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Abstract
We study Markov-modulated affine processes (abbreviated MMAPs), a class of Markov processes

hat are created from affine processes by allowing some of their coefficients to be a function of an
xogenous Markov process X . MMAPs largely preserve the tractability of standard affine processes, as
heir characteristic function has a computationally convenient functional form. Our setup is a substantial
eneralization of earlier work, since we consider the case where the generator of X is an unbounded
perator. We prove existence of MMAPs via a martingale problem approach, we derive the formula for
heir characteristic function and we study various mathematical properties.

2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

SC: 60J25; 60J35; 91B70
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1. Introduction

A standard affine process Y in the sense of [17] can be characterized as a strong Markov
rocess whose generator is given in terms of so-called admissible parameters that form
ffine functions of the state y of the process, cf. [37]. Markov-modulated affine processes or
MAPs are a natural extension where the constant (non y-dependent) part of these affine

unctions depends on some exogenous Markov process X . A simple example is provided by
CIR process with Markov modulated mean reversion level. Formally, we introduce Markov-
odulated affine processes as a class of Markov processes, which we define in terms of the

enerator L: we assume that L is a linear operator of the form

L f (x, y) = LX f (x, y) + LY |X (x) f (x, y), f ∈ Dom(L) ⊂ C0(DX
× DY ).
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Here, LX (acting on x ↦→ f (x, y)) is the generator of a Feller process X with state space
X

⊂ Rd , and for fixed x the operator LY |X (x) (acting on y ↦→ f (x, y)) is the generator of an
affine process Y with state space DY

⊂ Rn . Thus, conditional on the path of X , the process Y
can be regarded as a time-inhomogeneous affine process.

Markov-modulation adds flexibility for (financial) modelling to the class of affine processes.
At the same time MMAPs largely preserve the tractability of the latter class, as the character-
istic function of their marginal distributions can be computed via an extension of the Riccati
equations for standard affine processes. More precisely, for an MMAP it holds that

Ez

[
e⟨u,Yt ⟩

]
= ϕ(t, x; u)e⟨ψ(t,u),y⟩, z = (x, y) ∈ DX

× DY . (1.1)

he function ψ is characterized by the same system of generalized Riccati equations as in the
tandard affine case, whereas ϕ is closely connected to a Cauchy problem involving ψ and the
enerator LX of X .

Simple regime-switching MMAPs where X is a finite state Markov chain have been used
reviously in finance. For instance, [25] considers bond pricing in affine short rate models with
egime switching; [30] uses a portfolio credit risk model with default intensities given by a CIR
rocess with regime switching to analyse securitization products backed by European sovereign
onds, and [24] studies option pricing for regime switching pure jump Lévy processes. The
ecent contribution [56] unifies the previous examples and provides a theory of MMAPs for the
ase where the generator LX is a bounded operator so that X is a finite-activity jump process.

The present paper is a substantial extension of [56]: we make only very mild assumptions
n LX and we allow for discontinuities in the coefficients of LY |X (x). In particular, LX may
e unbounded, so that models where X is a (jump-)diffusion or a jump process with infinite
ctivity fall within the scope of our analysis. This is relevant for financial applications. There

X often represents state variables such as market sentiment or the economic environment,
nd it may be more natural to model the dynamics of these state variables by continuous
rocesses and not by processes with piecewise constant trajectories; see also the financial
pplications discussed in Section 6. The extension to unbounded generators LX is also
nteresting from a mathematical viewpoint. In that case the generator L of (X, Y ) does not
atisfy the regularity conditions commonly imposed in the construction of Markov processes
ia perturbation arguments, so that classical results from semigroup theory (cf. [48, Section 3.3]
r [27, Section 1.7]) are not readily applicable. To deal with this issue we choose a probabilistic
pproach and use weak convergence results to construct solutions to the martingale problem
ssociated with L. From relation (1.1) we can further determine the marginal distributions of
X, Y ) jointly. Classical results for martingale problems thus guarantee the Markov property and
onsequently the existence of MMAPs. We go on and analyse further mathematical properties
f MMAPs such as the Feller property, the existence of real exponential moments and the
emimartingale characteristics of MMAPs. Finally, in order to illustrate the wide range of
odelling possibilities offered by MMAPs we discuss several applications of MMAPs in
nance.

Our analysis builds on the formal treatment of affine processes provided in [17]. Moreover,
e make extensive use of the comprehensive treatment of Markov processes and martingale
roblems in [27]. We further contribute to the list of extensions to affine processes that has
tarted to grow ever since the seminal work of [17]. [28] introduces time-inhomogeneous affine
rocesses. [12] considers matrix-valued affine processes and [13] subsequently generalizes the
tate space by considering affine processes on symmetric cones. More recently, [38] studies

setup where the jump times of affine processes are allowed to be predictable (so that the
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processes no longer obey stochastic continuity) and [54] discusses infinite dimensional affine
diffusions.

The rest of the paper is organized as follows. Section 2 introduces the necessary technical
reliminaries and the formal notion of MMAPs. In particular, we discuss the specifics of the
perator supposed to act as the generator of our class of processes. In Section 3 we solve
he martingale problem associated with this operator. Section 4 is concerned with the Fourier
ransformation of MMAPs and the associated existence result. Further mathematical properties
f MMAPs are discussed in Section 5. Finally, in Section 6 we highlight the applicability of
MAPs by discussing novel models from mathematical finance.

. Setup

In this section we introduce the necessary notation and we give a formal definition of a
arkov modulated affine process (abbreviated MMAP) via its generator.

.1. Notation and basic concepts

nalysis. Let E be either an open set or the closure of an open set in Ck . Then, Bb(E) is
the space of bounded Borel measurable functions, C(E) (Cb(E)) denotes the Banach space
(equipped with supremum norm ∥·∥∞) of continuous (bounded) functions on E . The complete
subspace

C0(E) = { f ∈ C(E) : ∀ϵ > 0 ∃ K ⊂ E compact : | f | < ϵ on E \ K }

is the space of continuous functions vanishing at infinity. We use Ck(E) to denote the space of
k times differentiable functions f on the interior of E such that all partial derivatives of f up
to order k belong to C(E), and where C∞(E) = ∩k∈NCk(E) and S m

⊂ C∞(Rm) denotes the
Schwartz space of rapidly decreasing functions on Rm . The space Ck

b (E) consists of bounded
k(E)-functions (where the derivatives are bounded as well). The space of functions in Ck(E)

with compact support is Ck
c (E). The set of càdlàg functions on [0,∞) with values in some

space A is denoted by DA. When there is no ambiguity with respect to dimensionality we
write 1 for a vector of ones. Similarly, we use Id to denote the identity. We write bp-limr→a fr

to indicate bounded and pointwise convergence of { fr }r∈I ⊂ Cb(E) for some index set I .
In this paper, a MMAP is defined as a (d + n)-dimensional process Z = (X, Y ) on the

state space D = DX
× DY , where DX is an open (or the closure of an open) set of Rd and

DY
= Rm

+
× Rn−m . Throughout we use x to denote a point in DX and y = (y+, y∗) denotes a

point in DY with y+
∈ Rm

+
and y∗

∈ Rn−m . An element in Cn
= Cm

× Cn−m is denoted
by u = (u+, u∗). We follow the notational conventions established in [17] and introduce
I := {1, . . . ,m} and J := {m +1, . . . , n} along with I(i) := I \{i} and J (i) := {i}∪J . For a
generic k ×k-matrix α = (αi j ) and a k-tuple β = (β1, . . . , βk), we write αI J := (αi j )i∈I, j∈J and
βI := (βi )i∈I for indices I, J ⊂ {1, . . . , k}. For u ∈ Cn , we write fu(x) := e⟨u,x⟩. Throughout
we use the following truncation function χ = (χ1, . . . , χn) : Rn

→ [−1, 1]n given by

χk(ξ ) :=

{
0, if ξk = 0,
(1 ∧ |ξk |)

ξk
|ξk |
, otherwise.

he Borel σ fields on DX , DY and D are denoted by B(DX ), B(DY ) and B(D).
3
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Probability. In order to avoid ambiguities with respect to different notions of Feller semigroups
n the literature, we collect the definitions used in this paper in Appendix A. Since affine
emigroups are in general not conservative, we throughout work on the path space Ω := DD∆ ,
here D∆

:= D ∪ {∆} is the one-point compactification of D with ∆ /∈ D describing the
oint at infinity. We extend any function f on D to D∆ via f (∆) = 0 and we endow Ω with
he Skorohod topology J1. Considering the product structure of the state space, we denote the
anonical process by Z t (ω) := (X t (ω), Yt (ω)) := ωt , t ≥ 0 for ω ∈ Ω . Note that (Ω , J1) is a
olish space and that the corresponding Borel σ -algebra is generated by the evaluation maps,
ee [34, Section VI.1b] for further details. We use (F0

t )t≥0 to denote the filtration generated
y Z and we set F0

:=
⋁

t≥0 F0
t . Note that working on DD∆ is no restriction as [15] shows

hat an affine process always has a càdlàg version. We write P(Ω ) for the set of probability
easures on Ω and Pz ∈ P(Ω ) denotes a measure with Pz(Z0 = z) = 1.

.2. Markov-modulated affine processes

We aim to construct a family of probability measures (Pz)z∈D ⊂ P(Ω ), for which (Z , (Pz))
s a Markov process with the following properties: X modulates the coefficients of the generator
f Y and conditional on the paths of X the process Y is a time-inhomogeneous affine process.
or the characterization of (X, Y ) we rely on the martingale problem approach associated to a

inear operator of the form

L f (x, y) = LX f (x, y) + LY |X (x) f (x, y), f ∈ Dom(L) ⊂ C0(D),

here LX acts on x ↦→ f (x, y) and is the generator of X , and LY |X (x) acts on y ↦→ f (x, y)
nd for fixed x is the generator of an affine process. In the sequel, we outline the specifics of
he operators LX and LY |X (x) as well as of the operator domain Dom(L).

he generator of X. As suggested above, we characterize the process X via the linear operator
X acting on functions in Dom(LX ) which is assumed to be a subset of C0(DX ). The restrictions
e impose on the modulating process are fairly weak as we allow the generator of X to be
nbounded, extending the results of [56] to the case of diffusions and infinitely active jump
rocesses. Throughout we work with the following

ssumption 2.1. The operator (LX ,Dom(LX )) with Dom(LX ) ⊂ C0(DX ) generates a Feller
emigroup, denoted by (P X

t )t≥0. Moreover, (P X
t )t≥0 is conservative and C2

c (DX ) is a core of
LX ,Dom(LX )).

Assumption 2.1 is fulfilled by a large set of different Markov processes, for instance by
onservative affine processes. Note that the operator LX is not time-dependent, i.e. the Markov
rocess X is time-homogeneous. Nevertheless, the extension to the inhomogeneous case is
bvious by extending the process via (t, X t )t≥0. The restriction that (P X

t )t≥0 is conservative
ould be relaxed, albeit at the cost of increased technical complexity particularly in the proofs
f Sections 3 and 4. In the applications we have in mind there is anyhow no need for the
odulating process to have finite life time.

emark 2.2. [51] shows that under the above assumption, the semigroup (P X
t )t≥0 has an

X
xtension to Cb(D ), which is Cb-Feller (cf. Definition A.3). We avoid confusions by denoting

4
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the corresponding semigroup on Cb(DX ) with (P̃ X
t )t≥0. Moreover, we associate with the

b-Feller semigroup a weak generator L̃X via

Dom(L̃X ) =

{
f ∈ Cb(DX ) | ∃g ∈ Cb(DX ) such that bp-lim

t→0+

P̃ X
t f − f

t
= g

}
, (2.1)

L̃X f = bp-lim
t→0+

P̃ X
t f − f

t
, f ∈ Dom(L̃X ). (2.2)

ote that L̃X
|Dom(LX ) = LX , that Dom(L̃X ) is dense with respect to the topology of weak

onvergence on the Banach space (Cb(DX ), ∥·∥∞) and that L̃X is closed with respect to that
opology, cf. [19, Chapter I]. We frequently resort to the operator (L̃X ,Dom(L̃X )), when dealing
ith functions which are not in C0(DX ).

In [17], it is shown that the coefficients of the infinitesimal generator of a generic affine
rocess Y are affine functions of y that can be described by a set of admissible parameters.
or MMAPs the constant part of these affine functions may depend on the state x of the
odulating process. This specification ensures the tractability of the characteristic function

see Section 4). In the following definition we introduce the Markov-modulated analogue of
dmissible parameters; their precise role will be clear in conjunction with Eq. (2.5).

efinition 2.3. We say that the parameters

(a, α, b, β, c, γ,m, µ) = (a(x), α, b(x), β, c(x), γ,m(x), µ), x ∈ DX ,

re x-admissible, if for each fixed x ∈ DX

• a(x) ∈ Semn with aII(x) = 0, and we have ai j (·) ∈ Bb(DX ) for all i, j ∈ I ∪ J ,
• α = (α1, . . . , αm) with each αi ∈ Semn and αi;I(i)I(i) = 0 for all i ∈ I,
• b(x) ∈ DY with bi (·) ∈ Bb(DX ) for all i ∈ I ∪ J
• β ∈ Rn×n such that βIJ = 0 and βiI(i) ∈ Rm−1

+ for all i ∈ I,
• c(x) ∈ R+ with c(·) ∈ Bb(DX ),
• γ ∈ Rm

+
,

• m(x, ·) is a Borel measure on DY
\{0} with ∥M∥∞ := supx∈DX M(x,DY

\{0}) < ∞,
where

M(x, dξ ) := (⟨χI(ξ ), 1⟩ + ∥χJ (ξ )∥2)m(x, dξ ),

and which satisfies for f ∈ Cb(DY ) that

DX
∋ x ↦→

∫
DY \{0}

f (ξ )M(x, dξ ) ∈ Bb(DX ),

• µ = (µ1, . . . , µm) where µi is a Borel measure on DY
\{0} with Mi := Mi (DY

\{0}) <
∞ where

Mi (dξ ) := (⟨χI(i)(ξ ), 1⟩ +
χJ (i)(ξ )

2)µi (dξ ).

he parameters are called strongly x-admissible, if in addition (a(x), b(x), c(x)) are continuous
n x , and if for f ∈ Cb(DY ),

DX
∋ x ↦→

∫
f (ξ )M(x, dξ ) ∈ Cb(DX ).
DY \{0}

5



SPA: 4038

K. Kurt and R. Frey Stochastic Processes and their Applications xxx (xxxx) xxx

c

T

w
a

T
f

w

D
a
L

(
M

M
f
a
i
d
i
c

[28] provides an accessible illustration of the above parameter conditions and their impli-
ations.

In this paper we define a MMAP (X, Y ) in terms of the generator of its associated semigroup.
he following definition is needed to specify the domain of that operator. For f ∈ C2(D) we set

[ f ]1(x, y) := (1 +
y+

)

(
| f (x, y)| +

∇y f (x, y)
+

n∑
k,l=1

⏐⏐⏐⏐∂2 f (x, y)
∂yk∂yl

⏐⏐⏐⏐
)
, (2.3)

[ f ]2(x, y) := |⟨y∗, β∗
∇J f (x, y)⟩|, (2.4)

here β∗
:= (β⊤)JJ ∈ R(n−m)×(n−m). The advantage of the functions [ f ]1 and [ f ]2 in handling

ffine semigroups is best seen in Lemma 6.1 of [28] and in Lemma 8.1 of [17].

he “generator” of (X, Y ). Consider for x-admissible parameters (a, α, b, β, c, γ,m, µ) the
ollowing partial integro differential operator acting on g ∈ C2

b (DY ),

LY |X (x)g(y) =

n∑
k,l=1

akl(x)
∂2g(y)
∂yk∂yl

+ ⟨b(x),∇g(y)⟩ − c(x)g(y)

+

∫
DY \{0}

(g(y + ζ ) − g(y) − ⟨∇J g(y), χJ (ζ )⟩)m(x, dζ )

+

n∑
k,l=1

⟨αI,kl , y+
⟩
∂2g(y)
∂yk∂yl

+ ⟨βy,∇g(y)⟩ − ⟨γ, y+
⟩g(y)

+

m∑
i=1

∫
DY \{0}

(g(y + ζ ) − g(y) − ⟨∇J (i)g(y), χJ (i)(ζ )⟩)y+

i µi (dζ ).

(2.5)

Throughout we consider the linear operator (L,Dom(L)) with

L f (x, y) := LX f (x, y) + LY |X (x) f (x, y) (2.6a)

here f is an element of

Dom(L) :=

{
f ∈ C2(D) ∩ C0(D)

⏐⏐⏐⏐⏐ f (·, y) ∈ Dom(LX ) for all y ∈ DY ,

[ f ]1, [ f ]2 ∈ C0(D)

}
(2.6b)

efinition 2.4. A Markov process (Z , (Pz∈D)) with sub-Markov semigroup (Pt )t≥0 on Bb(D)
nd generator (L ,Dom(L)) is called a Markov-modulated affine process (MMAP) if L|Dom(L) =

. Moreover, we call (Pt )t≥0 a Markov-modulated affine semigroup.
If the parameters underlying L are strongly x-admissible, we refer to (Z , (Pz)z∈D) and

Pt )t≥0 as a strongly regular Markov-modulated affine process and as a strongly regular
arkov-modulated affine semigroup, respectively.

Definition 2.4 differs from the classical definition of affine processes in [17]. There, a
arkov process Y is called affine if its characteristic function for fixed t ≥ 0 is of the

orm eφ(t,u)+⟨ψ(t,u),y⟩, where the functions φ and ψ are assumed to satisfy a crucial regularity
ssumption. This technical condition is both necessary and sufficient for the existence of an
nfinitesimal generator of an affine semigroup (see e.g. Example 1.25.g and the surrounding
iscussion of [5] in the context of Feller processes). [37] show that this regularity assumption is
n fact superfluous, and further prove that stochastically continuous affine processes are Feller,
f. [37, Theorem 3.5]. Thus, the results of [37] show that an affine process can equivalently be
6
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characterized in terms of its generator, so that MMAPs as defined in this paper are a genuine
extension of standard affine processes.

In general, (L,Dom(L)) is not the generator of a strongly continuous semigroup on C0(D).
n the one hand, the possible discontinuities in the x-admissible parameters prevent us from

pplying the theory of Hille–Yosida (cf. [27, Section 1.2]) to construct MMAPs via analytical
emigroup arguments; on the other hand, perturbation arguments are not readily applicable
ince LX may be unbounded.

In fact, a priori it is not even clear if for a given generator LX satisfying Assumption 2.1
nd a given set of x-admissible parameters a MMAP in the sense of Definition 2.4 exists. We
ddress this issue via the associated martingale problem.

efinition 2.5. Consider a linear operator (A,Dom(A)) with Dom(A) ⊂ C0(D). We say
hat (Pz)z∈D ⊂ P(Ω ) solves the martingale problem associated with A, in short {Pz} ∈

P(A,Dom(A)), if for f ∈ Dom(A) and for all z ∈ D the process

f (Z t ) − f (z) −

∫ t

0
A f (Zs)ds, t ≥ 0

s a {Ft }-martingale, where {Ft } is the Pz-completion of {F0
t }. Moreover, the martingale

roblem is said to be well-posed, if for all z any two solutions P1
z ,P2

z ∈ MP(A,Dom(A))
ave the same finite-dimensional distributions.

. The associated martingale problem

In this section we discuss the existence of solutions to the martingale problem associated
ith the linear operator L = LX

+ LY |X (x) defined in (2.6). For fixed x ∈ DX , it follows
rom [17] that an appropriate extension of LY |X (x)|C∞

c (DY ) generates an affine semigroup.
hus, we can regard LX as a perturbation of LY |X (x). Standard results on martingale problems

elated to perturbations typically fall into two categories (cf. [27, Section 4.10.]): either the
erturbation is bounded (corresponding to LX being a bounded operator), or the two operators
re independent, that is LY |X (x) is independent of x . Hence, the main difficulties in dealing
ith MP(L,Dom(L)) stem from the fact that our setup falls in neither of the two categories.
oreover, the popular approach of showing that (L,Dom(L)) satisfies the positive maximum

rinciple (cf. [27, Theorem 4.5.4]) to solve MP(L,Dom(L)) is also not applicable in our setup
ince it would require L to map into C(D).

We tackle these issues via an approximation argument: we approximate LX by a sequence
f bounded operators {LX

k }k∈N and we show that the sequence of solutions to the martingale
roblem for the operator Lk + LY |X (x), k ∈ N, is tight and that every limit point solves the
artingale problem for LX

+ LY |X (x).
We begin with two auxiliary results.

emma 3.1. Dom(L) is a dense subset of C0(D).

roof. As in the proof of [28, Proposition 6.3.], we introduce the following set

Θ0 :=

{
h ∈ C∞(DY )

⏐⏐⏐⏐⏐ h(y+, y∗) =
∫
Rn−m e⟨(v,iq),(y+,y∗)⟩g(q)dq,

v ∈ Cm
−−
, g ∈ C∞

c (Rn−m)

}
.

e further set Θ0 := {gh | g ∈ C2
c (DX ), h ∈ Θ0}. Pick an arbitrary f = gh ∈ Θ0. As

2(DX ) ⊂ Dom(LX ), we have f (·, y) ∈ Dom(LX ) for all y ∈ DY .
c

7
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Note that Θ0 ⊂ S n . Thus, we have (with slight abuse of notation) for an arbitrary multiindex
α ∈ Nn

0 that (1 +
y+

)h ∈ S n and ∇
αh ∈ S n (cf. [58, Section V.2]). Since g has compact

upport we infer that [ f ]1, [ f ]2 ∈ C0(D) and thus, Θ0 ⊂ Dom(L). Since the linear span of Θ0
s dense in C0(D) (see the proof of [28, Proposition 6.3.]), we arrive at the result. □

emma 3.2. Dom(L) is an algebra.

roof. Let f, g ∈ Dom(L). Obviously, f g ∈ C2(D)∩C0(D). Moreover, using the product rule
e get the estimates (see also [17, Section 8])

∥[ f g]1∥∞ ≤ K ∥[ f ]1∥∞ ∥[g]1∥∞ ,

for some constant K . Thus, we have [ f g]1, [ f g]2 ∈ C0(D).
It remains to consider LX ( f g)(·, y) for arbitrary y ∈ DY . Since C2

c (D) is a core of Dom(LX ),
e can find sequences ( fk), (gk) ∈ C2

c (DX ) converging to f (·, y) and g(·, y) w.r.t. ∥·∥
X
L.

ince the fk and gk are bounded it holds that limk→∞ ∥ fk gk − f (·, y)g(·, y)∥∞ = 0 with
fk gk} ⊂ C2

c (DX ) as C2
c (DX ) is an algebra. And since the ∥·∥

X
L-closure of C2

c (DX ) is Dom(LX ),
he result follows. □

Next, we introduce an approximating operator sequence {LX
k }k∈N and we study the martin-

ale problem associated with the operator Lk = LX
k +LY |X (x). Since (LX ,Dom(LX )) generates

strongly continuous semigroup by Assumption 2.1, the Hille–Yosida theorem implies first that
om(LX ) is dense in C0(DX ), second that Range(α Id −LX ) = C0(DX ) for any α > 0 and third

hat LX is dissipative, i.e.
α f − LX f

 ≥ α ∥ f ∥ for any α > 0 and f ∈ Dom(LX ). Moreover,
e consider for each k the following Yosida approximation

LX
k := kLX Gk, (3.1)

here Gk = (k Id −LX )−1. Note that the operator Gk , the resolvent of the semigroup (P X
t )t≥0,

xists by standard results from semigroup theory, see e.g. Section VII.4 of [58]. Then, {LX
k }k∈N

s a sequence of bounded operators, and it holds that limk→∞ LX
k f = LX f (where the limit is

ointwise for f ∈ Dom(LX )), since (LX ,Dom(LX )) generates a strongly continuous semigroup,
ee for instance [27, Chapter 1] for details.

emma 3.3. Consider the operator (Lk,Dom(L)), where

Lk f (x, y) := LX
k f (x, y) + LY |X (x) f (x, y), f ∈ Dom(L).

hen, there exists a solution to the martingale problem associated with (Lk,Dom(L)).

roof. To prove the lemma we rely on [27, Proposition 4.10.2]. Accordingly, we first show
hat for each k there exists a kernel π X

k such that we obtain the following representation for
ny g ∈ Dom(LX ),

LX
k g(x) = k

∫
DX

(g(ζ ) − g(x))π X
k (x, dζ ), ∀x ∈ DX . (3.2)

o establish (3.2) note first that the operator Gk from (3.1) is a bijection from C0(DX )
nto Dom(LX ). Additionally, since Gk is a positive linear operator, we know by the Riesz
epresentation theorem that there exists a kernel π X

k such that for any f ∈ C0(DX )

kGk f (x) =

∫
f (ζ )π X

k (x, dζ ), ∀x ∈ DX .

DX

8
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Pick an arbitrary g ∈ Dom(LX ). Consequently, since (k Id −LX )g ∈ C0(DX ) by the
ille–Yosida theorem, it holds that

kg(x) = (k Id −LX )kGk g(x) =

∫
DX

(k Id −LX )g(ζ )π X
k (x, dζ ), x ∈ DX .

e further have that
∫
DX LX g(ζ )π X

k (·, dζ ) = LX
k g, and so overall we obtain the representa-

ion (3.2) for any g ∈ Dom(LX ).
Next we explain how to apply [27, Proposition 4.10.2]. First note that (3.2) gives for

f ∈ Bb(D) that

LX
k f (x, y) = B f (x, y) :=

∫
DX

( f (ζ, y) − f (x, y))π X
k (x, dζ ).

e define the operator A : Dom(L) → Bb(D) by A f (x, y) = LY |X (x) f (x, y) (the fact that
Y |X (x) f (x, y) is bounded for f ∈ Dom(L) is shown in the proof of Theorem 3.4). Clearly,

or f ∈ Dom(L) it holds that Lk f = B f + A f .
Fix z = (x, y) ∈ D. A solution Pz ∈ P(Ω ) of the martingale problem for A is a measure

n DD∆ such that Pz(X t = x for all t ≥ 0) = 1. Moreover, under Pz , Y is an affine process
ith Y0 = y a.s. and generator LY |X (x); such a measure exists by standard results on affine
rocesses. [27, Proposition 4.10.2] now gives the existence of a solution of the martingale
roblem for B + A and hence the claim. □

Note that in the proof of the above lemma, (3.2) shows that in probabilistic terms, the
pproximation of LX by {LX

k }k∈N corresponds to the approximation of the Feller process X by
sequence of pure jump processes.

heorem 3.4. Consider the linear operator (L,Dom(L)) given by (2.6), where the underlying
arameters (a, α, b, β, c, γ,m, µ) are x-admissible and where LX satisfies Assumption 2.1.
hen there exists a solution to the martingale problem associated with (L,Dom(L)).

roof. For a closed subset U × V ⊂ DX
× DY and a function f ∈ Dom(L), we introduce

∥ f ∥♯;U×V := sup
(x,y)∈U×V

{[ f ]1(x, y) + [ f ]2(x, y)},

here [ f ]1 and [ f ]2 were introduced in (2.3) and (2.4). The proof is divided into two steps.
irst, we show that the measures Pk

z ∈ MP(Lk,Dom(L)), k ∈ N form a tight collection. In
he second step, we collect several classical results to conclude that there exist limit points in
Pk

z )k∈N that solve MP(L,Dom(L)).

tep 1: Tightness. Fix an arbitrary z ∈ D. By Lemma 3.3 there is for each k a measure
k
z ∈ MP(Lk,Dom(L)) with the operator Lk acting on f ∈ Dom(L) via

Lk f (x, y) = LX
k f (x, y) + LY |X (x) f (x, y).

o keep the notation lean, we omit the subscript z in the sequel, i.e. we write Pk and Ek instead
f Pk

z and Ek
z , respectively. We want to show that {Pk

}k∈N is tight.
Fix an arbitrary f ∈ Dom(L). We use Pk

f to denote the distribution of the paths of f (X, Y )
with corresponding expectation Ek

f ) and let (ξt )t≥0 be the coordinate process of real-valued
àdlàg functions, where the σ -algebra F k,ξ is the Pk

f -completion of σ (ξt : t ≥ 0). We denote
he corresponding filtration with {F k,ξ

} . Since Dom(L) is dense in C (D), we know from
t 0

9
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[27, Theorem 3.9.1] that tightness of (Pk)k∈N is equivalent to tightness of (Pk
f )k∈N. We introduce

he following function,

g : Ω → DR ; ω ↦→ f ◦ ω.

Let ϵ ∈ (0, 1]. Set q(e, d) := |e − d|∧1, for any e, d ∈ R. Then, for every A ∈ F k,ξ
t , 0 ≤ t < ∞

and 0 ≤ h ≤ ϵ we have

Ek
f

[
1Aq(ξt+h, ξt )2]

≤

∫
A
(ξt+h − ξt )2dPk

f

=

∫
g−1(A)

( f (X t+h, Yt+h) − f (X t , Yt ))2dPk

=

∫
g−1(A)

Ek [( f (X t+h, Yt+h) − f (X t , Yt ))2
| Ft

]
dPk . (3.3)

ince Pk
∈ MP(Lk,Dom(Lk)) and f, f 2

∈ Dom(Lk) by Lemma 3.2, we get

Ek [( f (X t+h, Yt+h) − f (X t , Yt ))2
| Ft

]
= Ek [ f 2(X t+h, Yt+h) − f 2(X t , Yt ) | Ft

]
− 2 f (X t , Yt )Ek [ f (X t+h, Yt+h) − f (X t , Yt ) | Ft ]

= Ek
[∫ t+h

t
Lk f 2(Xs, Ys)ds | Ft

]
− 2 f (X t , Yt )Ek

[∫ t+h

t
Lk f (Xs, Ys)ds | Ft

]
ext, we handle the integrands. For that recall that the specific form of Lk f (x, y) equals

LX
k f (x, y) +

n∑
k,l=1

akl(x)
∂2 f (x, y)
∂yk∂yl

+ ⟨b(x),∇y f (x, y)⟩ − c(x) f (x, y)

+

∫
DY \{0}

( f (x, y + ζ ) − f (x, y) − ⟨∇J f (x, y), χJ (ζ )⟩)m(x, dζ )

+

n∑
k,l=1

⟨αI,kl , y+
⟩
∂2 f (x, y)
∂yk∂yl

+ ⟨βy,∇y f (x, y)⟩ − ⟨γ, y+
⟩ f (x, y) (3.4)

+

m∑
i=1

∫
DY \{0}

( f (x, y + ζ ) − f (x, y) − ⟨∇J (i) f (x, y), χJ (i)(ζ )⟩)y+

i µi (dζ ). (3.5)

We compactly write the expressions (3.4) to (3.5) as L̃Y f (x, y) and note that L̃Y is the generator
of an affine semigroup with admissible parameters (0, α, 0, β, 0, γ, 0, µ). Thus, by Lemma 8.1
of [17] we know that for (x, y) ∈ D there exists a constant C such that

L̃Y f (x, y) ≤ C

(
∥α∥ + ∥β∥ + ∥γ ∥ +

∑
i∈I

Mi

)
∥ f (x, y + ·)∥♯;DY ,

and since f ∈ C0(D) this in particular implies that there is a constant CY
f such that

L̃Y f (x, y) ≤ CY
f , (3.6)

with the constant CY
f depending on f , but not on k. Furthermore, with LX

k being a bounded
operator, there exists a constant C X

k, f (depending both on f and k) such that

X X
Lk f (x, y) ≤ Ck, f . (3.7)

10
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For the remaining terms we yet again apply Lemma 8.1 of [17] and exploit the structure of
Dom(Lk) to arrive at an inequality of the form

Lk f (x, y) − (LX
k f (x, y) + L̃Y f (x, y)) (3.8)

≤ C
((∥akl∥∞)n

k,l=1

+
(∥bk∥∞)n

k=1

+ ∥c∥∞ + ∥M∥∞

)
∥ f (x, y + ·)∥♯;DY

≤ CY |X
f , (3.9)

or a constant CY |X
f independent of k. Similar considerations also apply for Lk f 2 and so the

nequalities (3.6) to (3.9) imply

Ek [( f (X t+h, Yt+h) − f (X t , Yt ))2
| Ft

]
≤ ϵ(C X

k, f 2 + CY |X
f 2 + CY

f 2 ) + 2ϵ ∥ f ∥∞ (C X
k, f + CY |X

f + CY
f ) Pk-a.s. (3.10)

t remains to consider the behaviour of the constant C X
k, f when taking the supremum over k.

owever, for a Yosida approximation it holds that LX
k f converges uniformly to LX f , which

n turn implies the finiteness of supk

LX
k f


∞
(uniformly convergent bounded functions are

niformly bounded). Consequently, we can find a constant independent of k and we have thus
hown that limt→0 supk∈N Ek

f

[
q(ξ0, ξt )2

]
= 0. By defining γϵ as the right-hand side of (3.10),

e can regard (γϵ)ϵ∈(0,1] as a family of functions γϵ : DR → [0,∞) with the following
properties

sup
k∈N

Ek
f [γϵ] → 0 as ϵ → 0,

Ek
f

[
q(ξt+h, ξt )2 q(ξt , ξt−v)2

| F k,ξ
t

]
≤ Ek

f

[
γϵ | F k,ξ

t

]
Pk

f -a.s.

for all 0 ≤ t ≤ T , 0 ≤ h ≤ ϵ ≤ 1 and 0 ≤ v ≤ ϵ ∧ t . We work on DD∆ , so that the compact
containment condition is trivially fulfilled. Hence, by Theorem 3.8.6 of [27] we conclude that
(Pk

f )k∈N is tight for all f ∈ Dom(L). By Theorem 3.9.1 of [27] together with Lemma 3.1 this
implies that (Pk)k∈N is tight.

Step 2: Limit. Since (Ω , J1) is a Polish space, by Prokhorov’s Theorem the set (Pk)k∈N ⊂ P(Ω )
s relatively compact. So, there exists an accumulation point of {Pk

}, which we denote by P
(with corresponding expectation E). In the sequel we show that P ∈ MP(L,Dom(L)), which
is equivalent to showing that for all f ∈ Dom(L) it holds that

E

[(
f (X t2 , Yt2 ) − f (X t1 , Yt1 ) −

∫ t2

t1

L f (Xs, Ys)ds
) m∏

l=1

hl(Xsl , Ysl )

]
= 0, (3.11)

for all 0 ≤ s1 < · · · sm ≤ t1 ≤ t2 and all h1, . . . , hm ∈ Bb(D). By Lemma 3.7.7 of [27] the
following dense subset of [0,∞),

TP := {t ≥ 0 | P((X t−, Yt−) = (X t , Yt )) = 1},

has an at most countable complement in [0,∞). We pick a subsequence {Pk( j)
} for which

lim j→∞ Pk( j)
= P. Then, by [27, Theorem 3.7.8] the finite dimensional distributions of

((X t1 , Yt1 ), . . . , (X tm , Ytm )) under Pk( j) converge weakly to the corresponding distributions under

P for t1, . . . , tm ∈ TP. Thus, it is enough to show (3.11) for s1, . . . , sm, t1, t2 ∈ TP. Since

11
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Pk( j)
∈ MP(Lk( j),Dom(L)), it is left to prove that

lim
j→∞

Ek( j)

[∫ t2

t1

Lk( j) f (Xs, Ys)ds
m∏

l=1

hl(Xsl , Ysl )

]
(3.12)

= E

[∫ t2

t1

L f (Xs, Ys)ds
m∏

l=1

hl(Xsl , Ysl )

]
iven the uniform convergence of {Lk( j) f } we have

lim
j→∞

Ek( j)

[
(Lk( j) f (Xs, Ys) − L f (Xs, Ys))

m∏
l=1

hl(Xsm , Ysm )

]
= 0, (3.13)

or all s ∈ TP. The weak convergence of {Pk( j)
} further implies that

lim
j→∞

Ek( j)

[
L f (Xs, Ys)

m∏
l=1

hl(Xsl , Ysl )

]
= E

[
L f (Xs, Ys)

m∏
l=1

hl(Xsl , Ysl )

]
, (3.14)

nd so Eqs. (3.13) and (3.14) prompt

lim
j→∞

Ek( j)

[
Lk( j) f (Xs, Ys)

m∏
l=1

hl(Xsl , Ysl )

]
= E

[
L f (Xs, Ys)

m∏
l=1

hl(Xsl , Ysl )

]
,

inally, we interchange order of integration in (3.12) to arrive at the desired result. □

In Sections 4 and 5, we frequently resort to the following useful extension of Theorem 4.4.
ecall that we introduced LY |X (x) as an operator on C2

b (DY ). The proof is postponed to
ppendix B.

orollary 3.5. For an arbitrary z ∈ D, choose a Pz ∈ MP(L,Dom(L)). Let f ∈

([0,∞) × DX ), which is C1 in its first argument and f (t, ·) ∈ Dom(L̃X ) for all t ≥ 0.
oreover, consider g ∈ C1,2([0,∞) × DY ), which is bounded in its second argument. Then,

he process

f (t, X t )g(t, Yt ) − f (0, x)g(0, y) −

∫ t

0
(∂t + L̃X

+ LY |X (x)) f (s, Xs)g(s, Ys)ds, t ≥ 0,

s a martingale under Pz .

. Transform formula and existence

The popularity of affine processes largely stems from the fact that the Fourier transform
f their marginal distributions is available in semi-explicit form (up to the solution of a
ystem of ODEs). In particular, in the context of affine models many pricing problems in
athematical finance can be solved efficiently by Fourier methods. In this section we show

hat the characteristic function of MMAPs has a fairly simple form as well, which makes these
rocesses an appealing tool for many modelling tasks. On the theoretical side, our results on
he characteristic function of MMAPs permit us to establish the uniqueness of the martingale
roblem associated with the generator L from (2.6) and hence the existence of an MMAP.

Consider some u ∈ Cn and the function

DY
→ C : y ↦→ e⟨u,y⟩. (4.1)
12
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The function (4.1) is an element of Cb(DY ) if and only if u belongs to the set

U := Cm
−

× iRm−n.

elow we discuss expectations of the form Ez

[
e⟨u,Yt ⟩

]
for u ∈ U and any z ∈ D, t ≥ 0; this

includes the characteristic function of Yt as a special case.
For an affine semigroup (Paff

t ), it holds that Paff
t e⟨u,y⟩

= exp(φ(t, u) + ⟨ψ(t, u), y⟩) for
∈ U and deterministic functions φ and ψ . The derivatives of φ(·, u) and ψ(·, u) at t = 0 are

ypically denoted by F(u) and R(u), respectively (their existence is shown in [37]). In what
ollows we introduce the Markov-modulated analogue of these derivatives. Consider functions

F : DX
× U → C and R : U → Cn given by

F(x, u) = ⟨b(x), u⟩ + ⟨a(x)u, u⟩ − c(x)

+

∫
DY \{0}

(e⟨u,ζ ⟩
− 1 − ⟨uJ , χJ (ζ )⟩)m(x, dζ ),

(4.2)

Ri (u) = ⟨αi u, u⟩ + ⟨β+

i , u⟩ − γi +

∫
DY \{0}

(e⟨u,ζ ⟩
− 1 − ⟨uJ (i), χJ (i)(ζ )⟩)µi (dζ ), (4.3)

RJ (u) = β∗u∗. (4.4)

or i ∈ I and where

β+

i := (β⊤)i{1,...,n} ∈ Rn, i ∈ I,
β∗

:= (β⊤)JJ ∈ R(n−m)×(n−m).

ote that R is the same function as in the standard affine case, whereas F is modified (it
epends on x). Moreover, F and R clearly separate the x-admissible parameters according to
hether they depend on x or not. In the standard affine case, ψ is characterized by a system of
DEs, called generalized Riccati equations, and then Φ(t, u) = exp(φ(t, u)) is simply given via

he linear ODE ∂tΦ(t, u) = Φ(t, u)F(ψ(t, u)). It will turn out that for an MMAP the transform
z

[
e⟨u,Yt ⟩

]
has a similar structure, but the function Φ(t, u) is replaced by a function ϕ(t, x; u)

hat is closely connected to a Cauchy problem involving the function F and the generator of
X .

Consider a solution ψ of the generalized Riccati equations mentioned before, that is a
unction ψ : [0,∞) × U → Cn solving the ODE system

∂tψ(t, u) = R(ψ(t, u)), ψ(0, u) = u. (4.5)

he system (4.5) is a well-studied mathematical object and [17, Section 6] prove the existence
f a unique solution. Moreover, Eq. (4.5) with (4.4) obviously implies that ψJ (t, u) = eβ

∗t u∗.
ithin our framework, the counterpart of the linear ODE for Φ is the following Cauchy

roblem for a generic operator AX , which will be either equal to LX or to L̃X ,{
∂tϕ

⋆(t, x; u) = AXϕ⋆(t, x; u) + ϕ⋆(t, x; u)F(x, ψ(t, u)), t ∈ [0, T ], x ∈ DX ,

ϕ⋆(0, x; u) = f (x), f ∈ Dom(AX ),

(CPT,u)

here T > 0 and u ∈ U are to be understood as exogenous parameters. We recall the notion

f an important solution concept in the following

13
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Definition 4.1. A classical solution of (CPT,u) is a C1-function [0, T ] → Dom(AX ) : t ↦→
⋆(t, ·; u) satisfying (CPT,u).

To motivate our results on the form of the function Ez

[
e⟨u,Yt ⟩

]
for MMAPs we begin with

he case where there exists a solution ϕ⋆ to (CPT,u) with AX
= L̃X and initial condition f ≡ 1.

ix arbitrary u ∈ U , y ∈ DY , t⋆ ∈ [0, T ], and define the function Gu : [0, T ] × D → C by
Gu(t, x, y) = ϕ⋆(t, x; u)e⟨ψ(t,u),y⟩. We want to use Corollary 3.5 to show that

Mt = Gu(t⋆ − t, X t , Yt ), t ∈ [0, t⋆], (4.6)

s a complex-valued martingale. Note first that

LY |X (x)Gu(t, y) = Gu(t, x, y) (F(x, ψ(t, u)) + ⟨R(ψ(t, u)), y⟩) . (4.7)

sing that ϕ⋆ solves Cauchy problem (CPT,u) with AX
= L̃X and the generalized Riccati

quation (4.5) bring us to

(L̃X
+ LY |X (x) − ∂t )Gu(t, x, y)

= e⟨ψ(t,u),y⟩(L̃X
− ∂t )ϕ⋆(t, x; u) − ⟨∂tψ(t, u), y⟩Gu(t, x, y) + LY |X (x)Gu(t, x, y)

= −Gu(t, x, y)(F(x, ψ(t, u)) − ⟨R(ψ(t, u)), y⟩) + LY |X (x)Gu(t, x, y).

(4.8)

Together with Eq. (4.7), we consequently get

(∂t + L̃X
+ LY |X (x))Gu(t⋆ − ·, ·) ≡ 0.

Thus, M is a martingale by Corollary 3.5. Using that Gu(0, x, y) = e⟨u,y⟩ we get that

Ez

[
e⟨u,Yt⋆ ⟩

]
= Ez [Mt⋆ ] = M0 = ϕ⋆(t⋆, x; u)e⟨ψ(t⋆,u),y⟩, (4.9)

that is we have identified the characteristic function of Yt⋆ . It is well known that regularity
assumptions on the function F(·, u) (in particular continuity) are needed to ensure that the
Cauchy problem (CPT,u) has a classical solution; see for instance [48] or [31]. By the
Feynman–Kac Theorem (see e.g. [11, Theorem 17.4.10]) we have for u ∈ U the representation

ϕ⋆(t, x; u) = ϕ(t, x; u) := E(x,y)

[
exp

(∫ t

0
F(Xs, ψ(t − s, u))ds

)]
. (4.10)

Note that the function ϕ(·; u) is well-defined, even if (CPT,u) does not admit a classical
solution. In Theorem 4.3 we use approximation arguments to show that for general x-admissible
parameters the characteristic function of Yt⋆ is equal to

ϕ(t⋆, x; u)e⟨ψ(t⋆,u),y⟩.

We begin with an important boundedness result. Its proof is postponed to the appendix.

Lemma 4.2. Consider the function F defined in (4.2). Then for any compact subset V ⊂ U
it holds that

sup
(x,u)∈DX ×V

|F(x, u)| < ∞.

Consider a measure Pz ∈ MP(L,Dom(L)). In the next result we derive the characteristic
function of the one-dimensional distributions of the process Y under P .
z

14
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Theorem 4.3. Let z ∈ D, t⋆ ≥ 0 and u ∈ U be arbitrary and consider Pz ∈ MP(L,Dom(L)).
Then it holds that

Ez

[
e⟨u,Yt⋆ ⟩

]
= ϕ(t⋆, x; u)e⟨ψ(t⋆,u),y⟩, (4.11)

here ψ(·, u) : [0,∞) → Cn solves the system of generalized Riccati equations (4.5) and
here ϕ(t, x; u) = Ez

[
exp(

∫ t
0 F(Xs, ψ(t − s, u))ds)

]
, t ∈ [0, t⋆] (the value of the expectation

s invariant with respect to y).

omments. The product structure in (4.11) is very convenient for computing Fourier–Laplace
ransforms. In a first step one computes the function ψ(t, u) by solving the generalized Riccati
quations (4.5), analogously as in the standard affine case. In a second step the function ϕ is
ither computed using Monte Carlo techniques or, under the added regularity of Proposition 4.5,
s a solution of the Cauchy problem (CPT,u). The complexity of this step depends on the form
f the generator of X : if X is a finite state Markov chain, then (CPT,u) reduces to a set of
DEs; if X is a diffusion process, it is a linear PDE of parabolic type, etc.

roof of Theorem 4.3. The proof is based on an approximation argument and proceeds in
wo steps.

tep 1 Fix an arbitrary u ∈ U , x̄ ∈ DX . In this step we show that there is a sequence
Fk

u }, k ∈ N of functions in C1
b (DX

× [0, t⋆]) with supk∈N
Fk

u


∞
< ∞ and such that

lim
k→∞

∫ t⋆

0

⏐⏐Fk
u (Xs, t⋆ − s) − F(Xs, ψ(t⋆ − s, u))

⏐⏐ds = 0 Px̄ -a.s. (4.12)

efine a measure µx̄ on the Borel sets of DX
× [0, t⋆] by µx̄ (A) = Ex̄

[∫ t⋆

0 1A(Xs, s)ds
]
.

e use Lemma 4.2 to deduce that for u ∈ U the function F(·, u) : (x, t) ↦→ F(x, ψ(t, u))
s bounded. Moreover, it follows from [59, Theorem 1] that F(·, u) is µx̄ -a.e. the pointwise
imit of uniformly bounded and continuous functions F̃k

u on (DX
× [0, t⋆]). Using standard

pproximation arguments for continuous functions we may approximate the functions F̃k
u

ocally uniformly by C1 functions, so that there is a sequence Fk
u ∈ C1

b (DX
× [0, t⋆])

f uniformly bounded functions such that Fk
u (·) converges to F(·, u) µx̄ -a.e. By dominated

onvergence Fk
u (·) converges to F(·, u) also in L1(µx̄ ), that is

lim
k→∞

E(x̄,y)

[∫ t⋆

0

⏐⏐Fk
u (Xs, t⋆ − s) − F(Xs, ψ(t⋆ − s, u))

⏐⏐ds

]
= 0 . (4.13)

y going to a subsequence if necessary we thus get the pointwise convergence (4.12).

tep 2 Let {ρk
}k∈N be a sequence of functions ρk

∈ C∞
c (DX ), 0 ≤ ρk

≤ 1 increasing pointwise
o 1DX . Consider the Cauchy problem{

∂tϕ
k
u (t, x) = LXϕk

u (t, x) + ϕk
u (t, x)Fk

u (x, t), t ∈ [0, t⋆], x ∈ DX ,

ϕk
u (0, x) = ρk(x).

(CPk
T,u)

efine a function

f k
: [0, t⋆] × C0(DX ) → C0(DX ) : (t,ϕ) ↦→ ϕ(·)Fk

u (·, t),

o that (CPk
T,u) can be written in the form ∂tϕ

k
u (t) = LXϕk

u (t) + f k(t, ϕk
u (t)). Since Fk

u ∈
1(DX

× [0, t⋆]), the mapping f k is continuously Fréchet-differentiable on [0, t⋆] × C (DX ).
b 0
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It follows from [48, Theorem 6.1.5] that there exists a classical solution ϕk
u (t, ·) to (CPk

T,u).
Moreover, by the Feynman–Kac Theorem (see e.g. [11, Theorem 17.4.10]) we have the
representation

ϕk
u (t, x) = E(x,y)

[
ρk(X t ) exp

(∫ t

0
Fk

u (Xs, t⋆ − s)ds
)]
, (t, x) ∈ [0, t⋆] × DX ,

here the value of the expectation is invariant with respect to y. We get from (4.12), bounded
onvergence and the uniform boundedness of Fk

u and ρk that for any (t, x) ∈ [0, t⋆] × DX ,

lim
k→∞

ϕk
u (t, x) = ϕ(t, x; u) . (4.14)

e now define for each k ∈ N the functions Gk
u(t, x, y) = ϕk

u (t, x)e⟨ψ(t,u),y⟩ for (t, x, y) ∈

0, t⋆] × D. Note that for any u ∈ U it holds that ψ(t, u) ∈ U for all t ≥ 0 (cf.
17, Proposition 6.4]), and so the function [0, t⋆] × DY

∋ (t, y) ↦→ e⟨ψ(t,u),y⟩ is bounded.
hus, we have L1-convergence of Gk

u(t⋆ − t, X t , Yt ) to M⋆
t := ϕ(t⋆ − t, X t ; u)e⟨ψ(t⋆−t,u),Yt ⟩ as

→ ∞ for any 0 ≤ t ≤ t⋆. It remains to show that the limiting process (M⋆
t )t∈[0,t⋆] is in fact

complex-valued martingale. A similar computation as in (4.8) gives that

(∂t + L̃X
+LY |X (x))Gk

u(t⋆ − t, x, y)

= Gk
u(t⋆ − t, x, y)

(
F(x, ψ(t⋆ − t, u)) − Fk

u (x, t⋆ − t)
)
.

sing Corollary 3.5, we have that the process

Mk
t := Gk

u(t⋆ − t, X t , Yt )

−

∫ t

0
Gk

u(t⋆ − s, Xs, Ys)
(
F(Xs, ψ(t⋆ − s, u)) − Fk

u (Xs, t⋆ − s)
)

ds,

ith t ∈ [0, t⋆], is a martingale. Moreover, since Gk
u is bounded there is a constant C such that

Ez

[⏐⏐⏐⏐∫ t

0
Gk

u(t⋆ − s, Xs, Ys)
(
F(Xs, ψ(t⋆ − s, u)) − Fk

u (Xs, t⋆ − s)
)

ds
⏐⏐⏐⏐]

≤ C Ez

[⏐⏐⏐⏐∫ t

0

(
F(Xs, ψ(t⋆ − s, u)) − Fk

u (Xs, t⋆ − s)
)

ds
⏐⏐⏐⏐] , (4.15)

hich converges to zero as k → ∞ by (4.13). Hence, the L1-limit of Mk
t as k → ∞ is in fact

qual to M⋆
t for any t ∈ [0, t⋆], from which we deduce that (M⋆

t )t∈[0,t⋆] is a martingale. Finally,
aking expectation leads to

ϕ(t⋆, x; u)e⟨ψ(t⋆,u),y⟩
= M⋆

0 = Ez

[
M⋆

t⋆
]

= Ez

[
e⟨u,Yt⋆ ⟩

]
. □

It is shown in [27, Section 4.4] (in particular Theorem 4.4.2), that if any two solutions
or the martingale problem associated with (L,Dom(L)) generate the same one-dimensional
istributions of (X, Y ), then the martingale problem is well-posed and (X, Y ) has the strong
arkov property. In fact, the one-dimensional distributions of (X, Y ) can be characterized by

imilar arguments as in Theorem 4.3, which gives uniqueness for the martingale problem and
ence establishes existence of MMAPs. Given their importance for our purposes, we summarize
hese results in the following

heorem 4.4. Consider the linear operator (L,Dom(L)) given by (2.6), where the underlying
arameters (a, α, b, β, c, γ,m, µ) are x-admissible and where LX satisfies Assumption 2.1.
hen the martingale problem for (L,Dom(L)) is well-posed and there exists a Markov-
odulated affine process (X, Y ) corresponding to (L,Dom(L)). Moreover, (X, Y ) has the
trong Markov property.
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Proof. Let P1
z ,P2

z ∈ MP(L,Dom(L)) for any z ∈ D. Fix arbitrary u ∈ iRn , f ∈ Dom(LX ),
≥ 0, and define for j ∈ {1, 2},

ϕ j, f
u (t, x) = E j

(x,y)

[
exp

(∫ t

0
F(Xs, ψ(t − s, u))ds

)
f (X t )

]
, x ∈ DX . (4.16)

imilar to the proof of Theorem 4.3, it is then easy to deduce that

E j
z

[
f (X t )e⟨u,Yt ⟩

]
= ϕ j, f (t, x)e⟨ψ(t,u),y⟩, j ∈ {1, 2}.

urther, since ϕ j, f
u only involves the law of X , we have that ϕ1, f

u (t, x) = ϕ
2, f
u (t, x). Since

∈ iRn , t ≥ 0 and f ∈ Dom(LX ) were arbitrary, we conclude that the one-dimensional
istributions of (X, Y ) with fixed starting point z are the same under any solution to MP(L,
om(L)) and with Theorem 4.4.2.a of [27] we arrive at the well-posedness of the martingale
roblem. The strong Markov-property of (X, Y ) under (Pz)z∈D ⊂ MP(L,Dom(L)) then follows
rom Theorem 4.4.2.c of [27]. □

The next result gives conditions ensuring that ϕ(·; u) is in fact the solution of a suitable
auchy problem.

roposition 4.5. Let ϕ(·; u) be the function studied in Theorem 4.3 and suppose that

(i) for any x ∈ DX , ϕ(·, x; u) ∈ C1([0, T ]),
(ii) for any t ∈ [0, T ], F(·, ψ(t, u)), ϕ(t, ·; u)F(·, ψ(t, u)) ∈ Cb(DX ).

hen ϕ(·; u) solves Cauchy problem (CPT,u) with AX
= L̃X and initial condition f ≡ 1.

roof. We fix an arbitrary t ∈ [0, T ) and consider some small s ∈ (0, T ). Straightforward
omputations show that

P X
s ϕ(t, ·; u)(x) − ϕ(t, x; u)

s

=
ϕ(t + s, x; u) − ϕ(t, x; u)

s

+
1
s
E(x,y)

[
e
∫ t+s

0 F(Xr ,ψ(t+s−r,u))dr
(

e−
∫ s

0 F(Xr ,ψ(t+s−r,u))dr
− 1

)]
,

here the first term converges by assumption (i) to ∂tϕ(t, x; u) as s → 0+. Regarding the
econd term, we yet again consider the limit as s → 0+, and using dominated convergence
long with the fact that X has càdlàg paths said limit is equal to

E(x,y)

[
lim

s→0+

e
∫ t+s

0 F(Xr ,ψ(t+s−r,u))dr 1
s

(
e−

∫ s
0 F(Xr ,ψ(t+s−r,u))dr

− 1
)]

= −E(x,y)

[
e
∫ t

0 F(Xr ,ψ(t−r,u))dr F(x, ψ(t, u))
]

= −ϕ(t, x; u)F(x, ψ(t, u)),

nd so we get by condition (ii) that ϕ(t, ·; u) ∈ Dom(L̃X ). □

Solving the Cauchy problem is of course substantially simplified in specific applications with
arrower model assumptions. For example, if X is a diffusion, then Problem (CPT,u) reduces to
PDE. In such a case, conditions for the existence of a classical solution to the above Cauchy
roblem are available in various degrees of generality, but are usually similar in character. The
oefficients of LX typically need to be locally Lipschitz, grow at most linearly and suffice a
17
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local ellipticity assumption. Regarding the perturbation controlled by F , common assumptions
ranslate to the boundedness of DX

× [0, T ] ∋ (x, t) ↦→ F(x, ψ(t, u)), and to the condition that
F(x, ψ(t, u)) is locally Lipschitz (Hölder) in x (t). See e.g. [40, Chapter V] for further details.
Some classical references on more general Cauchy problems are [26,48,55] or [57].

5. Further properties

In this section we study further properties of MMAPs. In Section 5.1 we give conditions
ensuring the Feller property of strongly regular Markov-modulated affine semigroups. Sec-
tions 5.2 and 5.3 discuss the semimartingale property of MMAPs and the existence of real
exponential moments, respectively.

5.1. Feller property

Using our previous results we now show the Feller property of strongly regular MMAPs by
probabilistic arguments. Note that strongly x-admissible parameters are a necessary condition
or a process to be Feller, since the Feller property requires that L(Dom(L)) ⊂ C0(D).

The standard approach for studying the existence of Feller processes is to apply the theory
f Hille–Yosida. Since the operator LX may be unbounded, this inherently analytical task is
hallenging in our setup. Detailed discussions and results on the generator of Feller processes
an be found in e.g. [51–53], [50, Chapter VII] or [39].

roposition 5.1. Suppose that the parameters (a, α, b, β, c, γ,m, µ) underlying (L,Dom(L))
re strongly x-admissible, and that for any x ∈ DX ,∫

DY \Q0

∥ζ∥ m(x, dζ ) < ∞, (5.1)

here Q0 = {ζ ∈ DY
| |ζi | ≤ 1, 1 ≤ i ≤ n}\{0}. Then the Markov-modulated affine process

X, Y ) corresponding to (L,Dom(L)) is Feller.
Further, let (L ,Dom(L)) be the infinitesimal generator of the associated Feller semigroup.

hen Dom(L) is a core of L.

roof. Theorem 4.4 gives the existence of a sub-Markov semigroup (Pt )t≥0 correspond-
ng to (X, Y ). To show the strong continuity of (Pt )t≥0, we rely on the classical result
50, Theorem III.2.4], according to which the property that limt→0+ Pt f (z) = f (z), ∀z ∈ D
nd any f ∈ C0(D) is sufficient for strong continuity. We take up the definition of the set Θ0

rom the proof of Lemma 3.1 and pick an arbitrary f̃ = f h ∈ Θ0. We further fix arbitrary
T > 0 and u ∈ U . Introduce the function f via

f : [0, T ] × C0(DX ) → C0(DX ) : (t,ϕ) ↦→ ϕF(·, ψ(t, u)),

hich is well-defined since F(·, ψ(t, u)) ∈ Cb(DX ). The moment condition (5.1) ensures that
F(x, ·) ∈ C1(U) (cf. [17, Lemma 5.3.ii]), so that f is C1 in t . Further, the function f is
ontinuously Fréchet-differentiable in its second argument. Thus, by Theorem 6.1.5 of [48]
here exists a unique classical solution to Problem (CPT,u). Similar to the proof of Theorem 4.3,
e then introduce the process

G f (t − s, X , Y ) := ϕ f (t − s, X ; u)e⟨ψ(t−s,u),Ys ⟩, s ∈ [0, T ],
u s s s

18
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where ϕ f (·, x; u) solves (CPT,u) for AX
= LX with ϕ f (0, x; u) = f (x), for any x ∈ DX . By a

imilar argument as in the proof of Theorem 4.3, the process G f
u (t − s, Xs, Ys), s ∈ [0, T ], is

martingale. So, for any (x, y) ∈ D, and appropriate g ∈ C∞
c (Rn−m), v ∈ Cm

−−
(compare with

he definition of Θ0), it holds that

Pt f̃ (x, y) = Ez

[
f (X t )

∫
Rn−m

e⟨(v,iq),(Y +
t ,Y

∗
t )⟩g(q)dq

]
=

∫
Rn−m

Ez

[
G f

(v,iq)(0, X t , Yt )
]

dq

=

∫
Rn−m

ϕ f (t, x; v, iq)e⟨ψ(t,v,iq),y⟩g(q)dq,

here the second equality follows from Fubini’s theorem. Recall the definition of functions F
nd R in (4.2)–(4.4). Via an application of dominated convergence, we then obtain

∂+

t Pt f̃ (x, y)|t=0 =

∫
Rn−m

∂+

t

{
ϕ f (t, x; v, iq)e⟨ψ(t,v,iq),y⟩g(q)

}
|t=0dq

=

∫
Rn−m

(
LXϕ f (0, x; v, iq) + ϕ f (0, x; v, iq)F(x, ψ(0, v, iq))

)
e⟨ψ(0,v,iq),y⟩

+ ⟨R(ψ(0, v, iq)), y⟩e⟨ψ(0,v,iq),y⟩ϕ f (0, x; v, iq)g(q)dg

=

∫
Rn−m

(LX f (x) + F(x, v, iq) + ⟨R(v, iq), y⟩ f (x))e⟨(v,iq),y⟩g(q)dq

= L f̃ (x, y),

hich implies bp-limt→0+ Pt f̃ = f̃ . The remaining arguments are identical to the ones from
he proofs of [17, Proposition 8.2] and [28, Proposition 6.3] by noting that the linear hull of
Θ0 is dense in C0(D), and so we conclude that (Pt )t≥0 is a Feller semigroup. Finally, the

ell-posedness of MP(L,Dom(L)) (see Theorem 4.4) implies that Dom(L) is a core of L ,
f. [47]. □

emark 5.2. We use the moment condition (5.1) in the above proposition to deduce that
here exists a classical solution to (CPT,u). Accordingly, we could have instead assumed the
olvability of the Cauchy problem to arrive at the Feller property, but we believe the more
xplicit condition (5.1) to be of greater use for applications.

.2. Semimartingale property

MMAPs can in general explode and get killed, both of which prompt a transition to the
emetery state {∆}. To formalize these concepts we introduce various stopping times; our
efinitions follow [10]. First, we define the lifetime of Y as

T∆ := inf{t ≥ 0 | Yt = ∆}.

econd, we let ∥∆∥ = ∞ and we introduce the following sequences of stopping times,

T ′

k := inf{t ≥ 0 | ∥Yt−∥ ≥ k or ∥Yt∥ ≥ k}, k ∈ N,

Tk :=

{
T ′

k , if T ′

k < T∆,

∞, if T ′

k = T∆,
k ∈ N.
19
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Moreover, we define the explosion time of Y as T∞ := limk→∞ Tk . Then the process Y explodes
f and only if T∞ < ∞; killing corresponds to the event T∆ < T∞ and a trajectory of Y belongs
o DY for all t ≥ 0 if and only if T∆ = T∞ = ∞. By construction, as (Tk ∧ k) announces T∞,

the explosion time is predictable, which allows us to stop Y at a time before T∞ and to work
n [0, T∞) for studying the semimartingale property.

roposition 5.3. Let (X, Y ) be a Markov-modulated affine process with x-admissible
parameters (a, α, b, β, c, γ,m, µ), where c(·) ≡ 0 and γ = 0. Then Pz(0 < T∆ < T∞) = 0
no killing) and the process Y is a DY -valued semimartingale on [0, T∞). Moreover, Y admits
he {Ft }-characteristics (B,C, ν) with respect to the truncation function χ . Here

Bt =

∫ t

0
1{t<T∞}( ˜b(Xs) + β̃Ys)ds, (5.2)

Ct = 2
∫ t

0
1{t<T∞}

(
a(Xs) +

m∑
i=1

αi Y +,i
s

)
ds, (5.3)

ν(dt, dξ ) = 1{t<T∞}

(
m(X t , dξ ) +

m∑
i=1

Y +,i
t µi (dξ )

)
dt, (5.4)

here the function b̃ : DX
→ DY is given by b̃(x) = b(x) +

∫
DY \{0}

(χI(ξ ), 0)m(x, dξ ), and
here

β̃kl :=

{
βkl + (1 − δkl)

∫
DY \{0}

χk(ξ )µl(dξ ), if l ∈ I,
βkl , if l ∈ J , for 1 ≤ k ≤ n.

roof. At first we show that Pz(0 < T∆ < T∞) = 0. We use a similar argument as in
he proof of [10, Lemma 3.1]. Take a sequence (gl) ∈ C∞

c (DY ) with 0 ≤ gl ≤ 1 and
gl = 1 on Dl := {y ∈ DY

| ∥y∥ < l}. Note that gl(y) = 1 for l large enough and that
iml→∞ gl(Yt∧Tk ) = 1{t∧Tk<T∆} Pz-a.s.. For each l we obviously have that gl ∈ Dom(L), where
e tacitly think of (x, y) ↦→ gl(y) as a constant function in x . Since X is conservative, we
ave L̃X 1 = 0 so that the process given by

M l
t := gl(Yt ) − gl(y) −

∫ t

0
LY |X (x)gl(Ys)ds, t ≥ 0,

s a martingale. Take l > k and recall that c ≡ 0 and γ = 0. It then holds that

M l
t∧Tk

= gl(Yt∧Tk ) − gl(y) −

∫ t∧Tk

0

(∫
DY \Dl−k

(gl(Ys + ζ ) − 1)m(Xs, dζ )

+

m∑
i=1

∫
DY \Dl−k

(gl(Ys + ζ ) − 1)Y i
sµi (dζ )

)
ds.

ote that for any i ∈ I it holds that∫ t∧Tk

0

∫
DY \Dl−k

|gl(Ys + ζ ) − 1|Y i
sµi (dζ )ds ≤ k

∫ t∧Tk

0
µ(DY

\ Dl−k)ds, (5.5)

hich converges almost surely to 0 as l → ∞ by Lebesgue’s dominated convergence theorem.
similar argument also applies with m(Xs, ·). Moreover, for fixed k ≤ l, with inequalities of

ype (5.5) it is easily seen that almost surely

|M l
| ≤ 1 + c t,
t∧Tk k

20
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for some constant ck . Thus, −M l
t∧Tk

converges in L1 to 1−1{t∧Tk<T∆} = 1{0<T∆≤t∧Tk } as l → ∞

or all t ≥ 0, which shows that 1{0<T∆≤·∧Tk } is a martingale. However, as it is non-increasing
it needs to be almost surely constant, which implies Pz(0 < T∆ < T∞) = 0.

Next, for u ∈ Rn we introduce the process

A(u)t := i⟨u, Bt ⟩−
1
2
⟨u,Ct u⟩+

∫ (
ei⟨u,y⟩

− 1 − i⟨u, χ(y)⟩
)
ν([0, t]×dy), t ∈ [0, T∞),

here B,C and ν are as in (5.2)–(5.4). Note that A(u)t =
∫ t

0 F(Xs, u) + ⟨R(u), Ys⟩ds,
here F and R are specified in (4.2) and (4.3)–(4.4), respectively. The process ei⟨u,Y ⟩

−
·

0 L
Y |X (Xs)ei⟨u,Ys ⟩ds is a martingale on [0, T∞) by Corollary 3.5. And, for t ∈ [0, T∞)

ei⟨u,Yt ⟩ −

∫ t

0
LY |X (Xs)ei⟨u,Ys ⟩ds = ei⟨u,Yt ⟩ −

∫ t

0
ei⟨u,Ys ⟩ (F(Xs, u) + ⟨R(u), Ys⟩) ds

= ei⟨u,Yt ⟩ −

∫ t

0
ei⟨u,Ys ⟩d A(u)s,

nd the result follows from Theorem II.2.42 of [34]. □

We continue with a few implications of Proposition 5.3. First, take the characteristics
B,C, ν) from Proposition 5.3, set Jt (χ ) :=

∑
s≤t (∆Ys − χ (∆Ys)) and denote the integer-

alued random measure counting the jumps of Y by π (ds, dζ ). Then, we obtain the following
anonical decomposition of Y ,

Y = Y0 + Y c
+

∫
·

0

∫
DY \{0}

χ (ζ ) (π (ds, dζ ) − ν(ds, dζ ))+ J (χ ) + B, (5.6)

here Y c denotes the continuous local martingale part of Y , so that ⟨Y i,c, Y j,c
⟩ = C i j for

, j ∈ I ∪ J . Second, as a conservative Feller process with càdlàg sample paths, X is a
emimartingale (cf. Lemma 3.2 of [53]). Hence under the assumptions of Proposition 5.3, we
ave that Z = (X, Y ) is a semimartingale on [0, T∞).

.3. Exponential moments

In this section we resort to classical semimartingale methods in order to study real
xponential moments of Yt . For this we need a variant of (CPT,u), namely{

∂t ϕ̃(t, x; u) = L̃X ϕ̃(t, x; u) + ϕ̃(t, x; u)F(x, ψ̃(t, u)), t ∈ [0, T ], x ∈ DX ,

ϕ̃(0, ·; u) ≡ 1,

(CP⋆T,u)

ith T > 0 and where F is as in Theorem 4.3, albeit with the modification that u ∈ Rd , and
here ψ̃ is analogously a modification of ψ , that is ψ̃ : [0, T ] × Rn

→ Rn solves

∂t ψ̃(t, u) = R(ψ̃(t, u)), ψ̃(0, u) = u. (5.7)

e define a classical solution of (CP⋆T,u) analogously to the previous case of (CPT,u).

roposition 5.4. Let z ∈ D, T ≥ t⋆ ≥ 0 and u ∈ Rn be arbitrary and consider Pz ∈ MP(L,
om(L)). Further, let (X, Y ) be a Markov-modulated affine process, where in addition Y is
DY -valued semimartingale with {Ft }-characteristics (B,C, ν) given by (5.2)–(5.4). Suppose˜ 1 X
hat ψ(·, u) is C and solves (4.5) and that the function [0, T ] → Cb(D ) : t ↦→ ϕ̃(t, ·; u)
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is a classical solution of (CP⋆T,u). Suppose the parameters (a, α, b, β, c, γ,m, µ) are strongly
x-admissible and further satisfy the following conditions,

(i) c(·) ≡ 0 and γ = 0,
(ii)

∫
{|ζ |>1}

e⟨ψ(t,u),ζ ⟩m(x, dζ ) < ∞, ∀(t, x) ∈ [0, T ] × DX ,
(iii)

∫
{ζk>1}

ζke⟨ψ(t,u),ζ ⟩µl(dζ ) < ∞, 1 ≤ k, l ≤ m,∀t ∈ [0, T ].

Then,

Ez

[
e⟨u,Yt⋆ ⟩

]
= ϕ̃(t⋆, x; u)e⟨ψ̃(t⋆,u),y⟩.

Proof. Fix an arbitrary t⋆ ∈ [0, T ] and use F X
t⋆ to denote the Pz-completion of σ (Xs : s ∈

[0, t⋆]). Conditional on F X
t⋆ , Yt⋆ is distributed as a time-inhomogeneous affine semimartingale

evaluated at t⋆, the exponential moments of which are handled in [35]. Within our setup, we
readily fulfil the conditions 1, 2, 4 and 5 of [35, Theorem 5.1]. Regarding condition 3, we
introduce the function ϕ0

: [0, T ] × Rd
× DDX → R via

ϕ0(t, u, f ) =

∫ t

0
F( f (s), ψ̃(t − s, u))ds.

Then, an application of [35, Theorem 5.1] gives that

Ez

[
e⟨u,Yt⋆ ⟩ | F X

t⋆
]

= eϕ
0(t⋆,u,X )+⟨ψ̃(t⋆,u),y⟩.

We need to show that Ez

[
eϕ

0(t⋆,u,X )
]

= ϕ̃(t⋆, x; u) in order to conclude the proof. To do so,
note that by assumption ϕ̃ solves (CP⋆T,u) and by an application of Corollary 3.5 we get the
martingality of

M ϕ̃
t := ϕ̃(t⋆ − t, X t ; u) +

∫ t

0
ϕ̃(t⋆ − s, Xs; u)F(Xs, ψ̃(t⋆ − s, u))ds, t ∈ [0, T ].

Integration by parts and collecting terms gives us

ϕ̃(t⋆ − t, X tF ; u) exp
(∫ t

0
F(Xs, ψ̃(t⋆ − s, u))ds

)
=

∫ t

0
exp

(∫ s

0
F(Xr , ψ̃(t⋆ − r ))dr

)
d M ϕ̃

s . (5.8)

The local martingale in (5.8) is in fact a true martingale since the integrand is bounded and
since M ϕ̃ is a square integrable martingale (cf. [49, Theorem IV.11]). So, by rearranging and
taking expectations we arrive at the desired result. □

The general results of the appendix of [17] provide further conditions for the characterization
of exponential moments of Yt . To begin with, let U ⊂ Cn be an open neighbourhood of 0. If
ϕ(t, ·) and ψ(t, ·) have analytic extensions on U ×DX and U , respectively, then the exponential
moments E(x,y)

[
e⟨u,Yt ⟩

]
are finite for all u ∈ U ∩Rn, (x, y) ∈ DX

×DY , 0 < t ≤ T . Moreover,
under the same conditions it also holds that

E(x,y)

[
e⟨u,Yt ⟩

]
= ϕ(t, x; u)e⟨ψ(t,u),y⟩,

for all u ∈ U such that Re(u) ∈ U ∩Rn, (x, y) ∈ DX
×DY . As the function ψ , or more precisely

the system of generalized Riccati equations defining it, is the same as in the standard affine case,
we can outsource the study of suitable extensions for ψ by referencing existing results, most
notably the systematic treatment of exponential moments of affine processes in [36]. The study
22
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of regularity properties of u ↦→ ϕ(t, x; u) on the other hand is not straightforward considering
the definition of ϕ in Theorem 4.3.

6. Applications in mathematical finance

In this section we discuss applications of MMAPs in mathematical finance. Our goal is to
illustrate the wide range of modelling possibilities offered by this class of processes. We begin
with an extension of Theorem 4.3 that enables us to solve many pricing problems with Fourier
inversion techniques. Moreover, we consider in detail a model for the joint pricing of bonds,
equity options and credit derivatives that captures many stylized facts of financial data and we
sketch several further applications. Throughout this section we fix some z ∈ D and assume
hat (X, Y ) is a Markov-modulated affine semimartingale under Pz .

.1. Derivative pricing via fourier inversion techniques

In many financial applications one needs to evaluate expectations of the form

Qt f (z) := Ez

[
exp

(∫ t

0
L(Ys)ds

)
f (X t , Yt )

]
, t ≥ 0, f ∈ Bb(D), (6.1)

or an affine transformation L : DY
→ R, y ↦→ l + ⟨λ, y⟩, for some l ∈ R, λ ∈ Rn . This

an be done efficiently via Fourier inversion techniques. For this we need to compute for all
q, u) ∈ iRd

× iRn the expectation Qt f (q,u)(z) where f (q,u)(x, y) = e⟨(q,u),(x,y)⟩. As in the
tandard affine case, this can be achieved using simple modifications of the functions F and

R (see (4.2)–(4.4)). Replace F(x, u) by F̃(x, u) = F(x, u) + l and R(u) by R̃(u) = R(u) + λ

in the equations of Theorem 4.3, fix some t > 0, pick arbitrary (u, q) ∈ U × iRd and suppose
ϕ is a classical solution of

(∂s − L̃X )ϕ̃(s, x, u) = ϕ̃(s, x, u)F̃(x, ψ̃(s, u)), ϕ̃(0, x, u) = e⟨q,x⟩, ∀x ∈ DX ,

with

∂sψ̃(s, u) = R̃(ψ̃(s, u)), ψ̃(0, u) = u.

Then, similar arguments as the ones preceding Theorem 4.3 show that

Ez

[
exp

(∫ t

0
L(Ys)ds

)
e⟨(q,u),(X t ,Yt )⟩

]
= ϕ̃(t, x, u)e⟨ψ̃(t,u),y⟩. (6.2)

Suppose there exists analytic extensions of ϕ̃(t, x, ·) and ψ̃(t, ·) to some u ∈ Cn
\U , then the

transform formula (6.2) also holds for this particular u.
If Pz is a risk-neutral pricing measure, then expectations in the form of Eq. (6.1) are typically

understood as the price of a financial instrument with payoff f (X t , Yt ) and with risk-free short
rate −L(Ys). Suppose Yt represents the value of some underlying and we are interested in the
price of a derivative with payoff h(Yt ), then it is common to find a representation of h in the
form of

h(y) =

∫
Rq

e⟨u+i Av,y⟩h̃(v)dv,

for some matrix A ∈ Rn×q with q ≤ n, for an appropriate integration kernel h̃ : Rq
→ C, and

where u is chosen such that Ez

[
e⟨u,Yt ⟩

]
< ∞. The integration kernel h̃ can be determined by

Fourier-inverting h. For many popular payoff functions, such inversions are explicitly available,
23
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see e.g. [29, Section 10.3.1] for univariate examples or [20] (and the references therein) for
multivariate payoffs. In such a setup, Qt h reduces to∫

Rq
ϕ̃(t, x, u + i Av)e⟨ψ̃(t,u+i Av),y⟩h̃(v)dv, (6.3)

hich is easily computed using numerical integration.

.2. Joint pricing of equity options and credit derivatives

Next we show how Markov-modulated affine diffusions can be used for the joint and
ynamically consistent valuation of equity and credit derivatives written on the same underlying
rm. More precisely, we consider a firm that may default at some doubly stochastic default

ime τ (see e.g. [46, Chapter 10.6]) and we introduce a model for the joint dynamics of the
isk-free short rate r , of the hazard rate γ of τ , of the pre-default logarithmic stock price p
nd of the stock price volatility v. In this section we view Pz as risk-neutral pricing measure.
ne salient feature of our model is that it allows for negative association between the risk-

ree short rate and the firm’s hazard rate as well as its volatility process. Modelling negative
ependence between positive diffusions (i.e. processes of ‘CIR-type’) is not feasible within
he standard affine framework, see e.g. [18]. Here we overcome this well-known drawback of
ffine processes rather naturally via the common dependence of the positive processes on the
odulating process X .

he model. We suppose that X is a solution of the following SDE,

d X t = −κ(X t − θ )dt + σ
√

X t (1 − X t )dW X
t , (6.4)

or some standard Brownian motion W X and with parameters θ ∈ [0, 1], κ, σ ≥ 0. It follows
that X is a Jacobi process on the state space DX

= [0, 1] with

LX f (x) = −κ(x − θ )
∂ f (x)
∂x

+
1
2
σ 2(x(1 − x))

∂2 f (x)
∂x2 , f ∈ Dom(LX ) ⊂ C2

c (DX ).

The risk-free short rate r and the firm’s hazard rate γ are given as weak solutions of the
ollowing SDEs,

drt =
(
b̄r + br X t + βrrt

)
dt +

√
2αrrt dW r

t , (6.5)

dγt =
(
b̄γ + bγ (1 − X t ) + βγ γt

)
dt +

√
2αγ γt dW γ

t , (6.6)

or independent one-dimensional Brownian motions W r and W γ and with constants αr , αγ > 0,
¯r , br , b̄γ , bγ ≥ 0 and βγ , βr ∈ R.

We consider the following extension of the Heston model for the pre-default dynamics of
he logarithmic stock price p and its instantaneous variance v

dpt =

(
rt + γt −

1
2
vt

)
dt +

√
vt dW p

t , (6.7)

dvt =
(
b̄v + bv(1 − X t ) + βvvt

)
dt +

√
2αvvt dW v

t , (6.8)

here W p and W v are two Brownian motions with correlation ρ ∈ [−1, 1]. Moreover, we have
onstants αv > 0, b̄v, bv ≥ 0 and βv < 0. We assume that at τ the stock price jumps to zero,
hat is we assume that St = 1{τ>t}ept . This gives the following stock price dynamics

d St = rt St dt +
√
vt St dW p

t − St−d Mτ
t with Mτ

t = 1{τ≤t} −

∫ τ∧t

γsds. (6.9)

0
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Note that S is a martingale which justifies the interpretation of Pz as risk neutral measure.
he exogenous process X can be viewed as state of the economy, with values close to 1 (0)

epresenting expansion (recession). Note that the drift of r is increasing in X t while the drift of
is decreasing in X t . The opposite impact of X on the drift of γ and r allows to model negative

ssociation between the short rate and the hazard rate. This phenomenon is empirically well
ocumented, cf. [42] or [16]; it might be due to the fact that in times of financial crisis where
azard rates are high, central banks typically lower the reference rates. Moreover, the proposed
pecification creates natural dependence between the risk-neutral probability of default and the
eturn distribution of p: as the economic environment worsens (X decreases), the risk of default
ncreases, as does the volatility of the stock returns. Stock option pricing with credit risk is for
xample treated in [7] or [9].

athematical aspects. Next we show that the dynamics (6.4), (6.5), (6.7), (6.8) fit into
ur framework of Markov-modulated affine processes. First note that X is a polynomial
rocess (see [14]) with compact support, and as such it is Feller (cf. Proposition 4.1 of [1]).
he coefficients of X satisfy the regularity assumptions of Theorem 8.2.1 in [27], so that
∞
c (DX ) is a core of (LX ,Dom(LX )). Overall, Assumption 2.1 is met. Next we let Y =

Y 1, Y 2, Y 3, Y 4)⊤ = (r, γ, v, p)⊤ so that DY
= R3

+
× R and m = 3, n = 1. Set

α1 =

⎛⎜⎜⎝
αr 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ , α2 =

⎛⎜⎜⎝
0 0 0 0
0 αγ 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ , α3 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 αv

√
αvρ

0 0
√
αvρ 1/2

⎞⎟⎟⎠ ,

b(x) =

⎛⎜⎜⎝
b̄r + br x

b̄γ + bγ (1 − x)
b̄v + bv(1 − x)

0

⎞⎟⎟⎠ , β =

⎛⎜⎜⎝
βr 0 0 0
0 βγ 0 0
0 0 βv 0
1 1 −1/2 0

⎞⎟⎟⎠ ,
nd let α = (α1, α2, α3). With these definitions the dynamics of Y are governed by the

x-admissible parameters (0, α, b(x), β, 0, 0, 0, 0).
The Cauchy problem (CPT,u) reduces to the following second order PDE,

∂tϕ(t, x; u) = −κ(x − θ )∂xϕ(t, x; u) +
1
2
σ 2(x(1 − x))∂xxϕ(t, x; u)

+ ϕ(t, x; u)(⟨b(x), ψ(t, u)⟩ + ⟨a(x)ψ(t, u), ψ(t, u)⟩), u ∈ U ,
ϕ(0, x; u) = f (x), f ∈ C2([0, 1]).

he existence of a classical solution to the above PDE follows from [48, Theorem 6.1.6].

erivative pricing. We work on an enlarged filtration Gt = Ft ∨ σ (1{τ≤s} : 0 ≤ s ≤ t), t ≥ 0
here (Ft ) is the filtration generated by the processes Z = (X, Y ), so that (Gt ) contains

nformation regarding the occurrence of default. Here we discuss the pricing of so-called
urvival claims with payoff HT = 1{τ>T }h(YT ); simple examples would be a call option on the
tock where h(YT ) = (epT − K )+ or a defaultable bond with zero recovery where h(YT ) = 1.
ecall that P is the risk neutral measure. Hence the price of a survival claim is given by

Ez

[
1{τ>T }e−

∫ T
0 rs dsh(YT )

]
= Ez

[
e−

∫ T
0 (rs+γs )dsh(YT )

]
,

here the equality follows from standard results for stochastic hazard rate models (see e.g.
46, Chapter 10.6]). The right hand side can then be computed via Fourier pricing using
25
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pricing can then be done via Fourier pricing and evaluation of relation (6.3). In our model
the function ψ̃ is explicitly available (as in the standard Heston model) as is the transform h̃
or several popular payoff functions. The one-dimensional PDE for ϕ̃ can be efficiently solved
ith numerical methods such as [4]. Alternatively, the theory of BSDEs provides a probabilistic
ual perspective of such PDEs, which is studied in [23, Section 4]. More recently, [32] uses
uch a BSDE approach to design deep learning methods to efficiently solve semilinear PDEs.
inally, the integral in (6.3) can be handled with standard Fourier methods as outlined in [8,41]
r [2].

xtensions. Methods for pricing credit derivatives where the payment occurs directly at τ (as
n the case of a credit default swap) with a transform formula such as (6.2) are presented
n [30]. The above example allows for an immediate extension to a multivariate setting with
azard rates γ 1, . . . , γ m , where for each i ∈ I the process γ i follows a model of type (6.5)
albeit with different parameters and with Brownian motions independent of each other). Such

specification provides a useful framework for the analysis of portfolio credit derivatives.
onditional on X , the hazard rates are independent and default dependence amongst the

ndividual firms is generated via their respective loadings on the common factor process X .
30] uses a similar setup with X replaced by a finite-state Markov chain for the pricing and

analysis of European safe bonds.

6.3. Further applications

We end this section by sketching two further possible use cases of MMAPs. The first exam-
ple deals with Markov-modulated Lévy processes and the second one with Markov-modulated
Hawkes processes.

Subordination techniques are a popular approach to build tractable multivariate models for
financial assets (see e.g. [44] or [45]). However, the flexibility of subordinating Lévy processes
s limited by the fact that the resulting process is typically again of Lévy type. Instead, by using

MAPs it is feasible to construct a larger class of processes, even if the underlying modulated
rocess is conditionally of Lévy type. Additionally, with our class of processes we can precisely
arget certain aspects of the joint multivariate distribution. As an example, we consider Y ∈

n as a model for the log prices of n assets and where we aim at jointly controlling the
ail behaviour of the n assets solely via their driving process X . We assume that for each
∈ {1, . . . , n} the entry Y i is a pure jump process, and ϱi is a random measure selecting the

tochastic jump times and sizes of Y i , that is
∑

0<s≤t (Y
i
s − Y i

s−) =
∫ t

0

∫
R\{0}

ζϱi (dζ, ds), for
≥ 0. The compensator of ϱi (dζ, ds) is mi (X t , dζ )dt , where X is some exogeneous Markov
rocess satisfying Assumption 2.1. We further assume that

mi (x, dζ ) =
Ci

|ζ |1+Ỹi

(
1{ζ<0}e−Gi (x)|ζ |

+ 1{ζ>0}e−Mi (x)|ζ |) dζ, x ∈ DX ,

ith constants Ci > 0, Ỹi < 2 (note that Ci and Ỹi can of course also depend on x , but
for the purpose of this example we choose to work with the given simplified setup) and
G i ,Mi ∈ Cb(DX ) with G i (x),Mi (x) ≥ 0 for each x . For fixed x , m(x, dζ ) is the Lévy
ernel of a CGMY process (cf. [6]). Symmetry of the return distribution is controlled by the
arameters G i (x),Mi (x), while for Ỹi < 0 the process Y i has finite activity (otherwise it has

infinite activity). Suppose that the differences Mi (x) − G i (x) > 0 increase with x for each
∈ {1, . . . , n}. Then, in such a specification the left tails of the returns get heavier as X

increases.
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Recently, Hawkes processes have received a lot of attention for stock price modelling, both
rom a statistical perspective and for the purpose of option pricing (see [3,33] [21] or [22]). The
ramework of MMAPs allows the extension of affine Hawkes processes (i.e. Hawkes processes
ith exponential excitation kernel) to the situation where the jump intensities depend on an

xogenous Markov process. For that, consider self-exciting counting processes (Y 1, . . . , Y k)
ith values in Nk with respective intensities (Y k+1, . . . , Y m), where m = 2k. We further

onsider a Markov process X which is in line with Assumption 2.1. The intensities are given via

Y j+k
t = Y j+k

0 e−tβ j +

∫ t

0
b j+k(Xs)e(t−s)β j ds +

k∑
i=1

∫ t

0
δ̃ j i e(t−s)β j dY i

s , j ∈ {1, . . . , k},

here bk+1, . . . , bm are positive bounded (sufficiently regular) functions on DX , where (̃δ j i )k
i, j=1

δ̃ is a k × k-matrix with positive entries, and where (β1, . . . , βk) ∈ Rk . We introduce the
uxiliary index set I := (k + 1, . . . ,m) and further set β0

= diag(β1, . . . βk). Subsequently, the
enerator of (X, Y ) is given by

LX f (x, y) + ⟨(bk+1(x), . . . , bm(x)) + β0 yI,∇I f (x, y)⟩

+

k∑
i=1

( f (x, y + ei + δ̃1,i ek+1 + · · · + δ̃k,i em) − f (x, y))yi+k, f ∈ C2
c (D).

e use β to denote the m × m-matrix with entries βII = β0 and zeros otherwise. Let δy(dζ )
enote the Dirac measure on DY centred at y. Then, we set µ j = δ(e j −k ,̃δI,( j−k)) for j ∈ I, to
educe that the x-admissible parameters are(

0, 0, (0k, bk+1(x), . . . , bm(x)), β, 0, 0, 0, µ
)
,

here µ = (0k, µk+1, . . . , µm) and 0k denotes a vector of k zeros.
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ppendix A. Definitions

Let E be a locally compact and separable space.

efinition A.1. A family (Tt )t≥0 of linear operators on Bb(E) is a semigroup, if

T0 = Id, Tt Ts f = Ts Tt f = Tt+s f ∀ f ∈ Bb(E), s, t ≥ 0.

semigroup is sub-Markov, if for all t ≥ 0

Tt f ≥ 0, ∀ f ∈ Bb(E) with f ≥ 0, (A.1)

Tt f ≤ 1, ∀ f ∈ Bb(E) with f ≤ 1. (A.2)

Property (A.1) is typically referred to as positivity preserving and (A.2) is the sub-Markov
roperty.
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Definition A.2. A Feller semigroup is a sub-Markov semigroup satisfying the Feller property

Tt f ∈ C0(E) ∀ f ∈ C0(E), t > 0,

and which is strongly continuous in C0(E), i.e.

lim
t→0

∥Tt f − f ∥∞ = 0 ∀ f ∈ C0(E).

Note that in the terminology of [27] a Feller semigroup on C0(E) is a strongly continuous,
positivity preserving and conservative contraction semigroup. Definition A.2 is in line with
the one given in e.g. [50]. The following definition introduces a concept weaker than Feller
semigroup. For its definition, we equip Cb(E) with locally uniform convergence.

Definition A.3. A Cb-Feller semigroup is a sub-Markov semigroup satisfying

Tt f ∈ Cb(E) ∀ f ∈ Cb(E), t > 0,

and for which t ↦→ Tt f is continuous in the topology of locally uniform convergence in Cb(E).

Appendix B. Additional proofs and results

Proof of Corollary 3.5. We begin with the situation, where f and g are independent of the
time variable t ∈ [0,∞), that is we fix arbitrary f ∈ Dom(L̃X ), g ∈ C2

b (DY ) and introduce the
process

M f,g
t := f (X t )g(Yt ) − f (x)g(y) −

∫ t

0
(L̃X

+ LY |X (x)) f (Xs)g(Ys)ds, t ≥ 0.

Note that by assumption L̃X f ∈ Cb(DX ). We pick a sequence { fk} ⊂ C2
c (DX ) with bp-limk→∞

fk = f . By the Feller property of (P X
t ) we have that LX fk ∈ C0(DX ) for each k. Since Cb(DX )

s dense in Bb(DX ) with respect to bp-convergence (cf. [27, Proposition 3.4.2]), we know that
here exists some f̃ ∈ Bb(DX ) with bp-limk→∞ LX fk = f̃ . Choose arbitrary t > 0 and x ∈ DX

nd consider
P X

t fk(x) − fk(x)
t

=
1
t

∫ t

0
P X

s LX fk(x)ds.

ake for the above equation the limit k → ∞ and note that P̃ X
t f ∈ Dom(L̃X ) (see

43, Lemma 2.2.3]) to arrive at

1
t

∫ t

0
P̃ X

s L̃X f (x)ds =
P̃ X f (x) − f (x)

t
=

1
t

∫ t

0
P̃ X f̃ (x)ds,

hich shows that bp-limk→∞ LX fk = L̃X f . Moreover, by Lemma B.1 we can pick a sequence
(gk) ∈ C2

c (DY ) with bp-limk→∞(gk,L
Y |X (x)gk) = (g,LY |X (x)g).

Overall, bp-limk→∞( fk gk,L fk gk) = ( f g, (L̃X
+ LY |X (x)) f g), and by dominated conver-

gence (and the associated L1-convergence), we conclude that M f,g is a martingale. Getting
back to the initial (time-dependent) functions f, g, we fix arbitrary t2 > t1 ≥ 0, and we
consequently get

Ez

[
f (t1, X t2 )g(t1, Yt2 ) − f (t1, X t1 )g(t1, Yt1 ) | Ft1

]
= Ez

[∫ t2
(L̃X

+ LY |X (x)) f (t1, Xs)g(t1, Ys)ds | Ft1

]

t1
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Moreover, by the fundamental theorem of calculus, we have

Ez

[
f (t2, X t2 )g(t2, Yt2 ) − f (t1, X t2 )g(t1, Yt2 ) | Ft1

]
= Ez

[∫ t2

t1

∂t
(

f (s, X t2 )g(s, Yt2 )
)
ds | Ft1

]
,

nd so by Lemma 4.3.4 of [27] we arrive at the desired result (set v = ∂t f g and w =

L̃X
+ LY |X (x)) f g to be in line with the notation of that lemma). □

roof of Lemma 4.2. To show the boundedness of F(·, u), we clearly only need to deal with
he integral part involving m(·, dζ ). We start with a useful Taylor expansion,(

e⟨u,ζ ⟩
− e⟨uJ ,ζJ ⟩

)
+
(
e⟨uJ ,ζJ ⟩

− 1 − ⟨uJ , ζJ ⟩
)

=

∑
i∈I

uiζi e⟨uJ ,ζJ ⟩

∫ 1

0
e⟨uI ,sζI ⟩ds +

∑
i, j∈J

ui u jζiζ j

∫ 1

0
e⟨uJ ,sζJ ⟩(1 − s)ds. (B.1)

ntroduce the sets Q0 := {ζ ∈ DY
| |ζi | ≤ 1, 1 ≤ i ≤ n} and Q0

0 := Q0\{0}, and note that
J (ζ ) = ζJ on Q0. We use (B.1) and compute∫

DY \{0}

|e⟨u,ζ ⟩
− 1 − ⟨uJ , χJ (ζ )⟩|m(x, dζ )

≤ C1

∫
Q0

0

|⟨χI(ξ ), 1⟩ + ∥χJ (ξ )∥2
|m(x, dξ )

+

∫
DY \Q0

|e⟨u,ζ ⟩
+ 1 − ⟨uJ , χJ (ζ )⟩|m(x, dζ )

≤ C1 M(x, Q0
0) + C2 M(x,DY

\Q0),

or some constants C1,C2. Clearly, these estimates hold locally uniformly in u. The assertion
hen follows since supx∈DX M(x,DY

\{0}) < ∞, cf. Definition 2.3. □

emma B.1. Let x ∈ DX and g ∈ C2
b (DY ) be arbitrary. Then there exists a sequence (gk)k∈N

ith elements in C2
c (DY ) such that bp-limk→∞(gk,L

Y |X (x)gk) = (g,LY |X (x)g).

roof. As in the proof of [17, Proposition 8.2], we choose a function ρ ∈ C∞
c (R+) with

ρ(r ) =

{
1, if r ≤ 1,
0, if r > 5,

s well as 0 ≤ ρ(r ) ≤ 1, |∂rρ(r )| ≤ 1 and |∂2
r ρ(r )| ≤ 1 for all r ∈ R+. We introduce a

equence of functions gk ∈ C2
c (DY ), k ∈ N, via

gk(y) := g(y)ρ(∥y∥
2 /k). (B.2)

t is easy to see that bp-limk→∞ gk = g. Even more so, for arbitrary (x, y) ∈ D it holds that

|LY |X (x) (gk − g) (y)|

≤

n∑
i,l=1

∥ail∥∞

{
|∂yi ∂yl g(y)|

(
1 − ρ(∥y∥

2 /k)
)

+
2|yi + yl |

ρ ′(∥y∥
2 /k)

(∂y + ∂y )g
 +

4|yl yi |
ρ ′′(∥y∥

2 /k) ∥g∥

}

k i l ∞ k2 ∞
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w

R

+
2
k

∥g∥∞ ρ
′(∥y∥

2 /k)
n∑

i=1

∥ai i∥∞

+

n∑
i,l=1

|⟨αI,il , y+
⟩|

{
|∂yi ∂yl g(y)|

(
1 − ρ(∥y∥

2 /k)
)

+
2|yi + yl |

k
ρ ′(∥y∥

2 /k)
(∂yi + ∂yl )g


∞

+
4|yl yi |

k2 ρ ′′(∥y∥
2 /k) ∥g∥∞

}
+

2
k

∥g∥∞ ρ
′(∥y∥

2 /k)
n∑

i=1

|⟨αI,il , y+
⟩|

+

n∑
i=1

∥bi∥∞

{
|∂yi g(y)|

(
1 − ρ(∥y∥

2 /k)
)
+

2|yi |

k
ρ ′(∥y∥

2 /k) ∥g∥∞

}
+

n∑
i=1

|(βy)i |

{
|∂yi g(y)|

(
1 − ρ(∥y∥

2 /k)
)
+

2|yi |

k
ρ ′(∥y∥

2 /k) ∥g∥∞

}
+ ∥c∥∞ |g(y) − gk(y)| + ⟨γ, y+

⟩|g(y) − gk(y)|

+

∫
DY \{0}

⏐⏐g(y + ζ )(1 − ρ(∥y + ζ∥2 /k)) − g(y)(1 − ρ(∥y∥
2 /k))

− (1 − ρ(∥y∥
2 /k))⟨∇J g(y), χJ (ζ )⟩

⏐⏐m(x, dζ )

+

n∑
j=m+1

2|y j |

k
ρ ′(∥y∥

2 /k) ∥g∥∞ ∥M∥∞

+

m∑
i=1

∫
DY \{0}

⏐⏐g(y + ζ )(1 − ρ(∥y + ζ∥2 /k)) − g(y)(1 − ρ(∥y∥
2 /k))

− (1 − ρ(∥y∥
2 /k))⟨∇J (i)g(y), χJ (ζ )⟩

⏐⏐y+

i µi (dζ )

+

m∑
i=1

2 ∥yJ ∥

k
ρ ′(∥y∥

2 /k) ∥g∥∞ y+

i Mi ,

hich converges to 0 as k → ∞ and so we get bp-limk→∞ LY |X (x)gk = LY |X (x)g. □
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