dt. Itô ’s product

formula gives, as (S0
t )

−1 is of finite variation, that

dS̃i
t = −rtS̃

i
tdt+ (S0

t )
−1dSi

t ,

which is a local martingale if and only if Si has dynamics (6.5).

The next result shows that the existence of an equivalent martingale measure excludes

arbitrage opportunities.

Theorem 6.7. If the model S0, . . . , Sd admits an equivalent martingale measure Q, there

are no arbitrage opportunities.

Proof. Step 1: For any selffinancing strategy φ such that V φ
t ≥ 0, the discounted wealth

process Ṽ φ
t is a Q-supermartingale. We have Ṽ φ

t = Ṽ φ
0 +

∑d
k=1

∫ t
0 φ

k
sdS̃

k
s . The discounted

price processes are Q-martingales by assumption, hence Ṽ φ
t is a local Q-martingale, as it

is a sum of stochastic integral wrt local martingales. Since Ṽ φ
t ≥ 0, it follows that Ṽ φ is a

Q-supermartingale, using that every nonnegative local martingale is a supermartingale by

the Fatou-Lemma for conditional expectations.

Step 2: Suppose now that P (V φ
T > 0) > 0. It follows that Q(Ṽ φ

T > 0) > 0, as Q ∼ P .

Since Ṽ φ is a Q-supermartingale we get Ṽ φ
0 ≥ EQ(Ṽ φ

T ), and this is strictly positive as

Q(V φ
T > 0) > 0. Hence also V φ

0 > 0, so that an arbitrage opportunity cannot exist.
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Remark 6.8. The converse statement (the fact that absence of arbitrage implies the

existence of equivalent martingale measures) is ’in principle’ correct as well. This is the

famous first fundamental theorem of arbitrage, established in full generality by Delbaen &

Schachermayer (1994). A good discussion of the more technical aspects surrounding this

result is also given in Chapter 10 of Björk (2004).

6.1.3 Hedging and risk-neutral pricing of contingent claims

A contingent claim X is an FT -measurable random variable, to be interpreted as payoff of

some financial claims. In this section we introduce basic concepts related to hedging and

pricing of contingent claim. We assume throughout that the model admits some martingale

measure related to the numeraire S0, and denote a fixed such measure by Q.

Definition 6.9. A selffinancing trading strategy is called Q-admissible, if the discounted

gains process G̃φ is a Q-martingale; Φ(Q) denotes the linear space of all Q-admissible

strategies.

From now on we restrict our attention to contingent claims X such that EQ(|X|/S0
T ) < ∞

(i.e. X̃ := X/S0
T ∈ L1(Ω,FT , Q)).

Definition 6.10. (i) A contingent claim X such that X̃ ∈ L1(Ω,FT , Q) is called attain-

able, if there is at least one admissible strategy φ ∈ Φ(Q) such that V φ
T = X, Q a.s.;

any such strategy is called replicating strategy for X.

(ii) The financial market model is called complete, if any contingent claim X with X̃ :=

X/S0
T ∈ L1(Ω,FT , Q) is attainable.

The financial motivation for the definition is of course the fact that by initially investing

V φ
0 and then following the trading strategy φ the claim can be replicated without any

further cost or risk. Note that in reality the performance of the trading strategy φ may be

sub-optimal due to market frictions or model errors, and perfect replication of the claim

may be impossible.

The next result links attainability to martingale representation.

Lemma 6.11. Consider a contingent claim X such that X̃ = X/S0
T ∈ L1(Ω,FT , Q).

Then X is attainable if and only if the Q-martingale M with Mt = EQ(X̃ |Ft) admits a

representation as stochastic integral of the form

Mt = x+

d∑

i=1

∫ t

0
φi
udS̃

i
u, 0 ≤ t ≤ T, (6.6)

for some constant x and some Q-admissible strategy φ1, . . . , φd.

Proof. Suppose that (6.6) holds. We define the replicating strategy by putting V0 = xS0(0),

and by using φ1
t , . . . , φ

d
t as position in S1, . . . , Sd. The discounted wealth process of the

strategy satisfies (by Corollary 6.3 (ii))

Ṽ φ
T = x+

d∑

i=1

∫ T

0
φi
sdS̃

i
s =

X

S0
T

,

where the last equality follows from (6.6). Again by Corollary 6.3, we thus have X =

V0 +Gφ
T , and the ‘if part’ follows. The converse statement is true by Corollary 6.3.
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Market completeness can be characterized by the uniqueness of an equivalent martingale

measure.

Theorem 6.12 (Second fundamental theorem of asset pricing). Consider a market that

admits (at least) one martingale measure Q. Then the market is complete if and only if

the measure Q is unique.

The ‘if part’ will be proven below; for the more difficult ‘only if’ part we refer to the

literature.

Now we turn to the risk-neutral pricing of contingent claims. Consider an arbitrage-free

market and a contingent claim X. Denote by Π(t;X), 0 ≤ t ≤ T a candidate price process

for X.

Proposition 6.13. 1. The extended model with price processes
(
S0, S1, . . . Sd,Π(·,X)

)

admits an equivalent martingale measure and is thus arbitrage-free, if X/S0
T ∈ L1(Ω,FT , Q)

and

Π(t,X) = S0
tE

Q
( X

S0
T

|Ft

)
(6.7)

for some martingale measure Q for the original market (S0, . . . , Sd).

2. Two different martingale measure Q1, Q2 will in general lead to two different price

processes Π1(t,X), Π2(t,X) which are both consistent with absence of arbitrage.

3. If X is attainable, we have for any martingale measure Q with X/S0
T ∈ L1(Ω,FT , Q)

the relation

S0
tE

Q
( X

S0
T

|Ft

)
= V φ

t ,

where φ is a Q-admissible replicating strategy for X. In particular, the fair arbitrage-

free price of an attainable claim is uniquely defined.

Proof. 1) (6.7) ensures that there is some martingale measure for the extended market.

(This condition is essentially also necessary)

2) We have seen examples for this in the discrete-time setup.

3) If X is attainable we have the representation X/S0
T = x + G̃φ

T for some Q-admissible

strategy φ. Taking conditional expectation gives, as G̃φ is a martingale

E(
X

S0
T

|Ft) = x+ G̃φ
t = Ṽ φ

t , (6.8)

where the last equality follows form Corollary 6.3. Multiplying both side of (6.8) with S0
t

proves the claim.

Remark 6.14. If the market is complete, we must have for any two martingale measures

Q1 and Q2 and any bounded random variable X̃ that

EQ1(X̃) = V φ(0) = EQ2(X̃),

where φ is a replicating strategy for X = X̃S0
T (which exists by market completeness).

Hence we must have Q1 = Q2, which is the ‘if part’ of Theorem 6.12.
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6.1.4 Change of numeraire

We now discuss the technique of change of numeraire, which will be very useful for the

valuation of claims under stochastic interest rates in the next section. We consider a model

with d+1 assets S0, S1, . . . , Sd and assume that there is a martingale measure Q such that

the discounted asset prices S̃i
t = Si

t/S
0
t , 1 ≤ i ≤ d are Q-martingales. Consider now a new

asset Xt > 0. The following theorem shows which martingale measure we have to use in

order to work with X as new numeraire.

Theorem 6.15 (Change of numeraire). Consider a non-dividend-paying numeraire Xt

such that Xt/S
0
t is a true Q-martingale. Define a measure QX by putting

dQX

dQ
|Ft = ηt :=

Xt

S0
t

· S
0
0

X0
. (6.9)

Then the processes Si
t/Xt, 1 ≤ i ≤ d (the basic security process discounted using X)

are QX-martingales. Moreover, we have for every contingent claim H such that H/S0
T ∈

L1(Ω,FT , Q) the change-of-numeraire formula

S0
tE

Q(H/S0
T |Ft) = XtE

QX

(H/XT |Ft). (6.10)

We mention that the theorem remains true for a general change of numeraire where one

starts with an arbitrary numeraire X and goes to a new numeraire X̃.

Proof. First we note that ηt is in fact a martingale with mean one: we have

EQ(ηT |Ft) =
S0
0

X0
EQ
(XT

S0
T

|Ft

)
=

S0
0

X0
· Xt

S0
t

= ηt;

moreover, EQ(ηT ) = η0 = 1. Hence the measure QX is well-defined. Consider now an

arbitrary stochastic process (Ht)0≤t≤T such that H̃t := Ht/S
0
t is a Q-martingale; Ht could

for instance be the price process of one of the traded securities. We get from the Bayes

formula (Lemma 5.26) that

EQX
(HT

XT
|Ft

)
=

1

ηt
EQ
(HT

XT
ηT |Ft

)
i
=

X0S
0
t

S0
0Xt

EQ
(HTS

0
0XT

XTX0S0
T

|Ft

)

=
S0
t

Xt
EQ
(HT

S0
T

|Ft

)
ii
=

Ht

Xt
,

where we have used i the definition of η in (6.9) and ii the fact that H̃t is a Q-martingale.

The above computation shows that Ht/Xt is a QX-martingale and thus proves the first

part of the theorem.

For the change-of-numeraire formula define the martingale H̃t = EQ
(
HT /S

0
T | Ft

)
and let

Ht = S0
t H̃t (the risk-neutral price of H). Then we get from the first part of the proof that

EQX
( H

XT
|Ft

)
=

Ht

Xt
,

and multiplication with Xt gives the result.
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6.2 The Black-Scholes Model Revisited

Setup. As in the previous section we consider a model with two traded assets, stock and

money market account, with dynamics given by

dS0
t = rS0

t dt, S0
0 = 1 (6.11)

dS1
t = µS1

t dt+ σS1
t dWt , S1

0 = S0 > 0. (6.12)

Note that (6.11) implies that S0
t = exp(rt). We define the discount factor by Dt = (S0

t )
−1 =

exp(−rt). The discounted stock price is given by S̃t := DtS
1
t ; the discounted price of S0 is

by definition equal to 1. In economic terms discounting corresponds to taking the money

market account S0 as new numeraire. We now use Itô’s-formula to compute the dynamics

of the discounted stock price. Since dDt = −r(Dt)dt, the Itô’-product-formula yields

dS̃1
t = S1

t dDt +DtdS
1
t + d[S1

t ,Dt]t = −rS̃1
t dt+ µS̃1

t dt+ σS̃1
t dWt

= (µ − r)S̃1
t dt+ σS̃1

t dWt,

where we have used that [S1,D]t ≡ 0 as (Dt) is of finite variation.

Equivalent Martingale Measure. Recall from Lemma 6.6 that the discounted price

process S̃1 is a Q-martingale if and only if S1 itself has dynamics of the form S1
t = S0 +∫ t

0 rS
1
sds + MQ

t , where MQ is a Q-local martingale. Comparison with the Black-Scholes

SDE shows that we need to define Q in such a way that by going from P to Q the drift is

changed from µ to r .

Now we apply Girsanov’s theorem to determine the1 equivalent martingale measure in the

Black-Scholes model. We have

S1
t = S0 +

∫ t

0
µS1

sds+

∫ t

0
σS1

sdWs

= S0 +

∫ t

0
rS1

sds+

∫ t

0

(
µ− r

σ

)
σS1

sds+

∫ t

0
σS1

sdWs

= S0 +

∫ t

0
rS1

sds+

∫ t

0
σS1

sdW̃s

where W̃t = Wt +
∫ t
0

µ−r
σ ds. Define λ := µ−r

σ ; λ is often referred to as market price of risk

of the stock. In order for S to be of the form S1
t = S0 +

∫ t
0 rS

1
sds + M̃t we need to turn

W̃t = Wt +
∫ t
0 λds into a martingale by a change of measure. Girsanov’s theorem tells us

that under Q with
dQ

dP
= exp(−λWT − 1/2λ2T )

the process W̃ is a Q-Brownian motion, hence the Itô-integral M̃t =
∫ t
0 σS

1
sdW̃s is a Q-local

martingale (and in fact a true martingale as is easy to check). Summing up we have

Proposition 6.16. Consider a Black-Scholes model with stock-price dynamics of the form

dS1
t = σS1

t dWt + µS1
t dt for constants µ, σ. Then the equivalent martingale measure Q is

1We will see in Section 6.3.3 that the Black-Scholes model is complete, so that the equivalent martingale

measure is unique by the second fundamental theorem.
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given by the density dQ
dP = GT := exp(−λWT −1/2λ2T ), where λ = µ−r

σ is the market price

of risk of the stock. Under Q the stock-price process solves the SDE

dS1
t = rS1

t dt+ σS1
t dW̃t (6.13)

Black-Scholes via risk-neutral valuation. We now derive the Black-Scholes formula

from the risk-neutral valuation principle; this is the easiest approach from a computa-

tional perspective. We know that S1
t solves equation (6.13) and is thus of the form

S1
t = S0 exp(σW̃t + (r− 1/2σ2)t) . From the risk-neutral pricing-rule – which applies as we

already know from Chapter 4 that the call can be replicated – we get for C0, the call price

at time zero

C0 = EQ(e−rT (S1
T −K)+) = EQ(e−rTS1

T1(S1
T
>K))︸ ︷︷ ︸

(I)

−e−rTKQ(S1
T > K)︸ ︷︷ ︸
(II)

.

We start with the second term. One has

Q(S1
T > K) = Q(lnS1

T > lnK) = Q

(
σW̃T√
σ2T

>
lnK − lnS0 − (r − 1/2σ2)T√

σ2T

)
.

Now note that Z = σW̃T

σ
√
T
∼ N(0, 1). By the symmetry of centered normal distributions we

have for M ∈ R that Q(Z > M) = Q(Z < −M). Hence

Q(S1
T > K) = Q

(
Z <

lnS0/K + (r − 1/2σ2)T

σ
√
T

)
= N(d2) .

To deal with term (I) we need to apply Girsanov’s theorem once more. Note that e−rTS1
T =

S0YT where YT := exp(σW̃T − 1/2σ2T ) has the form of a Girsanov-density. Define a new

measure QS by dQS/dQ = YT . Then we have

EQ
(
e−rTS1

T 1{S1
T
>K}

)
= S0E

Q
(
YT 1{S1

T
>K}

)
= S0E

QS

(1{S1
T
>K}) = S0Q

S(lnS1
T > lnK) .

Girsanov’s theorem implies that W S
t := W̃t − σt is a QS-Brownian motion. Hence σW̃T =

σW S
T + σ2T and

QS(lnS1
t > lnK) = QS(lnS0 + (r − 1/2σ2)T + σW S

T + σ2T > lnK) .

The right hand side is now evaluated in exactly the same way as before, yielding

EQ
(
e−rTS1

T 1(S1
T
>K)

)
= S0N(d1) .

6.3 Fundamental Theorems of Asset Pricing in a General-

ized Black-Scholes Model

6.3.1 A multidimensional Black-Scholes model

The traded assets consist of one money-market account S0 and d stocks S1, . . . , Sd. Given

a filtrated probability space (Ω,F , P ), {Ft}, 0 ≤ t ≤ T , we assume that the stock-price is
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an Itô-process of the form

dSi
t = αi

tS
i
tdt+ Si

t

n∑

j=1

σij(t)dW
j
t , 1 ≤ i ≤ d, (6.14)

for an n-dimensional standard Brownian motion Wt = (W 1
t , . . . ,W

n
t ) and adapted process

αi
t, 1 ≤ i ≤ d and σij(t), 1 ≤ i ≤ d, 1 ≤ j ≤ n. The initial values are given by

S0 = (S1
0 , . . . , S

d
0 ). The money-market account satisfies

S0
t = exp(

∫ t

0
rsds)

for some adapted process (rs)0≤s≤t modelling the (random) short-rate of the interest. We

now give a more intuitive description of the model (6.14). Define

σi(t) =
( n∑

j=1

σij(t)
2
) 1

2 (6.15)

and assume that σi(t) > 0 a.s.. Define processes Bi
t, 1 ≤ i ≤ d, via

Bi
t =

n∑

j=1

∫ t

0

σij(s)

σi(s)
dW j

s . (6.16)

It is easy seen that [Bi]t = t (exercise!), so that B1, . . . Bd are one-dimensional Brownian

motions by the Lévy-characterization of Brownian motion. Moreover, one has for i 6= j

that

[Bi, Bj ]t =

∫ t

0
ρij(s)ds with ρij(s) =

∑n
l=1 σil(t)σjl(t)

σi(t)σj(t)
.

Note that ρij(t) ∈ [−1, 1]; it is termed instantaneous correlation of Bi and Bj. In terms of

the Bi the asset price dynamics can be written in the form

dSi
t = αi

tS
i
tdt+ σi(t)S

i
tdB

i
t , 1 ≤ i ≤ d, (6.17)

so that σi(t) is the volatility of Si at time t. Moreover, we get from Itô’s formula

d lnSi
t = (αi

t −
1

2
σ2
i (t))dt+ σi(t)dB

i
t ,

so that

[lnSi, lnSj ]t =

∫ t

0
σi(s)σj(s)d[B

i, Bj]s =

∫ t

0
σi(s)σj(s)ρij(s)ds.

The quantity ρij therefore models the instantaneous correlation of the logarithmic return

processes: for h small we have

E
(
(lnSi

t+h − lnSi
t)(lnS

j
t+h − lnSj

t )|Ft

)
≈ (σi · σj · ρij)h.

As in the case of the one-dimensional Black-Scholes model the dynamics of the discounted

stock prices S̃i
t = Si

t/S
0
t are given by

dS̃i
t =(αi

t − rt)S̃
i
tdt+ σi(t)S̃

i
tdB

i
t = (αi

t − rt)S̃
i
tdt+ S̃i

td(
n∑

j=1

σij(t)dW
j
t ). (6.18)
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6.3.2 Existence of an equivalent martingale measure

The following Proposition gives sufficient conditions for the existence of an equivalent

martingale measure, and hence for the absence of arbitrage in the model (6.14).

Proposition 6.17. Suppose that for all 0 ≤ t ≤ T there is a solution θt = (θ1t , . . . , θ
n
t ) of

the so-called market-price-of-risk equations

αi
t − rt =

n∑

j=1

σij(t)θ
j
t , 1 ≤ i ≤ d, (6.19)

and that E
(
exp(12

∫ T
0 ‖θs‖2ds)

)
< ∞. Then the model (6.14) admits an equivalent martin-

gale measure.

Proof. Using the process θt from (6.19) we can write the SDE (6.18) for the discounted

stock price S̃1, . . . S̃d in the form in the form

dS̃i
t =(αi

t − rt)S̃
i
tdt+ S̃i

t

n∑

j=1

σij(t)dW
j
t = S̃i

t

n∑

j=1

σij(t)d
(
W j

t + θjtdt
)

(6.20)

Define W̃ j
t = W j

t +
∫ t
0 θ

j
sds, 1 ≤ j ≤ n. We now use the Girsanov theorem to turn W̃ into

a new Brownian motion. Define

ZT := exp(−
n∑

j=1

∫ T

0
θjsdW

j
s − 1

2

∫ T

0
‖θs‖2ds). (6.21)

The integrability condition on θ ensures E(ZT ) = 1. Define a new measure Q by dQ
dP |FT

=

ZT . The multidimensional Girsanov-theorem shows that under Q the process W̃ with is

Q-Brownian motion, and the result follow from Lemma 6.6.

Denote by σ(t) the matrix (σij(t))1≤i≤d,1≤j≤n and by 1 the vector (1, . . . , 1)′ ∈ Rd. Suppose

that the market price of risk equation does not admit a solution. This implies that the

vector (αt − rt1) does not belong to Imσ(t) (the range of the matrix σ(t)) and hence we

get for kerσ′(t) := {x ∈ Rd : σ′(t)x = 0}

kerσ′(t) =
(
Imσ(t)

)⊥ 6= {0}.
Hence we can find ξt ∈ Rd such that

d∑

i=1

ξit(α
i
t − rt) 6= 0, and σ′(t)ξt = 0,

otherwise (αt − rt1) ∈ kerσ′(t) = Imσ(t), which contradicts the fact that the market-

price-of-risk equation has no solution. Define a trading-strategy φ by φi
t = ξit/S̃

i
t . The

corresponding discounted wealth process Ṽ φ satisfies

dṼ φ
t =

d∑

i=1

ξit(α
i
t − rt)dt+

n∑

j=1

(

d∑

i=1

σij(t)ξ
i
t)dW

j
t =

d∑

i=1

ξit(α
i
t − rt)dt,

where we have used that
∑d

i=1 σij(t)ξ
i
t =

(
σ′(t)ξt

)
j
= 0 as ξt ∈ kerσ′(t). Hence we have

constructed a locally riskless selffinancing trading strategy whose discounted wealth-process

is non-constant, and it is easy to construct arbitrage-opportunities from this. Hence we

have shown the following result:
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Theorem 6.18. Modulo integrability conditions, the model (6.14) is arbitrage-free if and

only if the market-price of risk equation (6.19) admits a solution.

6.3.3 Market completeness in the generalized Black-Scholes model

In order to discuss market completeness we need the following martingale representation

theorem for Brownian motion.

Theorem 6.19 (Ito-representation theorem for Brownian motion). Consider an n-dimensional

Brownian motion W = (Wt,1, . . . ,Wt,n)
′ on some (Ω,F , P ), {Ft}, 0 ≤ t ≤ T and denote

by {FW
t } the filtration generated by W . Then every {FW

t }-adapted square integrable mar-

tingale M can be written as a stochastic integral with respect to W , that is there is a

n-dimensional adapted process ht = (h1t , . . . , h
n
t ) with E

(∫ T
0 (his)

2ds
)
< ∞ for all i such

that

Mt = M0 +

n∑

i=1

∫ t

0
hisdWs,i, 0 ≤ t ≤ T.

As before, we consider a model with d + 1 traded assets and dynamics of the form dS0
t =

rtS
0
t dt, and

dSi
t = αi

tS
i
tdt+

n∑

j=1

σij(t)S
i
tdW

j
t , 1 ≤ i ≤ d, (6.22)

for an n-dimensional Brownian motion Wt = (W 1
t , . . . ,W

n
t ). Moreover, we assume that

our filtration is generated by the Brownian motion, that is Ft = σ(W i
s : s ≤ t, 1 ≤ i ≤ n);

this assumption restricts the contingent claims we may consider and is thus crucial for

establishing completeness of the market.

Proposition 6.20. Suppose that the model (6.22) admits at least one equivalent martingale

measure Q, and that the underlying filtration is generated by the Brownian motion W . Then

the market is complete if and only if P .a.s. Imσ′(t) = Rn, 0 ≤ t ≤ T , where σ(t) represents

the matrix
(
σij(t)

)
1≤i≤d,1≤j≤n

.

Proof. Denote by Q some equivalent martingale measure, which exists by assumption. As

shown previously, under Q the discounted state prices have dynamics

dS̃i
t = S̃i

t

n∑

j=1

σij(t)dW̃
j
t , (6.23)

where W̃ j is a Q-Brownian motion. By Lemma 6.11, the market is complete if and only if

every Q-martingale M has a representation

Mt = M0 +

d∑

i=1

∫ t

0
φi
sdS̃

i
s . (6.24)

Using Itô’s representation theorem (Theorem 6.19) and the assumption {Ft} = {FW
t } it is

straightforward that M has a unique representation of the form

Mt = M0 +

n∑

j=1

∫ t

0
hjsdW̃

j
s . (6.25)

68



On the other hand, writing (6.24) in short-hand notation and using (6.23) we get that the

martingale representation of M in (6.24) is equivalent to

dMt =

d∑

i=1

S̃i
tφ

i
t

n∑

j=1

σij(t)dW̃
j
t =

n∑

j=1

( d∑

i=1

S̃i
tσij(t)φ

i
t

)
dW̃ j

t . (6.26)

Comparing (6.25) and (6.26) we see that we must have

hjt =

d∑

i=1

σij(t)S̃
i
tφ

i
t =

d∑

i=1

σij(t)φ̃
i
t, (6.27)

where φ̃i
t = φi

tS̃
i
t . This equation does indeed have a solution since we assumed that

Imσ′(t) = Rn and we have shown the existence of a replication strategy.

The proof of the converse direction is based on the observation that if Imσ′(t) is a strict

subset of Rd we can find a process h∗ such that (6.27) does not have a solution, so that

the martingale Mt = M0 +
∑n

j=1

∫ t
0 (h

∗)jsdW̃
j
s cannot be represented as stochastic integral

with respect to the stock price processes; we omit the details.

Remark 6.21 (On sources of risk and number of risky assets). Assume that asset prices fol-

low the model (6.22), denote by σ(t) the matrix
(
σij(t)

)
1≤i≤d,1≤j≤n

, and let 1 = (1, . . . , 1)′.
Then we have the following two observations.

• If the model is arbitrage-free for any choice of the drift vector αt, the market price

of risk equation needs to have a solution for any excess return vector αt − rt1. For

this σ(t) needs to have rank d (as σ(t) is a d × n matrix), and hence a necessary

condition for absence of arbitrage for generic αt is the inequality d ≤ n (at least as

many sources of risk (Brownian motions) as risky assets).

• By Proposition 6.20, a necessary (and essentially sufficient) condition for completeness

of the generalized Black Scholes model is the condition that the rank of σ′(t) equals
n and hence the inequality n ≤ d (at least as many risky assets as sources of risk).
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Chapter 7

Optimization Problems in

Continuous-Time Finance

7.1 Portfolio optimization and stochastic optimal control

In this section we give an introduction to portfolio optimization via stochastic control

theory. The main result is the derivation of a nonlinear PDE for the value function of the

control problem. Our exposition follows closely the textbook Björk (2004).

7.1.1 The portfolio optimization problem

Consider a market with two traded assets S0 and S1,; assume that S0
t = exp(rt), r > 0,

and that the dynamics of S1 is given by the Black Scholes model, so that S1 solves the

SDE dS1
t = µS1

t dt + σS1
t dWt for constants µ and σ > 0 and a Brownian motion W . We

are interested in the trading strategy of an investor in this market with initial wealth v0
who wants to invest in some sense optimally. The first step is to describe what we mean

by an optimal investment strategy. Here we assume that the investor wants to maximize

expected utility of the terminal wealth. Consider a horizon date T and a utility function

u : R+ → R with u′ > 0 and u′′ < 0. For concreteness and ease of computation we consider

a utility function of the form

u(x) =
xγ

γ
, γ < 1, γ 6= 0, (7.1)

and u(x) = lnx, if γ = 0. These utility functions have derivative u′(x) = xγ , γ < 1, and the

so-called and Arrow-Pratt risk aversion −u′′/u′ is given by (1− γ)x−1. Note that the risk

aversion is inversely proportional to the wealth x of the investor. For this reason a utility

function of the form (7.1) is said to exhibit constant relative risk aversion.

Formally, the problem of maximizing expected utility of terminal wealth amounts to find-

ing some selffinancing strategy of the form φ̂t = (φ̂0
t , φ̂

1
t ) in stock and bond with wealth

processes V φ̂
t and initial wealth V φ̂

0 = v0 that maximizes E
(
u(V φ̂

T )
)
over all admissible

strategies with initial wealth no larger than v0. Sometimes one considers also a modified

version of the problem where some of the wealth is consumed before maturity. More pre-

cisely, it is assumed that that the investor consumes his wealth at a rate ctdt for an adapted
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process ct ≥ 0 so that the wealth dynamics of some admissible strategy (φ0
t , φ

1
t , ct) become

dVt = φ0
tdS

0
t + φ1

t dS
1
t − ctdt, V0 ≤ v0 .

The objective of the investor is then to maximize the quantity

E
(
γ

∫ T

0
e−r̃tu(ct)dt+ u(V φ̂

T )
)

over all admissible (to be specified later) strategies (φ0, φ1, c). Here γ ≥ 0 is some constant

that models the relative importance of intermediate and terminal consumption and r̃ is a

subjective discount rate.

Formulation as stochastic control problem. Next we reformulate the optimization

problem as a stochastic control problem. We consider only strategies such that Vt(φ) > 0.

Hence we may define the relative portfolio weights by

π0
t =

φ0
tS

0
t

Vt
, π1

t =
φ1
tS

1
t

Vt
.

Note that by definition πi
t gives the proportion of the overall wealth Vt invested in asset

i and that π0
t + π1

t = 1. It is quite natural to describe a portfolio strategy in terms of

relative portfolio weights since rules such as“invest 70 % in stock and 30 % in bond” are

typical descriptions of investment strategies used in practice. The wealth equation can be

rewritten in terms of the relative portfolio weights as we now show. It holds that

Vt = V0 +

∫ t

0
φ0
sdS

0
s +

∫ t

0
φ1
sdS

1
s −

∫ t

0
csds

= V0 +

∫ t

0
π0
srVsds+

∫ t

0
π1
sµVsds +

∫ t

0
π1
sσVsdWs −

∫ t

0
csds

= V0 +

∫ t

0
rVsds+

∫ t

0
π1
sVs(µ− r)ds+

∫ t

0
π1
sVsσdWs −

∫ t

0
csds. (7.2)

Hence V0, and the processes πt = π1
t and ct determine the evolution of the wealth process

Vt; in particular the stock price does not appear in this description of the wealth process.

The investor problem can now be rewritten in the form

max
π,c

E
(
γ

∫ T

0
e−r̃tu(ct)dt+ u(VT )

)
such that (7.3)

dVt = rVtdt+ πtVt(µ− r)dt+ σπtVtdWt − ctdt, V0 = v0 (7.4)

ct ≥ 0 for all 0 ≤ t ≤ T (7.5)

Here we have implicitly used that it is always optimal to invest the initial capital v0 in full.

7.1.2 The Dynamic Programming Equation

In this section we consider a general control problem that contains the portfolio optimization

problem (7.3) as a special case. Consider a Brownian motion W and functions µ : R×Rn →

71



R and σ : R × Rn → [0,∞). For a given x0 ∈ R we consider the so-called state process V

with dynamics given by the controlled SDE

dVt = µ(Vt, πt)dt+ σ(Vt, πt)dWt, V0 = v0. (7.6)

. In this model the state process is controlled or steered by a proper choice of the n-

dimensional control strategy π.

As a first step for setting up a formal control problem we need to define the class of

admissible control processes. A minimal requirement is the fact that πt should depend only

on the past values of the state process V . A class of strategies that satisfy this requirement

are feedback control strategies where

πt = π(t, Vt)

for a suitable function π with values in Rn. In most problems one has to require that π

takes its values in some subset K of Rn (so-called control constraints). For instance in the

portfolio optimization problem we required that ct ≥ 0.

Definition 7.1. An admissible feedback control strategy is a function π : [0,∞) × R → K
and such that for all initial values (t, v) ∈ [0,∞)× R the SDE

dVt = µ(Vt, π(t, Vt))dt+ σ(Vt, π(t, Vt))dWt, Vt = v (7.7)

has a unique solution. The set of admissible feedback control strategies is denoted by A.

Note that for a given strategy π ∈ A the state process (7.7) is a Markov process. Hence

feedback control strategies are also known as Markov control strategies. For a given ad-

missible strategy π and initial value v the solution of the SDE (7.7) will sometimes be

denoted by V v,π or by V π. Moreover, for a given admissible feedback strategy π we often

write the SDE (7.7) in the short form dV π
t = µπ(t, V π

t )dt+σπ(t, V π
t )dWt, where, of course,

µπ
(
t, V π

t ) = µ(t, V π
t , π(t, V π

t

)
, and similarly for σπ; sometimes the arguments of µπ and σπ

will even be omitted. Finally, for a given strategy π ∈ A we often write πt := π(t, V π
t ).

Next we describe the objective of the control problem. Consider a pair of functions

F : [0,∞)× R× Rn → R u : R → R.

Now we define the reward function of the control problem as the function J0 : A → R with

J0(π) = E

(∫ T

0
F (t, V v0,π

t , π(t, V v0,π
t ))dt+ u

(
V v0,π
T

))
(7.8)

The optimization problem is now to maximize J0 over all π ∈ A. The optimal value is thus

given by Ĵ0 = sup{J0(π) : π ∈ A}, and a strategy π̂ ∈ A is optimal if Ĵ0 = J0(π̂).

Of course, as with any optimization problem it is not clear if an optimal control strategy

exists. In the sequel we will assume that an optimal strategy exists and we show how it

can (in principle) be computed using PDE methods. Moreover, we give a verification result

that gives sufficient conditions which ensure that a candidate solution produced by our

approach is in fact an optimal strategy.

72



Step 1: A larger class of control problems. Fix t ∈ [0, T ], x ∈ R. Suppose that we

solve the control problem only over the time period [t, T ], starting at time t with an initial

value x. This leads to the control problem P (t, x) :

maxE

(∫ T

t
F (s, V π

s , π(s, V π
s ))ds + u(V π

T ) | V π
t = x

)

over all strategies π ∈ A. The original problem is of course the problem P (0, v0).

Definition 7.2. (i) The reward function associated to the problem P (t, x) is the function

J : [0, T ]× R+ ×A → R with

J(t, x, π) = E

(∫ T

t
F (s, V π

s , π(s, V π
s ))ds + u(V π

T ) | V π
t = x

)

(ii) The value function is defined by Ĵ(t, x) = sup{J(t, x, π) : π ∈ A}.

Step 2: The dynamic programming principle. The following result is crucial for

the analysis of control problems with dynamic programming.

Proposition 7.3 (Dynamic Programming principle). Denote by Tt,T the set of all stopping

times θ with t ≤ θ ≤ T .

1. For all admissible strategies π ∈ A and all θ ∈ Tt,T it holds that

Ĵ(t, x) ≥ E

(∫ θ

t
F (s, V π

s , πs) ds + Ĵ(θ, V π
θ ) | Vt = x

)
(7.9)

2. For all ǫ > 0 there is some strategy π̃ ∈ A such that for all θ ∈ Tt,T it holds that

Ĵ(t, x)− ǫ ≤ E

(∫ θ

t
F (s, V π̃

s , π̃s) ds + Ĵ(θ, V π̃
θ ) | Vt = x

)

As a corollary we obtain the classical dynamic programming principle.

Corollary 7.4. For any θ ∈ Tt,T it holds that

Ĵ(t, x) = sup
π∈A

E

(∫ θ

t
F (s, V π̃

s , π̃s) ds+ Ĵ(θ, V π̃
θ ) | Vt = x

)
.

Proof of Proposition 7.3. Consider an arbitrary admissible strategy π. We get by iterated

conditional expectations

J(t, x, π) = E

(∫ θ

t
F (s, V π

s , πs) ds + J(θ, V π
θ , π) | Vt = x

)
(7.10)

Fix now some control π ∈ A and some θ ∈ Tt,T . Choose an ǫ-optimal strategy π̂ ∈ A for

the problem ‘starting at θ’, that is a strategy π̂ with Ĵ(θ, x) ≤ J(θ, x, π)+ǫ for all x. Define

π∗ by

π∗(s, y) =

{
π(s, y), s ∈ [t, θ], y ∈ R+

π̂(s, y), s ∈ (θ, T ], y ∈ R+
;
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Then Ĵ(t, x) ≥ J(t, x, π∗) ≥ E
(∫ θ

t F (s, V π
s , πs) ds + Ĵ(θ, V π

θ )− ǫ | Vt = x
)
, and for ǫ → 0

we get the first inequality.

Now we turn to the second inequality in the proposition. Using the inequality J(θ, V π
θ , π) ≤

Ĵ(θ, V π
θ ) and (7.10) we get

J(t, x, π) ≤ E

(∫ θ

t
F (s, V π

s , πs) ds + Ĵ(θ, V π
θ ) | Vt = x

)
and thus

J(t, x, π) ≤ inf
θ∈Tt,T

E

(∫ θ

t
F (s, V π

s , πs) ds + Ĵ(θ, V π
θ ) | Vt = x

)
.

By taking the sup over π we get

Ĵ(t, x) ≤ sup
π∈A

inf
θ∈Tt,T

E

(∫ θ

t
F (s, V π

s , πs) ds + Ĵ(θ, V π
θ ) | Vt = x

)
.

By definition of the supremum there is some π ∈ A such that

Ĵ(t, x)− ǫ ≤ inf
θ∈Tt,T

E

(∫ t+h

t
F (s, V π̃

s , π̃s) ds + Ĵ(θ, V π̃
θ ) | Vt = x

)
,

which is the second inequality.

Note that the dynamic programming principle implies that for every stopping time θ ∈ Tt,T
it holds that

Ĵ(t, x) = sup
π∈A

E

(∫ θ

t
F (s, V π

s , πs) ds+ Ĵ(θ, V π
θ ) | Vt = x

)
. (7.11)

Step 3: The HJB equation. We now use heuristic arguments and the dynamic pro-

gramming principle to derive a nonlinear PDE for the value-function Ĵ ; this PDE will

provide a method for computing the optimal strategy π̂ as well. For this we denote for

λ ∈ K by Lλ the differential operator

Lλf(x) = µ(x, λ)
∂f

∂x
(x) +

1

2
σ2(x, λ)

∂2f

∂x2
(x). (7.12)

Note that Lλ is the generator of the state process V if a constant strategy πt ≡ λ is being

used. For instance we get for the portfolio optimization problem with λ = (π, c)

Lλf(x) =
(
(r + (µ− r)π)x− c

)∂f
∂x

(x) +
1

2
π2σ2x2

∂2f

∂x2
(x).

In order to proceed we assume that

A1) The optimal value function Ĵ is once differentiable in t and twice in x. Moreover, all

stochastic integrals with respect to Brownian motion are true martingales.

In the next step we use Itô’s Lemma to obtain a PDE for Ĵ from the dynamic programming

principle. It holds that

Ĵ(t+ h, V π
t+h) = Ĵ(t, x) +

∫ t+h

t
Ĵt(s, V

π
s ) + LπĴ(s, V π

s ) ds +

∫ t+h

t
Ĵx(s, V

π
s )σπ

s dWs.
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By assumption the stochastic integral with respect to W is a true martingale and has

expectation zero. Hence we obtain

E
(
Ĵ(t+ h, V π

t+h) | Vt = x
)
= Ĵ(t, x) + E

(∫ t+h

t
Ĵt(s, V

π
s ) + LπĴ(s, V π

s )ds

)

Combining this with the inequality (7.9) we obtain

E

(∫ t+h

t
F (s, V π

s , πs) + Ĵt(s, V
π
s ) + LπĴ(s, V π

s ) ds

)
6 0. (7.13)

Dividing (7.13) by h and letting h → 0 in (7.13) we obtain from the fundamental theorem

of calculus that for λ ∈ K

F (t, x, λ) + Ĵt(t, x) + LλĴ(t, x) ≤ 0.

Moreover, we get from the second inequality in the dynamic programming principle that

sup
π∈A

E

(∫ t+h

t
F (s, V π

s , πs) + Ĵt(s, V
π
s ) + LπĴ(s, V π

s ) ds

)
= 0 .

For h → 0 we thus obtain that

Ĵt(t, x) + sup
λ∈K

{F (t, x, λ) + LλĴ(t, x)} = 0.

Summarizing, we have derived the following

Proposition 7.5. Under the regularity assumption A1) the optimal value function Ĵ(t, x)

solves the following nonlinear PDE, known as dynamic programming or HJB (Hamilton-

Jacobi-Bellman) equation:

Ĵt(t, x) + sup
λ∈K

{F (t, x, λ) + LλĴ(t, x)} = 0, (t, x) ∈ [0, T ] ×R (7.14)

with terminal condition Ĵ(T, x) = u(x). The supremum in (7.13) is obtained by any optimal

strategy π̂(t, x).

Remark 7.6. Often one has to deal with stochastic minimization problems. In these case

the above results remain valid if the ‘sup’ in the HJB equation is replaced by an ‘inf’.

A verification result. Next we give a so-called verification theorem. This result tells us

that if we have a function H ∈ C1,2 solving (7.14) with the right terminal condition, then

H = Ĵ , and π̂ is given by the maximizer in (7.14).

Theorem 7.7. Suppose that we have two functions H(t, v) and g(t, v) ∈ A such that

• H is sufficiently integrable (see below) and solves the HJB equation

Ht(t, x) + sup
λ∈K

{F (t, x, λ) + LλH(t, x)} = 0, H(T, x) = u(x)

• For each (t, x) fixed g(t, x) is a maximizer of the expression K ∋ λ 7→ F (t, x, λ) +

LλH(t, x).
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Then it holds that H = Ĵ . Moreover g(·) is an optimal feedback control strategy.

Proof. An application of Itô’s formula shows that for an arbitrary strategy π ∈ A one has

u(V π
T ) = H(T, V φ

T ) = H(t, x) +

∫ T

t
Ht(s, V

π
s ) + LπsH(s, V π

s ) ds

+

∫ T

t
σπHx(s, V

π
s )dWs.

The HJB equation implies that Ht(s, V
π
s ) +LπsH(s, V π

s ) +F (s, V π
s , πs) ≤ 0. Hence we get

that ∫ T

t
Ht(s, V

π
s ) + LπsH(s, V π

s ) ds ≤ −
∫ T

t
F (s, V π

s , πs)ds

and thus

H(t, x) ≥
∫ T

t
F (s, V π

s , πs)ds+ u(V π
T )−

∫ T

t
σπHx(s, V

π
s )dWs

Assuming enough integrability so that the integral wrt dW is a martingale (this is the

integrability condition on H(·)) we get by taking expectations that

H(t, x) ≥ E
(∫ T

t
F (s, V π

s , πs)ds + u(V π
T ) | Vt = x

)
= J(t, x, π),

and hence also H(t, x) ≥ Ĵ(t, x). For π = g(t, x) we obtain that equality holds in the above

relations and hence we get

H(t, x) = J(t, x, g(·)) ≤ Ĵ(t, x).

Combining these inequalities gives H ≡ Ĵ and the optimality of g(·).

Working with the dynamic programming equation. In order to solve the HJB

equation one proceeds in two steps.

• Step 1. Solve the static optimization problem supπLπH(t, x), making an educated

guess about structural properties of H. This gives π̂ in terms of H and its derivatives.

• Step 2. Substitute the solution π̂ from Step 1 into the HJB equation and try to solve

the resulting highly nonlinear equation, verifying the educated guess made in Step 1.

Note that explicit solutions to HJB equations exist only in very exceptional cases.

Example 7.8 (The stochastic regulator). This is a classical example of a control problem

that can be solved with the approach sketched above. The problem is as follows

minimizeE
(∫ T

0
ρπ2

sds+X2
T

)
subject to dXt = (aXt + πt)dt+ dWt (7.15)

Here a ∈ R and ρ > 0 are given parameters. The control πt can take arbitrary values, that

is we take K = R. The interpretation of (7.15) is as follows: Xt represents the location of

a particle that is moving randomly. The controller wants to steer the particle by a proper

choice of πt so that it is close to the origin at the terminal time T . However, he has to
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balance the deviation from the origin at T against the ‘fuel cost’ of his strategy as given

by
∫ T
0 ρπ2

sds.

The generator of X for given π is Lπf(x) = (ax+ π)fx +
1
2fxx so that the HJB equation is

Ĵt(t, x) + inf
π∈R

{
ρπ2 + (ax+ π)Ĵx(t, x) +

1

2
Ĵxx(t, x)

}
= 0, Ĵ(T, x) = x2 .

i) We first consider the static problem minπ∈R{ρπ2 + (ax+ π)Ĵx(t, x)}. This is a quadratic

minimization problem and since ρ > 0 the minimum is given by the FOC, that is we obtain

π̂(t, x) = − 1

2ρ
Ĵx(t, x).

ii) In order to determine π̂(t, x) we need to find the value function Ĵx(t, x). Since the

terminal condition is quadratic we conjecture that Ĵ is of the form Ĵ(t, x) = c(t)x2 + d(t)

for deterministic functions c(t) and d(t). The terminal condition immediately gives c(T ) = 1

and d(T ) = 0. Our conjecture gives Ĵx(t, x) = 2c(t)x so that π̂ becomes π̂(t, x) = − c(t)
ρ x.

Moreover, under our conjecture for the form of Ĵ we get

Ĵt(t, x) = c′(t)x2 + d′(t) and Ĵxx(t, x) = 2c(t).

Hence the HJB equation becomes

c′(t)x2 + d′(t) + ρ(
−c(t)x

ρ
)2 +

(
ax+

−c(t)x

ρ

)
2c(t)x +

1

2
2c(t) = 0

Simplifying and collecting the terms with an x2 and the terms independent of x separately

gives

x2
(
c′(t)− c2(t)

ρ
+ 2ac(t)

)
+ (d′(t) + c(t)) = 0 .

It follows that each of the brackets needs to be zero. This gives the following ODE for c:

c′(t) − c2(t)/ρ + 2ac(t) = 0, with terminal condition c(T ) = 1. This is a so-called Ricatti

equation that permits an explicit (but somewhat messy) solution; we omit the details.

Given c(t) we get from the second bracket that d′(t) = −c(t) and hence d(t) =
∫ T
t c(s)ds.

Example 7.9 (Limitations of classical solutions to HJB equation.). In this example we

show that the value function of a control problem is not always a classical solutions of the

HJB equatio. Consider the state process S with dynamics dSπ
t = πtS

π
t dWt, the control set

K = [0, σ̄] and the problem

max
π∈A

E
(
h(Sπ

T )
)
.

The financial interpretation is to find the worst-case price of the terminal-value claim h(ST )

in a setup with uncertain volatility that takes values in the interval [0, σ̄]. If h is concave,

Jensen’s inequality shows that the optimal strategy (the strategy that leads to the highest

price of the claim) is πt ≡ 0 (zero volatility) with value function Ĵ(t, S) = h(S). This need

not be differentiable; consider for instance the payoff h(S) = min{S,K}).
To treat such problems a weaker solution concept is required. A possibility is to consider

so-called viscosity solutions; see for instance Fleming & Soner (2006) or Pham (2009) for

textbook treatments.
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7.1.3 Back to the portfolio-optimization problem

Finally we apply Proposition 7.5 to the portfolio optimization problem. For simplicity we

ignore the case of intermediate dividend payments, that is we put C = 0 in (7.3). In order

to find a solution of the HJB equation (7.14) we proceed in two steps.

Step 1. In the first step we solve the static optimization problem supπLπH(t, x). In this

way we express the optimal strategy in terms of the candidate value function H and its

derivatives. We have

LπH(t, x) = rxHx + (µ− r)xπHx +
1

2
σ2x2π2Hxx (7.16)

Assume now that H inherits the qualitative properties of the the utility function u via the

terminal condition H(T, x) = u(x), so that Hx > 0 and Hxx < 0. . In that case (7.16) is

maximized by setting

π(t, x) = −(µ− r)Hx

σ2xHxx
(t, x).

Step 2. (Solving the HJB equation) Plugging our candidate for π̂ into the HJB-equation

(7.14), we obtain the PDE

Ht(t, x) + rxHx −
(µ− r)2

σ2

H2
x

Hxx
+

1

2

(µ− r)2

σ2

H2
x

Hxx
= 0

This is a highly nonlinear equation. In order to solve this equation we conjecture that the

solution is of the form H(t, x) = f(t)xγ/γ, γ 6= 0 and H(t, x) = f(t)+ln(x) for γ = 0. With

this conjecture we have that Hx/(xHxx) = −1/(1 − γ) (recall that γ < 1 by assumption)

and the optimal strategy takes the form

π̂(t, x) =
µ− r

(1− γ)σ2
. (7.17)

This form of the optimal strategy is quite intuitive: the investor should hold a long position

if the growth rate µ is larger than the risk free rate r and he should hold a short position

in the stocks whenever µ < r. The size of his position is inversely proportional to his risk

aversion coefficient (1 − γ) and to the instantaneous variance σ2 of the stock. It remains

to show that H is in fact a solution of the HJB equation for a proper choice of f(·). We

consider only the case γ 6= 0. For π̂ as in (7.17) the HJB equation becomes Ht+Lπ̂H = 0.

Substituting H(t, x) = f(t)xγ/γ we thus get

f ′(t)(xγ)/γ + f(t)

(
rxxγ−1 +

(µ− r)2

(1− γ)σ2
xxγ−1 − 1

2

(µ− r)2

(1− γ)σ2
xxγ−1

)
= 0.

Dividing this equation by xγ shows that f satisfies a linear ODE. The terminal condition

H(T, x) = u(x) gives the terminal condition f(T ) = 1, and f is easily computed. Hence

we have in fact found a solution of the HJB equation of the form H(t, x) = f(t)xγ/γ, and

π̂ given in (7.17) is the optimal strategy by the verification theorem.

For further information on stochastic control theory we refer to the recent textbook Pham

(2009).
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Chapter 8

Term-Structure Modelling

In this chapter we give an introduction to the modelling of interest-rate risk. Our presenta-

tion is largely based on Björk (2004); further information can be found in the textbook Fil-

ipović (2009).

8.1 Bonds and Interest-Rates

We begin by describing the market for interest-rate related products at a given point in

time t.

Zero coupon bond. A zero coupon bond with maturity T > t, also called T -bond

guarantees the holder e1 to be paid at the maturity date T . The price in t < T is denoted

by p(t, T ). Since we assume that bonds do not default it holds that p(T, T ) = 1. The family

p(t, T ), T ≥ t describes the term-structure of interest rates at time t. We assume that

• There is a frictionless market for T -bonds for all T > t

• For fixed t the mapping T 7→ p(t, T ) is continuously differentiable; we write pT (t, T ) =

∂T p(t, T ).

Note that the mapping t 7→ p(t, T ) (the price trajectory of a bond with fixed maturity

date) is usually quite irregular with sample path properties similar to those of Brownian

motion.

Forward price of bonds. Consider time points t < S < T . The price, contracted in

t, to be paid in S for e1 at time T is the forward price of the T -bond with maturity S,

denoted by F (t, S, T ). It is well-known that F (t, S, T ) = p(t, T )/p(t, S). Alternatively, if

we make a contract at t to invest e1 over the time period [S, T ] we obtain an amount of

1/F (t, S, T ) = p(t, S)/p(t, T ) at T .

From this relation we can define various interest rates.

Definition 8.1. (Interest rates, continuous compounding) Let t < S < T .
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1. The (continuously compounded) forward rate over (S, T ], contracted at t, R(t;S, T )

is defined by the equation

exp((T − S)R(t;S, T )) =
p(t, S)

p(t, T )
,

i.e. as continuously compounded return on the forward investment. One has

R(t;S, T ) = − ln p(t, T )− ln p(t, S)

T − S
.

2. The (continuously compounded) spot rate or yield with maturity T , contracted at t

is defined to be

R(t, T ) := R(t; t, T ) = − ln p(t, T )

T − t
.

3. The instantaneous forward rate with maturity T , contracted at t, is defined by

f(t, T ) := lim
S→T

R(t;S, T ) = −∂T ln p(t, T ).

4. The (instantaneous) short-rate of interest is r(t) = f(t, t), i.e. r(t) = −∂T ln p(t, T )|T=t.

As usual we define the money market account account process by Bt = exp(
∫ t
0 rsds), so

that B has dynamics dBt = rtBtdt with initial value B0 = 1.

Relation between f(t, ·) and p(t, ·). We get from the fundamental theorem of calculus

ln p(t, T ) = ln p(t, S) +

∫ T

S
∂T ln p(t, u)du = ln p(t, S)−

∫ T

S
f(t, u)du.

and therefore p(t, T ) = p(t, S) exp
(
−
∫ T
S f(t, u)du

)
. In particular

p(t, T ) = exp(−
∫ T

t
f(t, u)du), (8.1)

as p(t, t) = 1. This shows that there is a one-to-one relation between the family p(t, ·) of

bond prices and the family f(t, ·) of instantaneous forward rates.

Dynamic Modelling. Term-structure modelling is the task of constructing a probabilis-

tic model for the evolution of the family of zero coupon bond price processes p(·, T ). There
are a number of requirements for such a model.

• p(·, T ) needs to satisfy the final condition p(T, T ) = 1.

• Absence of arbitrage between the security prices {p(·, T ), T ≥ t} (a challenge as we

are dealing with many price processes simultaneously).

• Calibration. At the initial date t0 the price p(t0, T ) has to be consistent with the

bond prices or interest rates observed in the market at time t0).

• The short rate r(t) is a nominal interest rate and should be nonnegative (but this

requirement is sometimes relaxed).

In these lecture notes we consider two approaches for term-structure modelling, so-called

short-rate models and forward-rate- or HJM models.
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8.2 Short-Rate Models

8.2.1 Martingale Modelling and Term-Structure Equation

Consider a filtered probability space (Ω,F , Q), (Ft) supporting an adapted process (rt)t≥0

which models the instantaneous short rate of interest. We view Q as risk-neutral measure

and define the price of a T -bond at t ≤ T by the risk-neutral pricing rule, that is we put

p(t, T ) = BtE

(
1

BT

∣∣∣∣Ft

)
= E

(
e−

∫ T
t

rsds
∣∣∣Ft

)
. (8.2)

The approach of modelling the dynamics of traded securities directly under some martingale

measure (and not under the historical measure P ) is termed martingale modelling ; it is

motivated by the observation that at least in a complete market only the risk-neutral

measure Qmatters for the pricing of derivative securities. Martingale modelling has become

very popular. The approach has the following advantages:

• The approach ensures that the model is arbitrage-free.

• Bond prices are automatically consistent with the terminal condition p(T, T ) = 1.

Disadvantages/ problems:

• Bond prices defined via (8.2) are not automatically consistent with the prices observed

in the market at time t; for this one needs to adjust parameters in the dynamics of

the short rate process (calibration), which can be difficult from a computational

viewpoint.

• The approach has conceptual difficulties in incomplete markets (but that is less rele-

vant in the context of term-structure models).

Assumption 8.2. We assume that under the fixed martingale measure Q the short-rate

has dynamics of the form drt = µ(t, rt)dt+ σ(t, rt)dWt for a Q-Brownian motion W .

Under Assumption 8.2 the short-rate is a Markov process, and we have for p(t, T ) as defined

in (8.2)

p(t, T ) = E

(
exp

(
−
∫ T

t
rsds

)∣∣∣∣Ft

)
= Et,rt

(
exp

(
−
∫ T

t
rsds

))
, (8.3)

and the right side is obviously a function of t and rt which we denote by F T (t, rt).

Proposition 8.3 (Term-structure equation.). The function F T solves the parabolic PDE

∂tF + µ∂rF +
1

2
σ2∂rrF = rF, t < T (8.4)

with terminal condition F T (T, r) = 1.

Proof. The result follows immediately from the Feynman-Kac formula, see equation (5.17).
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Examples for short-rate dynamics. The following short-rate models are frequently

used in the literature.

• Vasicek-model drt = (b− art)dt+ σdWt, a, b > 0.

• CIR-model drt = (b− art)dt+ σ
√
rtdWt.

• Hull-White drt = (ϕ(t) − art)dt+ σdWt.

• Extended CIR: drt = (ϕ(t) − art)dt+
√
rtσdWt.

• Black-Derman-Toy drt = a(t)rtdt+ σrtdWt.

8.2.2 Affine Term Structure

Next we look for conditions such that the term structure equation is easy to solve. The

main result in this direction is the existence of an affine term structure.

Definition 8.4. A short-rate model has an affine term structure (ATS), if the bond-prices

are of the form

p(t, T ) = F T (t, rt) = exp(A(t, T )−B(t, T )rt) (8.5)

for deterministic functions A(t, T ) and B(t, T ), 0 ≤ t ≤ T .

Note that in a model with an ATS the continuously compounded yieldR(t, T ) = − 1
T−t ln p(t, T )

is an affine function of rt; this explains the name. It is easy to give sufficient conditions for

the existence of an ATS.

Proposition 8.5. Assume that µ and σ2 are of the form

µ(t, r) = α(t)r + β(t), σ2(t, r) = γ(t)r + δ(t) (8.6)

Then the model has an ATS (8.5) where A and B satisfy the ODE-system

Bt(t, T ) + α(t)B(t, T )− 1

2
γ(t)B2(t, T ) = −1

At(t, T )− β(t)B(t, T ) +
1

2
δ(t)B2(t, T ) = 0,

(8.7)

with terminal conditions B(T, T ) = A(T, T ) = 0.

Proof. Assume that F T is of the form (8.5). This gives,

∂tF
T (t, r) = (At(t, T )−Bt(t, T )r)F

T (t, r),

∂rF
T (t, r) = −B(t, T )F T (t, r),

∂rrF
T (t, r) = B2(t, T )F T (t, r).

Plugging these terms into the term-structure equation gives after division by F T (t, r)

At(t, T )−Bt(t, T r − µ(t, r)B(t, T ) +
1

2
σ2(t, r)B2(t, T ) = r. (8.8)
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If µ and σ2 are affine in r, we get by substituting (8.7) into (8.8)

(
At(t, T )− βB(t, T ) +

1

2
δB2(t, T )

)
− r
(
Bt(t, T ) + 1 + α(t, T )− γB2(t, T )

)
= 0.

This equation holds for all values of r if and only if both brackets are zero, which gives

(8.7). The terminal condition on A and B ensures that F T (T, T ) = 1.

Example 8.6. (Term-structure equation in the Vasicek-model.) Here the ODE-system

(8.7) becomes, as α = −a, β = b, γ = 0, δ = σ2,

Bt(t, T )− aB(t, T ) = −1, At(t, T ) = bB(t, T )− 1

2
σ2B2(t, T ).

Since the ODE for B is linear, one has, as B(T, T ) = 0,

B(t, T ) =
1

a
(1− exp (−a(T − t))),

and, by integration, A(t, T ) = −
∫ T
t bB(s, T )ds+ σ2

2

∫ T
t B2(s, T )ds .

8.2.3 Calibration

All short-rate models considered so-far have dynamics which depend on a number of un-

known parameters. In order to apply the model these parameters need to be determined.

Here two different approaches can be distinguished.

a) Statistical estimation from a time series (rs)s≤t of the past values of the short-rate. Here

we face the following conceptual problem: in order to compute the bond prices we use the

Q-dynamics of the short-rate, whereas the statistical estimation gives a estimate of the

parameters under P , and the drift of the short-rate may change in the transition from P

to Q.

b) Calibration to market prices. Schematically, the approach is as follows: Denote current

time by t0.

• Fix a concrete short-rate model, say, the CIR model with parameter vector θ =

(b, a, σ).

• Solve the term-structure equation for all maturities T , denote the solution by F T (t0, rt0 ; θ).

• Go to the market and obtain observed prices {p∗(t0, T1), . . . , p
∗(t0, Tm)} for maturities

T1, . . . , Tm and obtain moreover an estimate of the current short-rate rt0 .

• Determine θ∗ as solution of the minimization problem

min
θ

m∑

i=1

wi

(
p∗(t0, Ti)− F Ti(t0, r

∗
t0 ; θ)

)2
, (8.9)

where w1, . . . , wn is a vector of weights.

This approach is widely adapted in practice, as it is less ’subjective’ and often easier than

statistical estimation. Moreover the approach (approximately) aligns model and market

prices which is important for the use of market-consistent valuation methods. Nonetheless

there are a number of problems as-well.
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• On the practical side, the model may not be flexible enough so that model- and

market prices diverge widely even for ’optimal’ θ∗.

• With very little price observation there may be many solutions to (8.9), i.e. θ can

not be determined from observable prices.

• The parameter vector θ∗ may fluctuate a lot over time, whereas in pricing it is assumed

that this parameter is constant.

• Time series properties of the short rate (or of observed bond prices) are ignored

completely.

8.3 HJM-Models

Basic approach. In the HJM-approach to term structure modelling one models simulta-

neously the dynamics of all forward-rates f(t, T ), T ≥ t and computes bond-price dynamics

from the relation

p(t, T ) = exp

(
−
∫ T

t
f(t, u)du

)
(8.10)

(recall that f(t, T ) = −∂T ln p(t, T )). In this way the calibration to the observed bond

prices is ensured by design, as the current forward-rate curve f∗(0, T ) is taken as initial

value of the forward-rate dynamics; moreover (8.10) ensures that p(T, T ) = exp(0) = 1.

On the other hand, it is a priori not clear if the model generated in this way is actually

arbitrage-free, as one models infinitely many securities (all bond prices), but has typically

only finitely many sources of randomness in the model; this issue is taken up below.

Assumption 8.7. (Forward-rate dynamics) Given a probability space (Ω,F , P ), (Ft), P

the historical measure, let W be a d-dimensional Brownian motion on this space. Then for

each fixed T the forward rate f(t, T ) has a stochastic differential of the form

df(t, T ) = α(t, T )dt+ σ(t, T )dWt (8.11)

where α(·, T ) and σ(·, T ) are adapted process with values in R respective Rd, and where∫ T
0 σ(t, T )dWt is shorthand for

∑d
i=1

∫ t
0 σi(t, T )dWt,i. Moreover α and σ are continuously

differentiable in the T -variable.

In order to give conditions on α(t, T ) and σ(t, T ) in (8.11) ensuring that the model is free

of arbitrage we need to compute the dynamics of the bond prices using (8.10).

Proposition 8.8 (Short-rate dynamics and bond price dynamics in HJM). If the family

of forward rates satisfies Assumption 8.7, the short rate r(t) = f(t, t) has the differential

drt = a(t)dt+ b(t)dWt, with a(t) = ∂T f(t, t) + α(t, t) and b(t) = σ(t, t). (8.12)

Moreover, p(t, T ) = exp
(
−
∫ T
t f(t, u)du

)
satisfies

dp(t, T ) = p(t, T ){r(t) +A(t, T ) +
1

2
‖S(t, T )‖2}dt+ p(t, T )S(t, T )dWt, with (8.13)

A(t, T ) = −
∫ T

t
α(t, u)du, and S(t, T ) = −

∫ T

t
σ(t, u)du (8.14)
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Proof. As r(t) = f(t, t) we get from (8.11)

r(t) = f(0, t) +

∫ t

0
α(s, t)ds +

∫ t

0
σ(s, t)dWs. (8.15)

Now write α(s, t) = α(s, s) +
∫ t
s ∂Tα(s, u)du, and similarly for σ. Substitution into (8.15)

gives

r(t) =

∫ t

0
α(s, s)ds +

∫ t

0
σ(s, s)dWs

+ f(0, t) +

∫ t

0

∫ t

s
∂Tα(s, u)duds +

∫ t

0

∫ t

s
∂Tσ(s, u)dudWs. (8.16)

Changing the order of integration we get

∫ t

0

∫ t

s
∂Tα(s, u)duds =

∫ t

0

∫ t

0
1{u>s}∂Tα(s, u)duds =

∫ t

0

∫ u

0
∂Tα(s, u)dsdu, (8.17)

and similarly
∫ t
0

∫ t
s ∂Tσ(s, u)dudWs =

∫ t
0

∫ u
0 ∂Tσ(s, u)dWsdu. Moreover, f(0, t) = r(0) +∫ t

0 ∂T f(0, u)du. On the other hand one has

∂T f(u, u) = ∂T f(0, u) +

∫ u

0
∂Tα(s, u)ds +

∫ u

0
∂Tσ(s, u)dWs.

Hence the sum in (8.16) equals r(0) +
∫ t
0 ∂T f(u, u)du, which proves he first part of the

proposition.

In order to identify the bond price dynamics (8.13) and (8.14) one argues as follows: Define

Y (t, T ) := −
∫ T
t f(t, s)ds so that p(t, T ) = exp(Y (t, T )). Recall that under Assumption 8.7,

f(t, s) = f(0, s) +

∫ t

0
α(u, s)du +

∫ t

0
σ(u, s)dWu.

This gives, after changing the order of integration,

Y (t, T ) := −
∫ T

t
f(0, s)ds −

∫ t

0

∫ T

t
α(u, s)dsdu −

∫ t

0

∫ T

t
σ(u, s)dsdWu.

Now we can decompose these integrals into

−
∫ T

0
f(0, s)ds−

∫ t

0

∫ T

u
α(u, s)dsdu −

∫ t

0

∫ T

u
σ(u, s)dsdWu (8.18)

+

∫ t

0
f(0, s)ds +

∫ t

0

∫ t

u
α(u, s)dsdu +

∫ t

0

∫ t

u
σ(u, s)dsdWu

= Y (0, T ) +

∫ t

0
A(u, T )du +

∫ t

0
S(u, T )dWu

+

∫ t

0
f(0, s)ds +

∫ t

0

∫ s

0
α(u, s)duds +

∫ t

0

∫ s

0
σ(u, s)dWuds, (8.19)

where we have used the definition of A and S in (8.14) and a similar argument as in (8.17).

Now, (8.19) is obviously equal to
∫ t
0 f(s, s)ds =

∫ t
0 r(s)ds, and we get that dY (t, T ) =

{r(t) + A(t, T )}dt + S(t, T )dWt. The proof of (8.13) is completed by applying the Ito-

formula to p(t, T ) = exp(Y (t, T )).
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Absence of arbitrage Recall that we consider a market with infinitely many assets

but only finitely many sources of uncertainty, namely W1, . . . ,Wd. Hence we need spe-

cial conditions on the forward rate dynamics in order to ensure that the model is free of

arbitrage.

Proposition 8.9. Suppose that there is a process λt = (λt,1, . . . , λt,d)
′ such that for all

T > 0 and all 0 ≤ t ≤ T

α(t, T ) = σ(t, T )

∫ T

t
σ(t, s)′ds+ σ(t, T )λ(t) (8.20)

and such that Zt = exp
(∫ t

0 −λsdWs − 1
2

∫ t
0 ‖λs‖2 ds

)
is a true martingale. Then the model

is free of arbitrage.

Note that Condition (8.20) is a restriction on the drift of the forward rates, as this equation

has to hold simultaneously for all maturity dates T .

Proof. According to Propostion 8.8, bond prices are of the form

dp(t, T ) = p(t, T )r(t)dt+ p(t, T )

(
A(t, T ) +

1

2
‖S(t, T )‖2

)
dt+ p(t, T )S(t, T )dWt.

Define a new measure Q by dQ
dP |FT = ZT ; Q is well-defined as Z is a true martingale.

Moreover, W̃t = Wt+
∫ t
0 λsds is a Q-Brownian Motion by the Girsanov theorem. Now note

that under Q the finite-variation part of p(·, T ) equals
∫ t

0
p(s, T )

{
r(s) +A(s, T ) +

1

2
‖S(s, T )‖2 − S(s, T )λs

}
ds. (8.21)

We get from (8.20) and the definition of S(s, T ) in (8.14) that

S(s, T )λs = −
∫ T

s
σ(s, u)λsdu (by (8.14))

= −
∫ T

s

{
α(s, u)− σ(s, u)

∫ u

s
σ(s, τ)′dτ

}
du (by (8.20))

= A(s, T ) +
1

2
‖S(s, T )‖2 .

The last relation follows from (by (8.14)) and the observation that

∂

∂u

1

2
‖S(s, u)‖2 = S(s, u)

∂

∂u
S(s, u)′ = −

∫ u

s
σ(s, τ)dτ(−σ(s, u)′).

Hence the finite variation part of p(·, T ) in (8.21) equals
∫ t
0 p(s, T )r(s)ds, and discounted

bond prices are Q-local martingales.

Obviously the measure Q constructed in the proof of Proposition 8.9 is a risk-neutral

measure. It is interesting to study the forward-rate and price dynamics under Q

Corollary 8.10. Under Q the forward-rate dynamics are

df(t, T ) =

(
σ(t, T )

∫ T

t
σ(t, s)′ds

)
dt+ σ(t, T )dW̃t

dp(t, T ) = r(t)p(t, T )dt+ p(t, T )S(t, T )dW̃t,

W̃ a Q-Brownian motion.
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This follows immediately from the proof of Proposition 8.9. The fact that the risk-neutral

drift of f(t, T ) is of the form

αQ(t, T ) = σ(t, T )

∫ T

t
σ(t, s)′ds

is also known as HJM drift condition.

Martingale modelling in HJM The previous corollary has shown that the Q-dynamics

of bonds and forward-rates are fully determined from the forward-rate volatilies σ(t, T ).

For practical purposes the HJM model is therefore used as follows:

1.) Specify the volatilities σ(t, T ) (the modelling part)

2.) The forward-rate drift αQ(t, T ) is specified via the HJM-drift condition.

3.) Go to the market and observe current forward rates f∗(0, T ).

4.) The forward-rates are given by

f(t, T ) = f∗(0, T ) +
∫ T

0
αQ(s, T )ds +

∫ t

0
σ(t, T )dW̃t.

5.) Bond prices are given via p(t, T ) = exp{−
∫ T
t f(t, u)du} or as solutions of

dp(t, T ) = p(t, T )r(t)dt+ p(t, T )S(t, T )dW̃t,

for S(t, T ) = −
∫ T
t σ(t, u)du.

Example 8.11 (The Ho-Lee model). Assume that σ(t, T ) = σ. Then the drift of the

forward-rates equals αQ(t, T ) = σ
∫ T
t σds = σ2(T − t) and the forward rates are given by

f(t, T ) = f∗(0, T ) +
∫ t

0
σ2(T − s)ds+ σWt

= f∗(0, T ) + σ2t

(
T − t

2

)
+ σWt.

In particular, the short-rate satisfies

r(t) = f(t, t) = f∗(0, t) + σ2 t
2

2
+ σWt,

or, in differential form, drt =
(
∂T f

∗(0, t) + σ2t
)
dt + σdWt. Short-rate dynamics of this

form are known as Ho-Lee model (the Vasicek or Hull-White model for a = 0). Note that

the HJM-approach automatically ensures that the model is calibrated to the initial yield

curve.

Example 8.12 (The Vasicek-model). Here we take σ(t, T ) = σe−a(T−t) for some a > 0.

Hence we get

αQ(t, T ) = σ(t, T )

∫ T

t
σ(t, s)ds =

σ2

a
e−a(T−t)

(
1− e−a(T−t)

)
.
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In order to identify the corresponding short-rate dynamics we use Proposition 8.8. The

volatility of the short-rate dynamics is given by σ(t, t) = σ. Identifying the drift µ(t, r)

is more involved. According to Proposition 8.8, we have µ(t, rt) = αQ(t, t) + ∂T f(t, t) =

∂T f(t, t), as α
Q(t, t) = 0. Now we have, using the forward rate dynamics

∂T f(t, t) = ∂T f(0, T ) +

∫ t

0
∂Tα(s, t)ds +

∫ t

0
∂Tσ(s, t)dWs.

As σ(s, t) = σe−a(t−s), we get ∂Tσ(s, t) = −aσ(s, t). Moreover, ∂Tα
Q(t, s) = −aαQ(t, s) +

σ2e−2a(t−s). This gives

∂T f(t, t) = ∂T f(0, t)− a

∫ t

0
α(s, t)ds − a

∫ t

0
σ(s, t)dWs +

∫ t

0
σ2e−2a(t−s)ds

= −af(t, t) + g(t)

with g(t) = ∂T f(0, t)−af(0, t)+
∫ t
0 σ

2e−2a(t−s)ds. Summarizing we thus have the following

short-rate dynamics

dr(t) = (g(t)− ar(t))dt+ σdWt,

so that the above form of σ leads to the Vasicek or the Hull-White model.

8.3.1 The Musiela parametrization.

still to do

8.4 Pricing and Hedging of Multi-Currency Derivatives with

Interest Rate Risk

This section, which is based on Frey & Sommer (1996), discusses the valuation and hedging

of non path-dependent European options on one or several underlyings in a model of an

international economy which allows for both, interest rate risk and exchange rate risk.

We study options on stocks, bonds, future contracts, interest rates and exchange rates;

their payoff may be in any currency and a relatively complex function of one or several

underlyings. We use an international economy model similar to the one introduced by Amin

& Jarrow (1991) as framework of our analysis. Their model combines a fully developed

stochastic theory of the term structure of interest rates in the sense of Heath, Jarrow &

Morton (1992) with models for the valuation of exchange rate and stock options. The main

tools of our analysis are stochastic methods and in particular the change of numeraire

technique introduced in Section 6.1.4. Since pricing formulas are of limited practical use

without knowledge of the corresponding hedge portfolio we present a systematic approach to

computing hedging strategies. In order to illustrate the flexibility of our method we derive

explicit formulas for prices and hedge portfolios for a wide range of examples containing

among others currency options or guaranteed-exchange-rate options or options on interest

rates.
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8.4.1 The Model

Here we introduce an arbitrage-free model of an international economy that incorporates

stochastic interest rates and exchange rates. This model will serve as our framework for

the valuation of derivatives. We consider N countries indexed by n ∈ {0, . . . , N}. Country
0 will be the domestic country. The exchange rate between country 0 and country n ∈
{1, . . . , N} will be denoted by en, that is en units of the domestic currency can be exchanged

for one unit of the foreign currency. When working with only two countries we simply talk

about the domestic and the foreign country and index them with d and f . The choice of the

domestic country is arbitrary and depends on the particular pricing and hedging problem

under consideration. We call an asset a domestic asset if its payoffs are denominated in the

domestic currency. Notice that every asset whose payoffs are not originally denominated in

this currency can be transformed into a domestic asset by translating its payoffs into the

domestic currency using the corresponding exchange rate.

We assume that in all countries zero coupon bonds of all maturities T ∈ [0, TF ] are traded.

The zero coupon bond in country n with maturity date T shall be denoted by pn(t, T ) for

t ∈ [0, T ]. By assumption pn(T, T ) ≡ 1 ∀T, n. The short rate in country n, rn, is given by

rnt = − ∂

∂T

∣∣∣
T = t

ln pn(t, T ) . (8.22)

By βn
t,T := exp(

∫ T
t rns ds) we denote the savings-account of country n. Apart from zero

coupon bonds we consider other primitive assets such as dividend free stocks. They are

denoted by Sn,j, 0 ≤ n ≤ N, 0 ≤ j ≤ in where Sn,j is the price of asset j in country n.

We now introduce our model of asset price dynamics. When modelling asset price pro-

cesses one usually starts from assumptions on their dynamics under the so-called historical

probabilities which govern the actual evolution of asset prices. Since we are only interested

in the pricing of derivatives by no-arbitrage arguments it is legitimate to model the asset

price dynamics directly under a domestic risk-neutral measure Q. Under such a measure all

non-dividend paying domestic assets are martingales after discounting with the domestic

savings account. This implies that their drift is equal to r0.

Assumption 8.13. Let there be given a filtered probability space (Ω,F , Q), (Ft)t∈[0,TF ]

supporting a d-dimensional Brownian Motion W = (Wt)0≤t≤Tf
. We work with the following

assumptions on asset price dynamics: We put for the domestic assets

dp0(t, T ) = r0t p
0(t, T )dt+ η0(t, T )p0(t, T )dWt

dS0,j
t = r0tS

0,j
t dt+ η0,j(t)S0,j

t dWt ,
(8.23)

and for the foreign assets

dpn(t, T ) = (rnt − ηn(t, T ) · ηen(t))pn(t, T )dt+ ηn(t, T )pn(t, T )dWt

dSn,j
t = (rnt − ηn,j(t) · ηen(t))Sn,j

t dt+ ηn,j(t)Sn,j
t dWt .

(8.24)

Finally the dynamics of the exchange rates are given by

den(t) = (r0t − rnt )e
n(t)dt+ ηe

n

(t)en(t)dWt . (8.25)
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Here ηn(t, T ), ηn,j(t), ηe
n
(t) : [0, TF ] → Rd are deterministic square integrable functions

of time. For the bonds we require moreover that ηn(t, T ) = 0 ∀t ≥ T and that ηn(t, T ) is

smooth in the second argument.

Note that the assumption of deterministic dispersion coefficients is essential as we want to

obtain explicit pricing formulas. An explicit construction of the bond price model is easily

done using the HJM approach explained in the previous section. As shown by Amin &

Jarrow (1991) the dynamics of asset prices and exchange rates given in Assumption 8.13

actually specify an arbitrage-free model of an international economy with Q representing a

domestic risk-neutral measure. The drift terms of the exchange rate and the foreign assets

are determined by absence of arbitrage considerations. As an example we derive the drift of

en. Consider the domestic asset Y := enβn
(0,·) . By absence of arbitrage its drift must equal

r0. Using Itô’s Lemma to compute the dynamics of Y it is immediate that the drift of Y

equals r0 if and only if the drift of the exchange rate equals the interest rate differential.

The volatility of asset Sn,j is given by σn,j(t) := |ηn,j(t)|. The instantaneous correlations

between the assets in our economy are given by

ρ(Sn1,j1 , Sn2,j2) :=
ηn1,j1 · ηn2,j2

σn1,j1σn2,j2
.1

Only volatilities and instantaneous correlations matter for the pricing of derivatives, since

they determine the law of the asset prices under the domestic risk neutral measure. In our

analysis this is reflected by the fact that only inner products of the dispersion coefficients

η and hence instantaneous covariances enter the pricing formulas. Nonetheless we start

with independent Brownian motions and model correlations by means of the dispersion

coefficients η because this facilitates the use of stochastic calculus. To compute these

coefficients from the estimated instantaneous covariance matrix of the processes one may

use the Cholesky decomposition of this matrix.

Finally we note that the price process of a discounted foreign asset is not a martingale

under the domestic risk-neutral measure as can be seen from (8.24); hence this measure

must not be used for the valuation of derivatives paying off in foreign currencies.

For our pricing theory we need to assume that the markets in our economy are complete.

Assumption 8.14. There are d traded domestic assets such that for all t ∈ [0, TF ] the

instantaneous covariance matrix of these assets is strictly positive definite.

As shown in Proposition 6.20, his assumption guarantees that every contingent claim

adapted to the filtration generated by the asset prices can be replicated by a dynamic

trading strategy in the d assets and the domestic savings-account. Hence the domestic risk

neutral measure is unique and the price at time t of every domestic contingent claim H

with single FT measurable and integrable payoff HT at time T is given by

Ht := EQ
[(
β0
t,T

)−1 ·HT

∣∣∣ Ft

]
. (8.26)

We now introduce the class of admissible underlyings for the derivative contracts consid-

ered in this section. A typical example of the kind of options we want to analyze is the

guaranteed-exchange-rate call. This contract is defined by its terminal payoff [ēSf
T −K]+,

where Sf
T is some primitive foreign asset and ē is a guaranteed exchange rate which will be

1Of course similar formulas hold for bonds and exchange rates.
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applied at time T to convert the price of the foreign asset into domestic currency. Now,

ēSf
T is not the time T value of a traded domestic asset. However, it defines a domestic

contingent claim X whose price Xt = EQ[(βt,T )
−1ēSf

T |Ft] is given by

Xt = X0 exp

(∫ t

0
ηXs dWs −

1

2

∫ t

0
|ηXs |2ds+

∫ t

0
rdsds

)
with X0 = EQ

[
(β0,T )

−1 XT

]

and ηXs a deterministic Rd-valued function of time. We will see in section 8.4.3 below that

this structure is found in many ostensibly complex option contracts. This motivates the

following definition.

Definition 8.15. A domestic contingent-claim X with a single payoff XT at a certain date

T is called a lognormal claim2 if its price process (Xt)0≤t≤T given by

Xt := EQ

[(
βd
t,T

)−1
·XT

∣∣ Ft

]

admits a representation of the form

Xt = X0 · exp
(∫ t

0
ηXs dWs −

1

2

∫ t

0
|ηXs |2ds+

∫ t

0
rdsds

)
(8.27)

with some constant X0 and with deterministic dispersion coefficients ηX : [0, T ] → Rd.

Remark 8.16. The main restriction made in the definition of a lognormal claim is the

assumption of ηX being deterministic. In fact, whenever XT is strictly positive,

Xt := EQ

[(
βd
t,T

)−1
XT

∣∣ Ft

]

is always of the form (8.27) with possibly stochastic “volatility” ηX , as can easily be shown

by means of the martingale representation theorem (Theorem 6.19). Note that the solution

of the SDE dXt = r0tXtdt+ ηXt XtdWt is given by

Xt := X0 exp

(∫ t

0
ηXs dWs − 1/2

∫ t

0
|ηXs |2ds +

∫ t

0
r0sds

)
.

Hence under our assumption on asset price dynamics every primitive domestic asset, inter-

preted as contingent claim with payoff equal to the asset’s price at time T , is a lognormal

claim. However, the class of contingent claims that satisfy Definition 8.15 is much larger.

For instance products and quotients of lognormal claims remain lognormal claims.

8.4.2 Exchange Options on Lognormal Claims

Next we give a rather general theorem which leads to a unified treatment of the pricing of

European options on various underlyings such as foreign and domestic zero coupon bonds,

foreign or domestic stocks or forward and future contracts on foreign and domestic assets.

2This name is motivated by the fact that XT is lognormally distributed. This is immediate if one writes

XT = XT /p
0(T, T ) and then expresses the right hand side using (8.27) and the corresponding expression

for p0(·, T ).
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Theorem 8.17. Let X,Y be lognormal claims. Consider an option to exchange X for Y

at the maturity date T , i.e. a European option with payoff [XT − YT ]
+.

1. The price process C = (Ct)0≤t≤T of this option is given by

Ct = C(t,Xt, Yt) := XtN (d1t )− YtN (d2t )

where N denotes the one-dimensional standard normal distribution function, and where d1t
and d2t are given by

d1t =
ln (Xt/Yt) +

1
2

∫ T
t |ηXs − ηYs |2ds√∫ T

t |ηXs − ηYs |2ds
, d2t = d1t −

√∫ T

t
|ηXs − ηYs |2ds .

2. The hedge portfolio for this option in terms of the lognormal claims X and Y consists

of

δCX(t) := N (d1t ) units of X and δCY (t) := −N (d2t ) units of Y .

Proof. The main tool in the proof is the change of numeraire technique as introduced in

Section 6.1.4. We now recall a few facts from this theory. Define for a lognormal claim X

a new equivalent probability measure QX on FT by

dQX

dQ
=

XT ·
(
βd
0,T

)−1

X0
.

Then for every domestic asset Z whose discounted price process is a martingale under Q —

that is for every asset that pays no dividends in [0, T ) — the process Z/X is a martingale

under QX , i.e. QX is the martingale measure corresponding to the numeraire X. Moreover

we have the transition formula

EQ

[(
βd
t,T

)−1
·XT · ZT |Ft

]
= Xt ·EQX

[ZT |Ft] (8.28)

In our setup it is easy to determine the law of the asset price processes under QX by

means of the Girsanov theorem. Applying this theorem to dQX/dQ immediately yields

that WX
t := Wt −

∫ t
0 η

X
s ds is a Brownian Motion under QX .

Now it is easy to proof the first part of the theorem. According to (8.26) the price of the

option is given by

Ct = EQ

[(
βd
t,T

)−1
[XT − YT ]

+
∣∣∣ Ft

]

= EQ

[(
βd
t,T

)−1
XT · 1{YT /XT<1}

∣∣∣ Ft

]
− EQ

[(
βd
t,T

)−1
YT · 1{XT /YT>1}

∣∣∣ Ft

]

= Xt · EQX
[
1{YT /XT<1}

∣∣∣ Ft

]
− Yt ·EQY

[
1{XT /YT>1}

∣∣∣ Ft

]

The last line follows from (8.28) if we take once X and once Y as numeraire. Now we get

under QX for YT /XT

YT

XT
=

Yt

Xt
· exp

(∫ T

t
(ηYs − ηXs )dWX

s − 1

2

∫ T

t
|ηYs − ηXs |2ds

)
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Hence

QX

[
YT

XT
< 1

∣∣∣ Ft

]
= QX

[
lnYT − lnXT < 0

∣∣ Ft

]

= QX



∫ T
t (ηYs − ηXs )dWX

s√∫ T
t |ηYs − ηXs |2ds

<
lnXt − lnYt +

1
2

∫ T
t |ηYs − ηXs |2ds√∫ T

t |ηYs − ηXs |2ds




Since ηX and ηY are deterministic,
∫ T
t (ηYs − ηXs )dWX

s /
√∫ T

t |ηYs − ηXs |2ds is a standard

normally distributed random variable so that

QX

[
YT

XT
< 1

∣∣∣ Ft

]
= N (d1t ) .

Analogously we get QY
[
XT /YT > 1

∣∣ Ft

]
= N (d2t ) , and the first part of the theorem

follows.

Now we turn to the hedging part. Let (Z)M denote the (uniquely determined) martingale

part of a continuous semimartingale Z. To prove the second claim we note that the proposed

selffinancing hedge portfolio duplicates the option if it holds that

d (C)M = N (d1t )d(X)Mt −N (d2t )d(Y )Mt , (8.29)

and if moreover the value of the hedge portfolio equals the option’s price for all 0 ≤ t ≤ T .

We now check these two conditions. (i) As Ct is a function only of Xt and Yt we get from

Itô’s Lemma

d (C)Mt =
∂C

∂x
(t,Xt, Yt)d (X)Mt +

∂C

∂y
(t,Xt, Yt)d (Y )Mt .

Now following El Karoui, Myneni & Viswanathan (1992) we may compute the derivatives

of the option price:

∂C

∂x
(t,Xt, Yt) = EQ

t

[
∂

∂Xt

((
βd
t,T

)−1
[XT − YT ]

+

)]

= EQ
t

[(
βd
t,T

)−1
1{XT≥YT }

∂XT

∂Xt

]

=
1

Xt
EQ

t

[(
βd
t,T

)−1
1{XT≥YT }XT

]

As shown in the first part of the proof this expression equals N (d1t ). Similarly we get

∂C/∂y (t,Xt, Yt) = −N (d2t ), and hence (8.29).

(ii) By Euler’s Theorem we get from the linear homogeneity of C in Xt and Yt

Ct =
∂C

∂x
(t,Xt, Yt) ·Xt +

∂C

∂y
(t,Xt, Yt) · Yt = N (d1t )Xt −N (d2t )Yt ,

which shows that also the second condition is satisfied.

Whenever the lognormal claims X and Y are assets for which liquid markets exist, Theorem

8.17 is sufficient for the construction of a hedge portfolio. Otherwise we must go on and

duplicate X and Y by a dynamic trading strategy. The existence of such a strategy is
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guaranteed by Assumption 8.14; it can be computed as in the proof of Theorem 8.17. The

following observation then shows how to construct hedging strategies for C from the hedge

portfolios for X and Y . Suppose that the hedge portfolios for X and Y in terms of domestic

assets HX
i and HY

i for which we assume the existence of liquid markets are given by

PX
t =

LX∑

i=1

δXi (t)HX
i and P Y

t =
LY∑

i=1

δYi (t)H
Y
i .

Then the hedge portfolio for the exchange option on X and Y in terms of HX
i and HY

i is

given by

Pt =
LX∑

i=1

N (d1t ) · δXi (t)HX
i −

LY∑

i=1

N (d2t ) · δYi (t)HY
i .

The application of this principle is illustrated in certain examples presented below.

8.4.3 Options on Lognormal Claims: Examples

Now we want to use Theorem 8.17 in order to price a number of practically relevant

contracts.

Currency Options: The payoff of a plain vanilla currency option equals [eT − K]+.

Define the domestic assets X := e · pf (·, T ) and Y := Kpd(·, T ); the parameters of their

price processes can be read off from the asset price dynamics and are given by X0 =

e0p
f (0, T ), ηX(t) = ηe(t) + ηf (t, T ) and Y0 = Kpd(0, T ), ηY (t) = ηd(t, T ), respectively.

Since pd(T, T ) = pf (T, T ) = 1 the option’s payoff equals [XT − YT ]
+, and its price can be

computed by means of Theorem 8.17. We obtain

Ct = etp
f (t, T )N (d1)−Kpd(t, T )N (d2) with

d1 =
ln(etp

f (t, T )/pd(t, T ))− lnK +
∫ T
t |ηe(s) + ηf (s, T )− ηd(s, T )|2ds√∫ T

t |ηe(s) + ηf (s, T )− ηd(s, T )|2ds

and d2 = d1 −
√∫ T

t |ηe(s) + ηf (s, T )− ηd(s, T )|2ds. Since we assume pf and pd to be

traded assets we can use directly Theorem 8.17 to compute a feasible hedge portfolio.

Currency Converted Options: There are two types of currency converted options. The

payoff of a Foreign Asset/ Domestic Strike Option equals [eTS
f
T −K]+. To deal with this

claim we set X := eSf and notice that this is a lognormal claim with Xt = etS
f
t and

ηX = ηe + ηS
f
. Next set Y := K · pd(·, T ). Theorem 8.17 can now be directly applied to

give the price and the hedging strategy of this contract. Similarly for a Domestic Asset/

Foreign Strike Option with payoff [Sd
T − eTK]+, where K is in foreign currency we use the

lognormal claims X := Sd and Y = Kepf (·, T ).
Guaranteed-Exchange-Rate Options: The payoff of this derivative equals

[ēSf
T − ēK]+, where Sf is a foreign asset and ē some predetermined exchange rate. This

contract can be interpreted as an option to exchange the lognormal claims X and Y with

payoff XT = ēSf
T and YT := ēK. Whereas YT equals the time T value of K · ē units of
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pf (·, T ), there is no traded asset whose value at T is equal to XT . To price and hedge the

option we therefore have to compute the parameters of X. We have

X0 = ēSf
0

pd(0, T )

pf (0, T )
exp

{∫ T

0
|ηf (s, T )|2 + ηS

f

(s) · ηd(s, T ) + ηe(s) · ηf (s, T )−(8.30)

ηS
f

(s) · ηf (s, T )− ηf (s, T ) · ηd(s, T )− ηS
f

(s) · ηe(s)ds
}

ηXs = ηS
f

(s) + ηd(s, T )− ηf (s, T )

The price of the option can now be computed by plugging these parameters into the pricing

formula of Theorem 8.17. Next we want to determine the hedge portfolio for the option.

As XT is not the terminal value of a traded asset we have to go through the procedure

outlined after the proof of Theorem 8.17. To replicate XT by a dynamic trading strategy

we first note that by (8.30) Xt is given by a function X̃ of the domestic assets e ·Sf , pd(t, T )

and e · pf (t, T ) with derivatives ∂X̃/∂eSf = X̃/(etS
f
t ), ∂X̃/∂epf = −X̃/(etp

f (t, T )) and

∂X̃/∂pd = X̃/pd(t, T ). As X̃ is linear homogenous in the prices of these assets, an argument

similar to the proof of the second part of Theorem 8.17 shows that the hedge portfolio for

X equals

δXe·Sf (t) =
Xt

et · Sf
t

, δXe·pf (t) = − Xt

et · pf (t, T )
, δXpd(t) =

Xt

pd(t, T )
.

Options on Forwards: Assume that (X̃t)0≤t≤T̄ is the price process of a lognormal claim.

Consider two points in time T1 and T2 with 0 < T1 ≤ T2. The payoff in T1 of an option

with maturity date T1 on a forward contract on X̃ with maturity date T2 is given by[
X̃T1 − pd(T1, T2)K

]+
. For t < T1 price and hedge portfolio of this contract immediately

follow from Theorem 8.17, if we use the lognormal claims X̃t and Kpd(t, T2).

Options on Interest Rates: We are mainly interested in contracts where one of the

underlying assets is a foreign or domestic LIBOR rate. For a fixed α > 0 (in practice

usually α = 0.25 or α = 0.5) the LIBOR rate Ln(t, α) prevailing in country n over the

period [t, t+ α] is defined by the equation

(1 + α · Ln(t, α))pn(t, t+ α) = 1 ,

that is Ln(t, α) = α−1(1/pn(t, t+ α)− 1).

Caps: Perhaps the most important LIBOR derivatives are caps and floors. A cap is a

portfolio of caplets. The payoff of a caplet with face value V , underlying interest rate

process Ld(t, α), level K and maturity date T + α equals

V · α · [Ld(T, α)−K]+ = V ·
[

1

pd(T, T + α)
− (αK + 1)

]+

As the payoff of this caplet is known already at T we may compute its present value at T

which equals V [1− (αK+1) ·pd(T, T +α)]+. From this we see that the price and the hedge

portfolio for caplets can be inferred directly from Theorem 8.17 if we use the lognormal

claims X = pd(·, T ) and Y = (αK + 1) · pd(·, T + α). Of course this choice of X and

Y reflects the well-known fact that caplets can be considered as options on zero coupon

bonds.
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Appendix A

Mathematical Background

A.1 Conditional Expectation

Given a probability space (Ω,F , P ) and a random variable X. A priori, the best prediction

for X is E(X). If we have additional information about the outcome of the experiment

modelled by (Ω,F , P ), we can give a better prediction of X. The best-possible prediction

– in an L2-sense – is the conditional expectation. We first study this idea in an elementary

setting where information is modelled by a (finite) partition of Ω, which leads us to an ex-

plicit formula for the conditional expectation. In a second step we will use the properties of

this elementary conditional expectation to extend the notion to general probability spaces.

A.1.1 The elementary case

Definition A.1. A set A = {A1, . . . , An} of measurable subsets of Ω with P (Ai) > 0 for

all i is called a partition of Ω if Ai ∩Aj = ∅ for i 6= j and if moreover Ω = A1 ∪ · · · ∪An.

Now consider a partition A of Ω. Suppose that we have the additional information that

the result ω of our random experiment belongs to a particular subset Ai0 ∈ A. Our best

prediction for the rv X is now

E(X|Ai0) :=
1

P (Ai0)
E(X1Ai0

)

The ‘prediction-mechanism’ which gives the prediction of X if we are given the additional

information which set from the partition A actually occurs is therefore given by the random

variable
n∑

i=1

1Ai
(ω)E(X|Ai) =

n∑

i=1

1Ai
(ω)

E(X1Ai0
)

P (Ai)
.

Example: Consider a 2-period binomial model with P (‘up’) = P (‘down’) = 1
2 . Then

E(S2) = S0(
1
4u

2 + 1
2ud + 1

4d
2) = S0(

1
2u + 1

2d)
2. Define the partition A = {A1, A2} with

A1 = {S1 = uS0} and A2 = {S1 = dS0}, i.e. the partition is formed by the value of the

stock-price at t = 1. Then the forecast of S2 given the information contained in A is given

by

1A1(ω)E(S2|A1) + 1A2(ω)E(S2|A2) = 1A1(ω)S0

(
1

2
u2 +

1

2
ud

)
+ 1A2(ω)S0

(
1

2
ud+

1

2
d2
)

.
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Obviously, this forecast differs depending on whether A1 or A2 actually occurs in t = 1.

Formally, the additional information is described by the σ-field FA generated by the par-

tition A.

Definition A.2. Given a partition A = {A1, . . . , An} of Ω. The σ-field FA generated by

A is the set of all unifications
⋃k

j=1Aj , Aj ∈ A, k ∈ N.

Remark: Usually the σ-field FA is defined as the smallest σ-field containing all the sets

A1, . . . , An. It is easily seen that the two definitions are equivalent.

Definition A.3. Given a partition A = {A1, ..., An} of Ω with sigma-field FA and a

random variable X. The conditional expectation of X given FA is the random variable

E(X|FA)(ω) =
n∑

i=1

1Ai
(ω)E(X|Ai) =

n∑

i=1

1Ai
(ω)

E(X1Ai
)

P (Ai)
.

Proposition A.4. Given a partition A of Ω and a rv X. The conditional expectation

E(X|FA) has the following properties

(i) E(X|FA) is FA-measurable.

(ii) For every random variable Y which is FA-measurable (i.e. Y is constant on the sets

Ai, i = 1, ..., n) we have E(XY ) = E(E(X|FA)Y ).

Proof. The property (i) is clear, as E(X|FA)is constant on each Aj . As Y is FA-measurable

it is of the form Y =
∑n

i=1 cj1Aj
for constants cj . Hence

E(XY ) =
n∑

i=1

cjE(X1Aj
) =

n∑

i=1

cjP (Aj)
E(X1Aj

)

P (Aj)

= E

(
n∑

i=1

cj
E(X1Aj

)

P (Aj)
1Aj

)
= E(Y E(X|FA)) .

A.1.2 Conditional Expectation - General Case

The explicit definition of the conditional expectation works only if P (Ai) ≥ 0 for all sets

in our partition. However, in continuous models this is usually not the case. We therefore

use the properties of the conditional expectation obtained in Proposition A.4 to define the

conditional expectation in more general situations.

Definition A.5. Given an integrable rvX on (Ω,F , P ) and a sigma-field G ⊂ F . A random

variable Z is called conditional expectation of X given G, Z = E(X|G), if

(i) Z is G-measurable.

(ii) E(Y X) = E(Y Z) for all rvs Y which are G-measurable.

Theorem A.6. There is exactly one random variable Z which satisfies (i), (ii).

The proof can be found in any standard textbook on probability theory.

Examples:
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(1) If G = {∅,Ω} we have E(X|G) = E(X).

(2) If X is G-measurable we have E(X|G) = X

(3) If X1,X2 are independent and G := σ(X2) we get for any bounded measurable func-

tion f that E(f(X1)|G) = E(f(X1)).

Proposition A.7. The conditional expectation has the following properties:

(1) Linearity: E(c1X1 + c2X2|G) = c1E(X1|G) + c2E(X2|G).

(2) If Y is G-measurable we have E(Y X|G) = Y E(X|G).

(3) Projectivity of the conditional expectation: Consider sigma-fields G0 ⊆ G1 ⊆ F . Then

we have E(X|G0) = E(E(X|G1)|G0), in particular E(X) = E(X|G) for every sub-σ-

field G.

Property (3) is often referred to as law of iterated expectations.

Proof. ad 2) We have to check the property (ii) of the definition of the conditional expec-

tation. Let Z be G-measurable. Then

E(Y XZ) = E((Y Z)X) = E(Y ZE(X|G)) = E(Y (ZE(X|G)) ,

as the product (Y Z) is G-measurable.

ad 3) E(X|G0) is obviously G0-measurable. Consider a G0-measurable random variable

Y . As Y is also G1-measurable, we have E(Y (E(X|G1)) = E(XY ). On the other hand

we get from the definition of E(X|G0) that E(XY ) = E(Y E(X|G0)). This shows that

E((X|G1)Y ) = E(Y E(X|G0)) so that Definition (A.5)(ii) holds.
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