
Bounds on European Option Prices under Stochastic

Volatility ∗
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Abstract

In this paper we consider the range of prices consistent with no arbitrage for
European options in a general stochastic volatility model. We give conditions under
which the infimum and the supremum of the possible option prices are equal to the
intrinsic value of the option and to the current price of the stock respectively and
show that these conditions are satisfied in most of the stochastic volatility models
from the financial literature. We also discuss properties of Black-Scholes hedging
strategies in stochastic volatility models where the volatility is bounded.

Keywords: Stochastic Volatility, Option Pricing, Incomplete Markets, Superrepli-
cation.

1 Introduction

A significant part of the recent research in finance has concentrated on building models
for asset price fluctuations that are flexible enough to cope with the known empirical
deficiencies of the geometric Brownian motion model of Black and Scholes. In particular,
there is a growing literature on stochastic volatility models (SV-models) including Hull
and White (1987), Hofmann, Platen, and Schweizer (1992), Heston (1993) or the survey
articles Ball and Roma (1994) or Frey (1997). In this class of models the volatility is
modelled by a stochastic process which is not adapted to the filtration generated by the
Brownian motion driving the asset price process. SV-models are able to capture the
succession of periods with high and low activity we observe in most financial time series.
However, this increase in realism leads to new conceptual problems in the pricing and
hedging of derivatives. It is well-known that SV-models are incomplete, i.e. one can no
longer perfectly replicate the payoff of a typical derivative by a dynamic trading strategy
in the stock and some riskless asset. By the second fundamental theorem of asset pricing
this is equivalent to the fact that the model admits many equivalent martingale measures.
Hence for typical derivatives such as options there are many prices consistent with absence
of arbitrage.1

∗We would like to thank Freddy Delbaen, N. Touzi and H. Pham for helpful remarks and interesting
discussions. We also thank the anonymous referees for their suggestions. Financial support from the
Union Bank of Switzerland (UBS) is gratefully acknowledged.

1Of course the market may still be complete, if there are other options on the underlying asset with
different strike traded in the market. A detailed analysis of market completion by the introduction of
options is carried out in Bajeuz and Rochet (1996).
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In this paper we determine for a large class of SV-models the supremum and the
infimum of the set of possible option prices, i.e. the supremum and the infimum of the
expected value of the terminal payoff of an option under all equivalent martingale mea-
sures. Obviously in an arbitrage-free market a call option is always worth less than the
underlying security. On the other hand we know from Merton’s theorem on the equiva-
lence of European and American call options that the price of a European call option on
some non-dividend paying asset must exceed the intrinsic value. For a general SV-model
we give conditions on the distribution of the average volatility which are equivalent to
supremum and infimum of the set of option prices being equal to these extreme values.
Here our arguments rely strongly on the observation that in a SV-model the asset price
process can be represented as a time-changed Brownian motion. In the second part of
the paper we show that these conditions are satisfied for a large class of SV-models in
which volatility is modelled as a one-dimensional diffusion. This class contains most of
the models that have been considered in the financial literature including Wiggins (1987),
Hull and White (1987), Heston (1993) and Renault and Touzi (1996).

These findings are of importance for the hedging of options in the context of SV-
models. It is easily seen that the minimum initial value of a self-financing strategy
that super-replicates the payoff of a derivative is no smaller than the supremum of the
expected value of the terminal payoff under all equivalent martingale measures2; our
results therefore show that for a large class of SV-models with unbounded volatility
there is no nontrivial super-replicating strategy for options. Similarly, our results on
the infimum of the set of feasible option prices show that for most SV-models there
is no nontrivial sub-replicating strategy either. Hence in most popular SV-models the
concept of super- or sub-replication does not lead to satisfactory answers for the pricing
and hedging of derivative securities. Consequently interesting approaches to the risk
management of derivatives in these models must involve some sort of risk-sharing between
buyer and seller; in particular the seller must necessarily bear some of the “unhedgeable”
volatility risk.

The picture changes, if we study models where the volatility is assumed to be bounded
from above by some constant σmax. As shown by El Karoui, Jeanblanc-Picqué, and
Shreve (1998), in all such models the use of a Black-Scholes strategy corresponding to
the constant volatility σmax induces a superreplicating strategy; see also Avellaneda, Levy,
and Paras (1995) or Lyons (1995) for related results. From an economic viewpoint this
approach appears to be somewhat problematic as this “universal” superhedging strategy
neglects the particular form of the volatility dynamics in a given SV-model. Adding to
the existing literature we provide some justification for the use of this strategy and show
that for a wide class of SV-models where the volatility follows a bounded diffusion process
this strategy is actually the cheapest superhedging strategy for European options.

Related results have been obtained by a number of authors in various contexts. Eber-
lein and Jacod (1997) showed the absence of non-trivial bounds on option prices in a
model where the logarithm of the asset price process is a purely discontinuous Levy pro-
cess with unbounded jumps. Frey (1997) observed that nontrivial bounds on option prices
do not exist in the well-known SV-model of Hull and White (1987). Finally, Cvitanic,
Pham, and Touzi (1997) have independently obtained results which are very similar to
ours. They study the supremum of the set of all arbitrage prices for non-path-dependent
derivatives whose payoff satisfies certain regularity conditions. They are working in a SV-
model where the stock price and the volatility are given by a two-dimensional diffusion

2A deep result from mathematical finance shows that for derivatives with payoff bounded below these
two quantities are actually equal, see e.g. Delbaen (1992), El Karoui and Quenez (1995), or Kramkov
(1996).
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process. Under regularity assumptions they are able to characterize the supremum of the
set of all arbitrage prices as a viscosity super-solution of the Bellman equation associ-
ated to the infinitesimal generator of this two-dimensional diffusion process. From this
characterization they deduce that this supremum is independent of the current volatility
level, decreasing over time and concave in the current stock price. They conclude that
the supremum is given by the smallest concave majorant of the terminal payoff. If the
payoff is convex this is precisely our result.

Cvitanic, Pham and Touzi are able to handle non-convex payoff functions which are
not considered in the present paper, and they also deal with the problem of super-
replication under convex portfolio constraints. On the other hand there analysis is re-
stricted to models where asset price and volatility follow a two-dimensional diffusion
process whereas our general results cover also models with more general volatility dy-
namics such as the model proposed by Naik (1993). Moreover, in order to obtain their
viscosity super-solution characterization they have to impose relatively strong regularity
conditions on the terminal payoff and on the coefficients of the SDE for the asset price
process. This excludes for instance the popular square root model of Heston (1993) which
is covered by our results.

The remainder of the paper is organized as follows: Section

2 The General Criterion

Throughout our analysis we consider a frictionless financial market where securities are
traded continuously, including a risky asset called the stock and a riskless money market
account. We use the money market account as a numeraire thereby making interest rates
implicit to our model. The stock price process is given by a locally bounded nonnegative
semimartingale S defined on some filtered probability space (Ω,F , (Ft), P ) with (Ft)
satisfying the usual conditions. In this paper we are mainly interested in the case where
the evolution of the stock price is described by some stochastic volatility model (SV-
model). In this class of models it is assumed that (Ft) is rich enough to support a Wiener
process Bt and that St is a solution to the equation

(2.1) dSt = StσtdBt + Stµtdt , S0 = x

for suitably integrable adapted processes σt and µt.

Fix a time horizon T <∞. The following two sets of probability measures Q equiva-
lent to P on (Ω,FT ) will be very important:

Me := {Q |Q ∼ P and S is a Q-local martingale }
Q := {Q |Q ∼ P and S is a Q-martingale } .

It is well known that our model precludes arbitrage if and only if the set Me is
nonempty. We make the slightly stronger assumption that also the smaller set Q is
nonempty.3 As shown in Theorem 13 of Delbaen and Schachermayer (1995), the set Q
is nonempty if and only if the claim ST − S0 is maximal, i.e. if and only if there is no
admissible trading strategy that requires an initial investment of S0 and that yields a
terminal value VT ≥ ST with P (VT > ST ) > 0. As nonmaximality of the claim ST − S0

is an undesirable feature of any model used for pricing derivative securities on S, our
assumption that Q is nonempty makes economic sense. According to Theorem 5.2 of

3Sin (1988) gives an example of an SV-model where both Q and Me −Q are nonempty.
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Delbaen and Schachermayer (1997), if the set Q is nonempty it is dense in Me in the
following sense.4

Proposition 2.1. Suppose that S is a locally bounded nonnegative semimartingale and
that Q is nonempty. Then for every Q ∈Me there is a sequence Qn ∈ Q such that

(2.2)

∥∥∥∥dQndP
− dQ

dP

∥∥∥∥
L1(Ω,FT ,P )

→ 0 .

We consider a European call option on the stock with strike K and maturity T , and
denote by CQK its expected payoff under the measure Q ∈Me, i.e. CQK = EQ((ST −K)+).
Now let

CK = sup{CQK : Q ∈ Q} and CK = inf{CQK : Q ∈ Q} .

Using Jensen’s inequality and the martingale property of S we obtain for all Q ∈ Q the
bounds

(2.3) (S0 −K)+ = (EQ(ST )−K)+ ≤ CQK ≤ S0.

Hence we have the estimate (S0 −K)+ ≤ CK ≤ CK ≤ S0.

Remark 2.2. It follows easily from Proposition

As mentioned already in the introduction, the quantities CK and CK are of impor-
tance for the hedging of options. Results from El Karoui and Quenez (1995) and Kramkov
(1996) imply that CK is the minimum initial value of an admissible self-financing strategy
that super-replicates the payoff of the call option. Similarly, by imposing extra integrabil-
ity conditions on the admissible strategies, it is possible to show that CK is the maximum
initial value of a trading strategy that sub-replicates the call; see El Karoui and Quenez
(1995) for details. The following two results provide conditions under which the quan-
tities CK and CK are equal to their extreme values S0 and (S0 − K)+ respectively, in
which case there is no non-trivial super- or sub-replicating strategy for the option.

Proposition 2.3. Let S be a locally bounded nonnegative semimartingale such that the
set Q of equivalent martingale measures is nonempty. Then the following four conditions
are equivalent:

i) There exists some K∗ > 0 such that CK∗ = S0.

ii) There exist Q1, Q2, . . . ∈Me such that the law of ST under Qn converges weakly to
δ0 (the Dirac-measure in 0).

iii) There exist Q1, Q2, . . . ∈ Q such that the law of ST under Qn converges weakly to
δ0.

iv) CK = S0 for all 0 < K <∞ .

If S follows a SV-model, i.e. if the dynamics of S are of the special form (, each of the
above statements is equivalent to

v) There exists a sequence of probability measures Q1, Q2, . . . ∈ Me such that for all
constants L ∈ R+

(2.4) Qn

(∫ T

0
σ2
t dt > L

)
→ 1 as n→∞ .

4We are very grateful to Freddy Delbaen for bringing this result and its implications for our analysis
to our attention.
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Proposition 2.4. Let S be a locally bounded nonnegative semimartingale such that the
set Q of equivalent martingale measures is nonempty. Then the following four statements
are equivalent:

i) CS0 = 0

ii) There exist Q1, Q2, . . . ∈Me such that the law of ST under Qn converges weakly to
δS0.

iii) There exist Q1, Q2, . . . ∈ Q such that the law of ST under Qn converges weakly to
δS0.

iv) CK = (S0 −K)+ for all 0 < K <∞ .

If the dynamics of S are given by form ( each of the above statements is equivalent to

v) There exists a sequence of probability measures Q1, Q2, . . . ∈ Me such that for all
constants L ∈ R+

(2.5) Qn

(∫ T

0
σ2
t dt > L

)
→ 0 as n→∞ .

Remark 2.5. The most important result in Propositions

An easy proof of the implication v) =⇒ iv) that draws directly on this intuition can be
given for SV-models where, conditional on the realization of the volatility path (σt)0≤t≤T ,
the asset price is lognormally distributed under a sequence Qn of martingale measures
satisfying v). In that case the expected values CQnK can be represented as mixture of
Black-Scholes prices, and the result follows immediately from v); see e.g. Frey (1997)
for details. However, in many SV-models the asset price is not lognormally distributed
conditionally on the volatility, which is why our proof is based on a different idea; see
Remark

Remark 2.6. The key idea behind the proof of the equivalence of ii) and v) is the use
of a stochastic time change

St = S0 exp(B〈M〉t − 1/2〈M〉t) =: S0Ut ,

where 〈M〉t :=
∫ t

0 σ
2
sds is the quadratic variation of the local martingale Mt :=

∫ t
0 σsdWs,

and where B is a Qn-Brownian motion w.r.t. a new filtration (Gt); see also ( below.
U is therefore a Qn-geometric Brownian Motion adapted to (Gt) and CQnK equals the
Black-Scholes price of a call with strike price K and random maturity date 〈M〉T . As
this maturity date tends to +∞ or 0 the Black-Scholes price tends to S0 or (S0 −K)+

respectively.

Remark 2.7. Our results allow us to draw conclusions on the cheapest superhedging
strategy for certain other derivatives as well. Consider for instance any bounded convex
payoff function g. Obviously g(x) ≤ g(0) for all x > 0. Now Proposition

i) =⇒ ii). By assumption there is a sequence Qn ∈ Q such that EQn((ST −K∗)+)→
S0. Hence we get from the put-call-parity and the fact that S is a Qn-martingale

EQn((K∗−ST )+) = EQn(K∗−ST + (ST −K∗)+) = K∗−S0 +EQn((ST −K∗)+)→ K∗ ,

as n→∞. This immediately implies that for all δ > 0 we have that Qn(ST > δ)→ 0 as
n→∞ and hence iii) and therefore also ii).
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ii) =⇒ iii). It suffices to show that for every ε > 0 there is some Q ∈ Q such that
Q(ST > δ) < ε. Let ε, δ be given. By ii) there is some Q̃ ∈ Me with Q̃(ST > δ) < ε/2.
By Proposition

iii) =⇒ iv). This implication follows again from the put-call-parity, as iii) implies
that for every put option limn→∞E

Qn((K − ST )+) = K.

iv) =⇒ i) trivial.

Now assume that under P the stock price process S is given by a SV-model (a solution
to the SDE (). By Girsanov’s theorem there exists for every Q ∈ Me a new Q-Wiener
process Wt such that St satisfies

(2.6) dSt = StσtdWt , S0 = x.

We define Mt =
∫ t

0 σsdWs, a Q-local martingale with quadratic variation process 〈M〉t =∫ t
0 σ

2
sds. Itô’s formula yields that S is given by St = S0 exp(Mt − 1

2〈M〉t).
v) =⇒ ii). By definition of MT we have for every δ > 0

(2.7) Qn(ST > δ) = Qn(log(ST ) > log(δ)) = Qn

(
MT −

1

2
〈M〉T > log

(
δ

S0

))
.

Levy’s characterization of continuous local martingales implies that the process

(2.8) Bt = Mft , where ft = inf{s > 0 :

∫ s

0
σ2
udu ≥ t}

is a Brownian motion relative to the new filtration (Gt) = (Fft), and Mt = B〈M〉t ; see
e.g. Section 3.4.B of Karatzas and Shreve (1988). By the law of large numbers for the
Brownian motion we can find for every ε > 0 some L large enough such that

Q

(
∀t ≥ L, Bt

t
<

log(δ/S0)

t
+

1

2

)
> 1− ε

2
for all n ,

and by assumption we find n large so that Qn(〈M〉T > L) > 1− ε/2. Hence

Qn(ST > δ) ≤ Qn(ST > δ, 〈M〉T > L) +Qn(〈M〉T ≤ L)

≤ Qn(B〈M〉T −
1

2
〈M〉T > log

(
δ

S0

)
, 〈M〉T > L) +

ε

2

≤ Qn(
Bt
t
>

1

2
+

log(δ/S0)

t
for some t > L) +

ε

2
< ε .

Therefore, for any δ > 0 we have Qn(ST > δ)→ 0 as n→∞ which is equivalent to ii).

ii) =⇒ v). We prove this claim by contradiction. Suppose there are L and ε > 0
such that Qn(〈M〉T > L) < 1− ε for infinitely many n. We have for these n

Qn(ST ≤ K) ≤ Qn(ST ≤ K, 〈M〉T ≤ L) +Qn(〈M〉T > L) .

Now we have the following estimate for the first term on the right:

Qn(ST ≤ K, 〈M〉T ≤ L) = Qn

(
B〈M〉T ≤ log(

K

S0
) +

1

2
〈M〉T , 〈M〉T ≤ L

)
≤ Qn

(
inf

0≤t≤L
Bt ≤ log(

K

S0
) +

1

2
L

)
< ε/2 for K small enough,
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so Qn(ST > K) > ε/2 for infinitely many n which contradicts ii). .

Proof of Proposition

i) =⇒ ii). For Q ∈ Q the put-call-parity yields that EQ((ST − S0)+) = EQ((S0 −
ST )+). Now let Qn ∈ Q be a sequence with

lim
n→∞

EQn((ST − S0)+) = lim
n→∞

EQn((S0 − ST )+) = 0 .

Then for any δ > 0 we get from the first submartingale inequality

Qn

(
sup

0≤t≤T
(St − S0) > δ

)
≤ EQn ((ST − S0)+)

δ
→ 0(2.9)

as n→∞ and also

Qn

(
inf

0≤t≤T
(St − S0) < −δ

)
≤ EQn ((S0 − ST )+)

δ
→ 0(2.10)

as n→∞ which implies iii) and hence ii).

ii) =⇒ iii). This follows as in the proof of Proposition

iii) =⇒ iv). This implication follows again from the put-call-parity, as iii) implies
that for every put option limn→∞E

Qn((K − ST )+) = (K − S0)+.

Now consider the case where S is given by the SV-model (. We first show that v)
implies iii). Suppose there exist Q1, Q2, . . . ∈Me that satisfy (. Then, for any δ > 0 and
every ε > 0 we have

Qn(ST < S0 − δ) ≤ Qn(ST < S0 − δ, 〈M〉T ≤ L) +Qn(〈M〉T > L)

≤ Qn
(
B〈M〉T −

1

2
〈M〉T < log

(
S0 − δ
S0

)
, 〈M〉T ≤ L

)
+Qn(〈M〉T > L)

≤ Q
(

inf
0≤t≤L

Bt −
1

2
L < log

(
S0 − δ
S0

))
+Qn(〈M〉T > L) < ε ,

provided L > 0 small enough such that the first probability is less than ε/2 and then n
large enough such that the second probability is less than ε/2. Similarly

Qn(ST > S0 + δ) ≤ Q

(
sup

0≤t≤L
Bt > log

(
S0 + δ

S0

))
+Qn(〈M〉T > L) < ε ,

which together imply (ii).

Conversely assume that i) is satisfied and letQn be a sequence with limn→∞E
Qn((ST−

S0)+) = 0. Define τδ = inf{t > 0 : |St − S0| ≥ δ}. By ( and ( for arbitrary ε > 0 we can
find n large such that Qn(τδ < T ) < ε. Hence we get

Qn(〈M〉T > L) ≤ Qn(〈M〉T > L, ∀t ≤ T |St − S0| < δ) + ε

= Qn(〈M〉T∧τδ > L) + ε

≤ Qn(〈S〉T∧τδ > L(S0 − δ)2) + ε

≤ EQn(〈S〉T∧τδ)
L(S0 − δ)2

+ ε

=
EQn((ST∧τδ − S0)2)

L(S0 − δ)2
+ ε

≤ δ2

L(S0 − δ)2
+ ε

for arbitrarily small δ, ε > 0 and hence Qn(〈M〉T > L)→ 0 as n→∞.
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3 The Case of Diffusion Volatility

We now consider a large class of stochastic volatility models where the instantaneous
variance follows itself a diffusion process. As we are only interested in the range of possible
arbitrage prices for options it is legitimate to model the asset price dynamics directly
under a local martingale measure Q. We assume that — possibly after an equivalent
change of measure — S satisfies the equations

dSt = St|vt|1/2dW (1)
t , S0 = 1(3.1)

dvt = a(vt)dt+ η1(vt)dW
(1)
t + η2(vt)dW

(2)
t , v0 = σ2

0(3.2)

for Wt = (W
(1)
t ,W

(2)
t ) a Wiener process under Q. This implies that St is a positive

local martingale under Q (the semimartingale exponential of
∫
|vt|1/2dW (1)

t ) and vt is a
one-dimensional diffusion.

We will impose a further set of conditions on the coefficients:

A0) The SDE ( has a strictly positive, non-exploding solution.

A1) The real functions a, η1, η2 are locally Lipschitz in R+, and b(x) =
√
η2

1(x) + η2
2(x)

belongs to C1(R+).

A2) η2(v) > 0 for all v ∈ R+. This condition ensures that volatility innovations and
asset returns are not perfectly correlated which in turn implies that the market is
incomplete.

Remark 3.1. The above class of volatility models contains the models considered by
Wiggins (1987), Hull and White (1987), Heston (1993) and Renault and Touzi (1996) as
special cases. Note that in contrast to most of these papers we allow for nonzero η1 and
hence for nonzero correlation between volatility innovations and asset returns.

We will moreover assume that the set Q of equivalent martingale measures for S is
nonempty. The following Proposition from Sin (1988) is very helpful when it comes to
verifying this condition for a particular model. Sin (1988) shows that in general the
solution to (, ( can be a strictly local martingale, so checking the martingale property of
S is not just a purely technical exercise.

Proposition 3.2. Suppose that weak uniqueness holds for the following SDE

(3.3) dṽt = a(ṽt)dt+ η1(ṽt)|ṽt|1/2dt+ η1(ṽt)dW
(1)
t + η2(ṽt)dW

(2)
t , ṽ0 = σ2

0 .

Then St defined in (

Theorem 3.3. Suppose that assumptions A0), A1), A2) are satisfied and that the set
Q of equivalent martingale measures is non-empty. Then the range of possible prices
for the European call option with strike K and maturity T is given by the open interval
((S0 −K)+, S0).

Proof of Theorem

While the actual proof of Theorem

For n ∈ Z we define the probability measure Qn by its Radon-Nikodym derivative with
respect to Q,

dQn
dQ

= exp

(
nW

(2)
T − 1

2
n2T

)
.
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Now the process (S, v)t solves the SDE

dSt = St|vt|1/2σdW (1)
t , S0 = 1(3.4)

dvt = a(vt)dt+ nη2(vt)dt+ η1(vt)dW
(1)
t + η2(vt)dW

(n,2)
t v0 = σ2

0 ,(3.5)

for a Qn-Wiener process W
(n)
t = (W

(1)
t ,W

(n,2)
t ). In particular S is a Qn-local martingale.

Now consider the solution v
(n)
t to the following one-dimensional SDE

(3.6) dv
(n)
t = (a(v

(n)
t ) + nη2(v

(n)
t ))dt+ b(v

(n)
t )dBt , v

(n)
0 = x

with a, η2 and b satisfying A1), A2) and with Bt a one-dimensional Wiener process on a
probability space (Ω,F , P ). We will explicitly use Px to denote the law of the process v(n)

starting at v
(n)
0 = x. Observe that under Qn the process v satisfies this equation with an

appropriate Qn Brownian motion B(n) and x = σ2
0. Hence there exists a non-exploding

strictly positive weak solution to ( for all n = 0, 1, 2, . . ., and then the locally Lipschitz
property of the coefficients implies the existence and uniqueness of a strong solution. As
shown below Theorem

Lemma 3.4. Assume again that for n ∈ Z the SDE ( has a global solution which is
strictly positive. Then the following holds:

i) For every L > 0, T > 0 and ε > 0 there exists N2 ∈ Z+ such that

P2L(v
(n)
t > L for all 0 ≤ t ≤ T ) > 1− ε for all n ≥ N2.

ii) For every L > 0, T > 0 and ε > 0 there exist N2 ∈ Z− such that

PL/2(v
(n)
t < L for all 0 ≤ t ≤ T ) > 1− ε for all n ≤ N2.

Using these Lemmas the proof of Theorem

For a proof of ( we first choose some L such that Px((v(0))sup
T > L) < ε/2, where

vsup
T = sup0≤t≤T |vt|. It follows from the comparison theorem for SDE’s that for all n < 0

we have (v(n))sup
T < (v(0))sup

T and hence also Px((v(n))sup
T > L) < ε/2. Now

P

(∫ T

0
v

(n)
t dt < M

)
> P

(∫ T

0
(v

(n)
t ∧ L)dt < M

)
− P ((v(n))sup

T > L) .

Let L = M
2T . On the set {v(n)

t < L for M
2L ≤ t ≤ T} we estimate∫ T

0
(v

(n)
t ∧ L)dt ≤

(
L
M

2L

)
+

(
T − M

2L

)
L ≤M ,

hence

Px

(∫ T

0
(v

(n)
t ∧ L)dt < M

)
≥ Px

(
λ

(n)

L/2
<
M

2L
, v

(n)
t < L on [λ

(n)

L/2
, T ]

)
≥ Px

(
λ

(n)

L/2
<
M

2L

)
PL/2

(
τ

(n)

L
> T

)
,

again by the strong Markov property, and the result follows from Lemmas

Proof of Lemma
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Part i): Define the function F (v),
∫ v

1
1
b(x)dx. As b(x) > 0 and C1 on (0,∞), the

function F is well-defined, strictly increasing and C2 on (0,∞). We get from Itô’s formula

F (v
(n)
t ) = F (v

(n)
0 ) +

∫ t

0

a(v
(n)
u ) + nη2(v

(n)
u )

b(v
(n)
u )

− 1

2
b
′
(v(n)
u )du+Bt ,

i.e. the process F (v(n)) is a Brownian motion with (stochastic) drift. The proof now uses
the fact that this drift tends to ∞ as n → ∞ uniformly on compacts: Find δ > 0 such
that Px((v(0))inf

T < δ) < ε/2 (such δ exists as v(0) is strictly positive). By the comparison
theorem for SDEs we get that for n > 0

Px((v(n))inf
T < δ) < Px((v(0))inf

T < δ) < ε/2 .

This implies that

Px

(
τ

(n)
L > T

)
≤ Px

(
F (v

(n)
T ) < F (L)

)
≤ Px

(
F (v

(n)
T ) < F (L), (v(n))inf

T ≥ δ
)

+ ε/2 .

Now by A1) and A2) we can find constants M0 and M1 with M1 > 0 such that

∀v ∈ [δ, L]
a(v)

b(v)
− 1

2
b
′
(v) > M0 and

η2(v)

b(v)
> M1 .

Now Px(−Bt > F (v0)− F (L) + TM0 + nTM1) < ε/2 for n sufficiently large. Hence

Px(τ
(n)
L > T ) ≤ Px(−Bt > F (v0)− F (L) + TM0 + nTM1) + ε/2 < ε .

Part ii): Essentially this part of the Lemma follows by applying i) to the process y
(n)
t ,1/v

(n)
t .

We have

Px(λ
(n)
L < T ) = Px(v

(n)
t < L for some t ∈ [0, T ]) = Px(1/v

(n)
t > L−1 for some t ∈ [0, T ]) .

Now, writing vt for v
(n)
t we get by Itô’s formula

(3.7) d(v−1
t ) = −v−2

t (a(vt)− v−1
t b2(vt))− nη2(vt)v

−2
t dt− v−2

t b(vt)dBt .

Defining new functions ã(y) = −a(y−1)y2 + b2(y−1)y3, η̃2(y) = η2(y−1)y2 and b̃(y) =

b(y−1)y2 we get from ( that y
(n)
t ,1/v

(n)
t satisfies the SDE

(3.8) dy
(n)
t = (ã(y

(n)
t )− nη̃2(y

(n)
t ))dt+ b̃(yt)

(n)dBt ,

and applying the result of part i) to ( yields the claim.

Proof of Lemma

We consider only statement ii); i) follows as in the proof of Lemma

To show that the first term is less than ε/2 observe that we can replace ṽ
(n)
t by the

stopped process ṽ
(n)
t∧τ where τ = inf{t > 0 : v 6∈ [δ/2, 2L]}. Therefore we shall assume

that ṽ
(n)
t takes values in the interval [δ/2, 2L]. For every n we consider the socalled

scale function p(n) of ṽ(n). p(n) is a strictly increasing function which solves the ordinary
differential equation (p(n))

′
(a + η2nφ) + 1

2(p(n))
′′
b2 = 0 . Hence, by Itô’s formula the

process p(n)(ṽ(n)) is a local martingale. In our case the scale function is given by

p(n)(v) =

∫ v

L/2
exp

(
−2

∫ x

L/2

a(u) + η2(u)nφ(u)

b2(u)
du

)
dx ,
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see also Section 5.5.B of Karatzas and Shreve (1988). As ṽ
(n)
t ∈ [δ/2, 2L] we know that

p(n)(ṽ
(n)
t ) is bounded for every n so it is in fact a real martingale. Now the large negative

drift of ṽ
(n)
t implies that the scale function is rapidly increasing on the interval (L/2, L);

in particular our assumptions on η2, a and b imply that limn→−∞ p
(n)(L) =∞. Now we

obtain

PL/2((ṽ(n))sup
T > L, (ṽ(n))inf

T > δ) ≤ PL/2((p(n)(ṽ(n)))sup
T > p(n)(L))

≤
EL/2((p(n)(ṽ

(n)
T ))+)

p(n)(L)
,

where the last inequality follows from the first submartingale inequality. Now the martin-

gale property of p(n)(ṽ
(n)
t ) and the definition of the scale function implies that

EL/2((p(n)(ṽ
(n)
T ))) = p(n)(L/2) = 0 .

Hence
EL/2((p(n)(ṽ

(n)
T ))+)

p(n)(L)
=
EL/2((p(n)(ṽ

(n)
T ))−)

p(n)(L)
≤ |p

(n)(δ/2)|
p(n)(L)

.

Note that on the set (0, L/2) p(n) is independent of n by the definition of the drift of ṽ(n).
Hence for n→ −∞ the last fraction tends to zero.

In order to show that the second term in ( is small, we consider the solution xt to the
following SDE with reflection at L/2 (for an introduction to equations with reflection see
for example El Karoui and Chaleyat-Maurel (1978))

dxt = a(xt)dt+ b(xt)dBt − dKt x0 = L/2

with xt ≤ L/2 for all t, and Kt is a continuous increasing process with
∫ T

0 (xt−L/2)dKt =
0. The locally-Lipschitz property of the coefficients implies the existence and uniqueness
of the solution, which is also a strong Markov process.

Observe that, by the definition of φ, xt and ṽ
(n)
t satisfy the same equation on the inter-

val (0, L/2) for all n, therefore xt must be positive with probability 1 and the uniqueness

of the solution to the reflection problem implies ṽ
(n)
t ≥ xt hence

PL/2((ṽ(n))inf
T < δ) ≤ PL/2(xinf

T < δ)→ 0

as δ → 0 which takes care of the second term in ( and we can conclude that for δ small
and n large PL/2((v(n))sup

T > L) < ε.

4 Models with Bounded Volatility

We now consider superhedging strategies for European call and put options in a SV-model
of the form ( where the volatility is bounded from above. In this case we are able to obtain
superhedging strategies which are at least potentially of practical interest. We assume that

A3) There is a constant σmax <∞ such that a.s. σt < σmax for all t.

Remark 4.1. In practice it might be impossible to determine a finite upper bound on
the asset price volatility which holds true with a probability of 100 percent. In that case
one could choose σmax as some upper quantile of the volatility distribution such that
σmax is exceeded by the realized volatility path only with a given small probability. The
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superhedging strategy will work for all volatility path (σt)0≤t≤T for which A3) holds; see
Proposition

Proof:

By Itô’s formula,

c(t, St) = c(0, S0) +

∫ t

0

∂c(s, Ss)

∂S
dSs +

∫ t

0

(
∂c(s, Ss)

∂t
+

1

2
σ2
t S

2
s

∂2c(s, Ss)

∂S2

)
ds .

Now by the Black-Scholes PDE

∂c(s, Ss)

∂t
= −1

2
σ2

maxS
2
s

∂2c(s, Ss)

∂S2
.

Substituting this into the last integral on the r.h.s. yields the formula for the tracking
error. Moreover, c(s, Ss) being convex in S, its second derivative is always positive. Hence
by (

Note that this superhedging strategy is universal in the sense that it works for all SV-
models satisfying A3). It is of course interesting to know, if for a given parametric SV-
model superhedging strategies can be found which are less expensive than the universal
superhedging strategy based on Black-Scholes hedging with volatility σmax. We now give
a criterion analogous to Proposition

5 Conclusion

In this paper we studied the range of prices consistent with no-arbitrage for European op-
tions in a SV-model. The supremum and infimum of this range are of financial interest as
they give the initial prices of the cheapest superreplication strategy and the most expen-
sive subreplication strategy respectively for the option. Our main result is that in most
SV-models with unbounded diffusion-volatility the cheapest superreplication strategy for
a European call option is to “buy the stock”. Hence in these models the concept of su-
perreplication is of little practical use, and different approaches for the risk-management
of derivatives under stochastic volatility are called for. One possible approach is to in-
troduce (subjective) bounds on the volatility. We proved that in many SV-models where
the volatility is bounded above by some constant σmax the value process of the cheapest
superreplication strategy for European options is given by the Black-Scholes price corre-
sponding to the volatility σmax. This result shows that hedging under the assumption of
bounded volatility is at least potentially of practical relevance.

There are of course other approaches to the risk-management of derivatives under
stochastic volatility. We refer the reader to Föllmer and Schweizer (1991) or Hofmann,
Platen, and Schweizer (1992) for information about the concept of risk-minimization
and applications to stochastic volatility models and to Pham and Touzi (1996) for an
equilibrium analysis of option pricing in SV-models.
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113–144.

Eberlein, E., and J. Jacod (1997): “On the Range of Option Prices,” Finance and
Stochastics, 1(2), 131–140.

El Karoui, N., and M. Chaleyat-Maurel (1978): “Un Problème de Réflexion et ses
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