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Abstract

In the first part of this paper we address the non-coherence of value-at-risk (VaR)
as a risk measure in the context of portfolio credit risk, and highlight some problems
which follow from this theoretical deficiency. In particular, a realistic demonstration
of the non-subadditivity of VaR is given and the possibly nonsensical consequences of
VaR-based portfolio optimisation are shown. The second part of the paper discusses
VaR and expected shortfall estimation for large balanced credit portfolios. All standard
industry models (Creditmetrics, KMV, CreditRisk+) are presented as Bernoulli mixture
models to facilitate their direct comparison. For homogeneuous groups it is shown that
measures of tail risk for the loss distribution may be approximated in large portfolios
by analysing the tail of the mixture distribution in the Bernoulli representation. An
example is given showing that, for portfolios of lower quality, choice of model has some
impact on measures of extreme risk.
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Keywords: risk measures, value-at-risk, coherence, expected shortfall, port-
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1 Introduction

This paper is concerned with risk measurement in large credit portfolios. The nature of
the dependence between obligors in such portfolios critically determines the tail of the
overall credit loss distribution and makes the practical estimation of measures of tail risk
a challenging task. Moreover, due to the skewness of the loss distribution for a typical
dependent portfolio, it is essential that any risk measure should have reasonable theoretical
properties, particularly with regard to agregation. In this paper we take up these two
distinct issues.

In the first part we revive the debate on the theoretical properties of risk measures,
but we do this in the particular context of credit portfolios. Since the pathbreaking work
of Artzner, Delbaen, Eber, and Heath (1999) it is now well known that value-at-risk (VaR)
is not a coherent risk measure, since it lacks the property of subadditivity. Two possibly
pernicious aspects of this theoretical deficiency are: a decentralised risk management system
may fail because VaRs calculated for individual portfolios may not be summed to produce
an upper bound for the VaR of the combined portfolios; a risk manager who optimises
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his portfolio to minimise VaR may (intentionally or unintentionally) produce an allocation
which is highly risky by any more rational analysis. It is often argued that the practical
implications of these theoretical criticisms are likely to be limited and, if our portfolios
consist of common financial instruments which are subject only to market risks, this may
also be true. However, when we turn to portfolios which are subject to credit risk, and
which therefore give rise to highly skewed loss distributions, realistic examples show that
the dangers indicated above should not be dismissed out of hand. We take up this theme
in Section 2 of the paper.

In the second part of the paper (Section 3) we leave the theoretical debate to one side and
consider what drives VaR, as well as the coherent alternative risk measure known as expected
shortfall, when one models portfolio credit risk using one of the standard industry solutions
such as the model proposed by the KMV corporation (KMV-Corporation 1997), the model
proposed by the RiskMetrics group (RiskMetrics-Group 1997), or CreditRisk+, developed
by Credit Suisse Financial Products (Credit-Suisse-Financial-Products 1997). To address
this question we consider stylized versions of these industry models for large, homogeneous
groups of dependent credit risks. The similarities between the industry models have been
noted in a number of recent papers including Koyluoglu and Hickman (1998), Gordy
(2000) and Crouhy, Galai, and Mark (2000). It has been observed that the mathematical
structures of these models can be mapped into each other, and this theme is taken up in
detail in Frey and McNeil (2001). In the present paper we summarise how all standard
models may be recast as Bernoulli mixture models and in this way we obtain a common
mathematical representation that greatly facilitates their comparison. We show that the
tail of the portfolio loss distribution is driven essentially by the mixing distribution in the
Bernoulli mixture representation, and that VaR and expected shortfall may be estimated in
large portfolios by calculating quantiles and conditional tail expectations for this mixture
distribution and scaling them appropriately. We provide some numerical examples of the
use of this technique.

2 Measures of Risk for Credit Portfolios

In this section we present the essential ideas of Artzner, Delbaen, Eber, and Heath (1999)
in a slightly different notation tailored to an application to portfolio credit losses.

2.1 Measures of Risk

Fix a probability space (Ω,F , P ) and denote by L0(Ω,F , P ) the set of almost surely finite
random variables on that space. Financial risks are represented by a convex cone M ⊆
L0(Ω,F , P ) of random variables. Any random variable L in this set will be interpreted as a
possible loss of some credit portfolio over a given time horizon. Recall that M is a convex
cone if L1 ∈M and L2 ∈M implies that L1 + L2 ∈M and λL1 ∈M for every λ > 0.

Definition 2.1. Given some convex cone M of random variables, a measure of risk with
domain M is a mapping ρ : M→ R.

In economic terms we interprete ρ(L) as the amount of capital that should be added
as buffer to a portfolio with loss given by L, so that the portfolio becomes acceptable to
an external or internal risk controller. Our presentation differs here slightly from Artzner,
Delbaen, Eber, and Heath (1999) who interpret a rv L ∈M as the future value (instead of
loss) of a currently held portfolio.

Denote the loss distribution of loss L by FL(l) = P (L ≤ l). In this paper we are
concerned solely with two risk measures which are based on the loss distribution FL, namely
VaR and expected shortfall. We recall the definition of these risk measures and, in the
following subsection, the definition of a coherent risk measure.
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Definition 2.2 (Value-at-Risk). Given some confidence level α ∈ (0, 1), the value-at-risk
(VaR) of our portfolio at the confidence level α is given by the smallest number l such that
the probability that the loss L exceeds l is no larger than (1− α). Formally,

VaRα = inf{l ∈ R, P (L > l) ≤ 1− α} . (1)

This definition of VaR coincides with the definition of an α-quantile of the distribution
of L in terms of a generalised inverse of the distribution function FL. We observe this by
noting

VaRα = inf{l ∈ R, 1− FL(l) ≤ 1− α} = inf{l ∈ R, FL(l) ≥ α} .

For a random variable X with df FX we will denote the α-quantile of the distribution by
qα(FX), or sometimes qα(X), and write VaRα(X) when we wish to stress that the quantile
should be interpreted as a VaR number.

A simple definition of expected shortfall which suffices for continuous loss distributions
is as follows.

Definition 2.3 (Expected shortfall, continuous loss distribution). Consider a loss L
with continuous df FL satisfying

∫
R
|l|dFL(l) < ∞. Then the expected shortfall at confidence

level α ∈ (0, 1), is defined to be

ESα = E(L | L ≥ VaRα) =
E(L;L ≥ VaRα(L))
P (L ≥ VaRα(L))

. (2)

A more general definition has been proposed by Acerbi and Tasche (2001) as follows.

Definition 2.4 (Generalized expected shortfall). Given an integrable rv L and α ∈
(0, 1). The generalized expected shortfall at confidence level α is given by

GESα =
1

1− α

(
E(L;L ≥ VaRα(L)) + qα(1− α− P (L ≥ VaRα(L)))

)
. (3)

For a rv with continuous distribution the second term disappears and (3) reduces to (2).

2.2 Axioms of Coherence

We enumerate the four axioms of coherence in the form that we require them. We differ
from Artzner, Delbaen, Eber, and Heath (1999) in that we interpret a random variable L as
a loss rather than a future value; this leads to different signs in certain axioms. Moreover,
in order to simplify the presentation we assume that the risk capital ρ(L) earns no interest.
For further discussion of the axioms for coherent risk measures see Fritelli and Gianin (2002)
in the same volume.

Axiom 1 (Translation invariance). For all L ∈ M and every l ∈ R a translation-
invariant risk measure satisfies ρ(L + l) = ρ(L) + l.

Axiom 2 (Subadditivity). For all L1, L2 ∈M a subadditive risk measure satisfies ρ(L1+
L2) ≤ ρ(L1) + ρ(L2).

Following Artzner et. al. the rationale behind Axiom 2 can be summarized by the state-
ment “A merger does not create extra risk.” Subadditivity reflects the idea that risk can
be reduced by diversification, a time-honoured principle in finance and economics. We will
see in Subsection 2.4, that the use of non-subadditive risk measures in a Markowitz-type
portfolio-optimization problem may lead to optimal portfolios which are very concentrated
and would be deemed risky by normal economic standards.

3



Axiom 3 (Positive homogeneity). For all L ∈ M and every λ > 0 a positive homoge-
neous risk measure satisfies ρ(λL) = λρ(L).

Note that subadditivity and positive homogeneity imply that the functional ρ is convex
on M.

Axiom 4 (Monotonicity). For L1 and L2 ∈M such that L1 ≤ L2 a.s. a monotonic risk
measure satisfies ρ(L1) ≤ ρ(L2).

Definition 2.5 (Coherent risk measure). Given a risk measure ρ whose domain includes
the convex cone M. ρ is called coherent (on M) if it satisfies Axiom 1, 2, 3 and 4.

It is immediately seen from the representation of VaR as quantile of the loss distri-
bution obtained in Section 2.1 that VaR is translation invariant, positively homogeneous
and monotonic. However, it is well-known that VaR is not a subadditive risk measure and
therefore not coherent. In the following subsection we give a credit-related demonstration
of this fact.

Generalised expected shortfall is a coherent risk measure; see Acerbi and Tasche (2001)
for a proof. Expected shortfall is coherent only if we restrict ourselves to a convex cone
of random variables with continuous dfs. However, if we allow distributions with atoms
it is possible to construct examples that show that expected shortfall is also not always
subadditive.

2.3 The Inconsistency of VaR in Credit Portfolio Management: An Ex-
ample

Our example expands on an idea sketched out in Artzner, Delbaen, Eber, and Heath (1999).
Consider a portfolio of m = 50 defaultable corporate bonds. We assume that defaults of
different bonds are independent; the default probability is identical for all bonds and equal
to 2%. The face value of the bonds is 100; this amount is paid back at T = t+∆t if there is
no default; otherwise there is no repayment whatsoever. The current (time t) price of the
bond equals 95. The loss of bond i is hence given by the rv

Li := −(100(1 − Yi)− 95) = 100Yi − 5 ,

where the default indicator Yi is equal to one if default occurs and equal to zero otherwise.
(Li)1≤i≤50 form a sequence of iid rv’s with P (Li = −5) = 0.98 and P (Li = 95) = 0.02.

We compare two portfolios, both with current value equal to 9500. Portfolio A is fully
concentrated and consists of 100 units of bond 1. Portfolio B is completely diversified; it
consists of two units of each of the bonds. Now let us consider VaR at a confidence level of
95% for both portfolios.

For portfolio A the portfolio loss is given by L = 100L1 and hence

VaR0.95(L) = 100VaR0.95(L1) = −500 ,

(as P (L1 ≤ −5) = 0.98 > 0.95). This means that even after a withdrawal of 500 the
portfolio is still acceptable to a risk controller working with VaR at the 95% level.

For portfolio B we have

L =
50∑
i=1

2Li = 200
50∑
i=1

Yi − 500 ,

and hence VaRα(L) = 200qα(
∑50

i=1 Yi) − 500. The sum M :=
∑50

i=1 Yi has a binomial
distribution with success probability p = 0.02. We get by inspection q0.95(M) = 3, so that
VaR0.95(L) = 100. In this case a bank would need a risk capital of 100 to satisfy a regulator
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working with VaR at the 95% level. Of course, economic intuition suggests that portfolio B
is less risky than portfolio A, showing that measuring risk with VaR can lead to non-sensical
results. This intuition is supported by Lemma 2.7 below, which shows that portfolio B is
indeed less risky than portfolio A if we measure risk with any coherent risk measure that
depends only on the distribution of the loss.

These nonsensical results are directly linked to the lack of subadditivity of VaR. In fact,
we get for any coherent risk measure ρ, which depends only on the distribution of L

ρ

(
50∑
i=1

2Li

)
≤

50∑
i=1

2ρ(Li) = 100ρ(L1) = ρ(100L1),

hence the fact that VaR0.95 is lower for portfolio A than for portfolio B shows that VaR is
in general not subadditive.

2.4 Dangers of a Mean-VaR Portfolio Optimization

Practitioners used to work with value-at-risk sometimes tend to regard the lack of subad-
ditivity of VaR as relatively minor drawback, which is not very relevant in practice. We
disagree; while it is admittedly not very likely that we will observe the worst features of
VaR for some randomly chosen portfolio, the picture changes, if investors optimize the (ex-
pected) return on their portfolios under some constraint on VaR, as the portfolios resulting
from such an optimization procedure do exploit the conceptual weaknesses of VaR.

For a concrete example we place ourselves in the context of Section 2.3. Consider a
portfolio manager, who has an amount of capital V which he can invest in a riskless asset
and the m = 50 defaultable bonds. For simplicity we assume that he is not able to borrow
additional money or to take short positions in the defaultable bonds. We assume that he
determines his portfolio using a mean – value-at-risk optimality criterion. Denote by

Θ := {θ = (θ0, θ1, . . . , θm)′ : θi ≥ 0 for i = 0, . . . ,m}

the set of all portfolios, and by ΘV those portfolios in Θ, whose value at time t equals V .
Here θ0 denotes the amount invested in the riskless security and, for i ≥ 1, θi represents the
amount invested in the defaultable bond i. The loss of some portfolio θ ∈ Θ will be denoted
by L(θ); the expected profit of a portfolio is clearly given by E(−L(θ)). Given some risk
aversion coefficient λ > 0 our investor chooses a portfolio θ∗ in order to maximize

E(−L(θ))− λVaRα(L(θ)) (4)

over all θ ∈ ΘV . For concreteness we put α = 0.95.

Remark 2.6. Portfolio optimization problems of the form (4) are frequently considered
in practice. Moreover, optimization problems closely related to (4) do arise implicitly in
the context of risk-adjusted performance measurement. Often the performance of portfolio
managers or even business units is measured by the ratio of (expected) profits and the
amount of risk capital needed to sustain the portfolio; see, for example, Jorion (2001).
If the risk capital is determined using VaR, portfolio managers have similar incentives in
choosing their portfolios as if operating directly under the simple criterion (4). Our example
can therefore be viewed as a warning against the use of VaR in risk-adjusted performance
measurement. This is no critique against risk-adjusted performance measurement as such:
if combined with a coherent risk measure risk-adjusted performance measurement is a very
sensible concept.

To determine the optimal portfolio θ∗ we fix θ0, the amount invested in the riskless
asset. Since the Li are identically distributed, every portfolio θ̃ ∈ ΘV with θ̃0 = θ0 has the
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same expected loss. Hence maximizing (4) over all portfolios in ΘV with fixed investment
in the riskless asset amounts to minimizing VaRα(L) over all these portfolios. For α = 0.95
this is clearly achieved by investing all funds into one bond, for instance the first, as was
shown in Example 2.3. The optimal portfolio θ∗ is now easily determined: if the “expected
risk adjusted return” of holding a defaultable bond, (E(−L1) − VaR0.95(L1))/95, exceeds
the return r on the riskless asset, the whole capital V is invested in the first bond; otherwise
everything is invested in the riskless asset.

In our symmetric situation we would expect the optimal portfolio to consist of a mixture
of an investment in the riskless asset and a portfolio consisting of an equal amount of each
of the risky bonds. The following result shows that this is indeed the case, if we replace
value-at-risk by a coherent risk measure which depends only on the distribution of losses
such as (generalized) expected shortfall.

Lemma 2.7. Given a coherent risk measure ρ, whose domain includes the set {L(θ) :
θ ∈ Θ}. Suppose that ρ depends only on the loss distribution. Define the set Θ0,V by
Θ0,V := {θ ∈ ΘV : θ0 = 0}, and the portfolio θ∗0 ∈ ΘV by θ∗0 = (0, V/m, . . . , V/m)′. Then

ρ(L(θ∗0)) = min{ρ(L(θ)) : θ ∈ Θ0,V } .

A proof of this lemma may be found in Appendix A.

3 Bernoulli Mixture Models for Credit Portfolios

We now turn to the second theme of the paper and show how the risk measures we have
discussed in the first part of this paper may be calculated in practice. The method we
use is founded on the observation that all standard industry models, such as CreditRisk+,
CreditMetrics, CreditPortfolioView and the model proposed by the KMV corporation, can
be represented by Bernoulli mixture models.

In the case of CreditRisk+ and CreditPortfolioView this is easily seen, since these models
are constructed using a mixing philosophy. In the case of CreditMetrics and KMV this is
less obvious, since these models are usually presented as firm-value models. The idea of
mapping CreditMetrics/KMV type models so that they resemble mixture models can be
found in Koyluoglu and Hickman (1998) and Gordy (2000); the theory underlying the
mapping procedure is discussed in some detail in Frey and McNeil (2001).

3.1 Notation and definition

Consider a portfolio of m counterparties and fix some time period [t, t + ∆t] where ∆t is
typically one year. Assume that at time t all counterparties are in some non-default state.
For 1 ≤ i ≤ m, let the random variable Yi be the default indicator for obligor i at time
t+∆t, taking values in {0, 1}. We interpret the value 1 as default and 0 as non-default. For
the arguments of this paper it will suffice to consider losses as arising from defaults only,
and to ignore the issue of losses arising from rating class downgrades. The random vector
Y = (Y1, . . . , Ym)′ is a vector of default indicators for the portfolio over the time horizon of
interest.

In a mixture model the default probability of an obligor is assumed to depend on a
(typically small) set of common factors, which are interpreted as macroeconomic variables;
given these common factors defaults of different obligors are independent. Dependence
between defaults stems from the mutual dependence of the default probabilities on the set
of common factors. We now give a formal definition.

Definition 3.1 (Bernoulli Mixture Model). Given some p < m and a p-dimensional
random vector Ψ = (Ψ1, . . . ,Ψp), the random vector Y = (Y1, . . . , Ym)′ follows a Bernoulli
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mixture model with factor vector Ψ, if there are functions Qi : R
p → [0, 1], 1 ≤ i ≤ m, such

that conditional on Ψ the default indicator Y is a vector of independent Bernoulli random
variables with P (Yi = 1|Ψ) = Qi(Ψ).

3.2 CreditRisk+ as Bernoulli Mixture Model

CreditRisk+ may be represented as a Bernoulli mixture model where the distribution of the
default indicators is given by

P (Yi = 1 | Ψ) = Qi(Ψ), and
Qi(Ψ) = 1− exp(−w′

iΨ), (5)

where Ψ = (Ψ1, . . . ,Ψp)′ is a vector of independent gamma distributed macroeconomic
factors with p < m and wi = (wi,1, . . . , wi,p)′ is a vector of constant factor weights. Clearly
this model has the form specified in Definition 3.1.

This representation of CreditRisk+ facilitates its comparison with other industry models.
We note however that CreditRisk+ is usually presented as a Poisson mixture model. In this
more common presentation it is assumed that, conditional on Ψ , the default of counterparty
i in [t, t + ∆t] occurs independently of other counterparties with a Poisson intensity given
by

Λi(Ψ) = w′
iΨ. (6)

Although this assumption makes it possible to default more than once, a realistic model
calibration generally ensures that the probability of this happening is very small. Assuming
for simplicity that ∆t = 1, the conditional probability given Ψ that a counterparty defaults
over the time period of interest (whether once or more than once) is given by

1− exp(−Λi(Ψ)) = 1− exp(−w′
iΨ),

so that the assumption (6) implies the Bernoulli mixture model in (5).
The Poisson formulation of CreditRisk+ has the pleasant analytical feature that the

distribution of the number of defaults in the portfolio is equal to the distribution of a sum
of independent negative binomial random variables, as is shown in Gordy (2000) and Frey
and McNeil (2001). The computational attractions of gamma mixtures of Poisson random
variables are well known in the actuarial literature; see for instance Grandell (1997).

Calibration of CreditRisk+ means choosing the factors Ψ and setting the weight vectors
wi. This is done by considering the likely contribution of the various factors to default risk
of each obligor under the constraint that default rates for individuals in the same rating
category should be constant. This means effectively that E(Λi(Ψ)) = qg(i) where qg(i)

represents an estimate of the default rate for all obligors in the group g(i) to which obligor
i belongs.

3.3 CreditMetrics and KMV as Bernoulli Mixture Models

Both KMV and CreditMetrics may be considered to descend from the firm-value model
of Merton (1974), where default is modelled as occurring when the asset value of a company
falls below its liabilities. In statistical texts, such as Joe (1997), such models fall under the
general heading of latent variable models.

In both KMV and CreditMetrics we consider a random vector X = (X1, . . . ,Xm)′ with a
multivariate normal distribution, where Xi is an underlying latent variable for company i at
time T . We further assume that the vector X depends on macroeconomic factors according
to a classical linear factor model. Suppose, without any loss of generality, that X has mean
zero; then X follows a linear factor model with dimension p < m if X can be written as

Xi = a′iΘ + σiεi, (7)
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for a p-dimensional Gaussian random vector Θ ∼ Np(0,Ω), independent standard normally
distributed rv’s ε1 . . . , εm, which are also independent of Θ, and constant terms given by σi

and ai = (ai,1, . . . , ai,p)′. Effectively this model can be thought of as imposing a simplifying
structure on the correlation matrix of X.

We define (D1, . . . ,Dm) to be a vector of deterministic cut-off levels or thresholds.
Default of obligor i is modelled as occurring if Xi is less than Di, so that

Yi = 1 ⇐⇒ Xi ≤ Di. (8)

Both KMV and CreditMetrics fit into this simple framework and the differences between the
two are largely differences of interpretation or calibration, rather than structural differences.

In the KMV model the latent variables Xi are interpreted as relative changes in the
firm’s asset value (so-called asset returns). For determining the thresholds Di an option
pricing technique based on historical firm value data is used to calculate a distance-to-
default. CreditMetrics is usually presented as a multi-state model. Instead of considering a
single cut-off the range of the Xi is partitioned more finely to represent a series of rating
classes of decreasing creditworthiness, culminating in default. The cut-off levels which define
these classes are chosen so that default and rating state transition probabilities agree with
historical data. In both models the linear factor structure of X is calibrated by considering
common macroeconomic variables that impact firm value.

Simple calculations confirm that this construction defines a Bernoulli mixture model.
Setting Ψ = Θ and using Equations (8) and (7), we see that, conditional on Ψ, the Yi are
independent since the εi are iid. Moreover

P (Yi = 1 | Ψ) = P (Xi ≤ Di | Ψ) = P
(
εi ≤

(
Di − a′iΨ

)
/σi | Ψ

)
= Φ

((
Di − a′iΨ

)
/σi

)
,

where Φ is the df of standard normal. Introducing new notation for the constants in this
model we may write the stochastic default probability as

Qi(Ψ) = Φ
(
ci −w′

iΨ
)

(9)

which is again of the form specified in Definition 3.1.

3.4 Other Possibilities

Frey, McNeil, and Nyfeler (2001) have shown that the idea behind CreditMetrics and KMV
may be extended to construct other latent variable models where the distribution of X is
no longer multivariate Gaussian, but rather some model from the family of multivariate
normal mixtures, such as a multivariate t distribution or a multivariate hyperbolic. Set
Ψ = (W,Θ1, . . . ,Θp)′ where Θ ∼ Np(0,Ω) as above and W is a positive random variable
independent of Θ. The Bernoulli mixture model representation of these extensions has the
general form

P (Yi = 1 | Ψ) = Qi(Ψ)
Qi(Ψ) = Φ

(
ci W −w′

iΘ
)

,

for constants ci and wi. As a concrete example, if the distribution of W is such that νW 2

has a chi-squared distribution with ν degrees of freedom, we get a mixture model which is
equivalent to a CreditMetrics/KMV type model with Student tν distributed asset returns
following a linear factor model rather than Gaussian asset returns. (A general definition of
the linear factor model which may be applied to non-Gaussian random vectors is given in
the Appendix.) For a ful discussion of the theory behind these generalised latent variable
model see Frey and McNeil (2001).
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Another possible Bernoulli mixture model with relevance to practice is obtained by
taking

P (Yi = 1 | Ψ) = Qi(Ψ)

Qi(Ψ) =
exp(ci −w′

iΘ)
1 + exp(ci −w′

iΘ)
.

In comparison with Equation (9) the normal distribution function Φ has been replaced by a
logistic distribution function; in statistical language the probit link between Qi and ci−w′

iΘ
has been replaced by a logit link. CreditPortfolioView is a model of this kind; see Wilson
(1997).

3.5 Homogeneous Portfolios

In their most general form the models described above can model fully heterogeneous port-
folios with different counterparty default probabilities and different default correlations
between counterparties. To gain a better mathematical understanding of the differences
between models it is useful to simplify to the case of homogeneous groups. Moreover, fully
heterogeneous models are extremely difficult to calibrate reliably and it is quite common
in practice to segment large portfolios into a small number of fairly homogeneous groups,
corresponding to some external or internal rating class, which may be more realistically
calibrated.

The correct way to mathematically formalise this notion of homogeneity is to assume
that the default indicator vector Y is exchangeable (distributionally invariant under per-
mutations):

(Y1, . . . , Ym) d= (YΠ(1), . . . , YΠ(m)),

for any permutation (Π(1), . . . ,Π(m)) of (1, . . . ,m).
An exchangeable Bernoulli-mixture model is obtained in Definition (3.1) when the func-

tions Qi are all identical. In this case it is convenient to introduce the rv Q := Q1(Ψ) and
to observe that for y = (y1, . . . , ym)′ in {0, 1}m

P (Y = y | Q) = Q
∑m

i=1 yi(1−Q)m−
∑m

i=1 yi ,

and, in particular, P (Yi = 1 | Q) = Q. Thus exchangeable models may essentially be
thought of as one-factor versions of the more general multi-factor models.

The distributions of Q in the homogeneous-group versions of the models we have de-
scribed are summarised below.

• CreditRisk+. Q = 1 − exp(−Y ), where Y ∼ Ga(a, b) is a single gamma distributed
factor with density

f(y) =
ba

Γ(a)
ya−1 exp(−by). (10)

The 2 parameters a and b fully specify the model.

• CreditMetrics/KMV. Q = Φ(Z), where Z ∼ N(µ, σ2). This model is thus specified by
the 2 parameters µ and σ. Q is said to have a probit-normal distribution. In the latent
variable language of (7) this model is equivalent to a model where all possible pairs
of firm asset values Xi and Xj have a common correlation given by ρ = σ2/(1 + σ2).

• Frey-McNeil extensions to CreditMetrics/KMV (Frey, McNeil, and Nyfeler 2001).
Q = Φ(cW + Z), where now Z ∼ N(0, σ2). These extended models have the 2
parameters c and σ, as well as extra parameters stemming from the distribution of
W .
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• CreditPortfolioView. Q = exp(Z)/(1 + exp(Z)) with Z ∼ N(µ, σ2). Q is said to have
a logit-normal distribution.

It is interesting to note that our simplified version of CreditRisk+ is essentially identical to
modelling Q with a beta distribution with parameters a and b. This is seen by noting that
the density g(q) of Q in the one-factor gamma model can be calculated from the gamma
density in (10) according to g(q) = f(− log(1− q))/(1 − q); we obtain

g(q) =
ba

Γ(a)
(− log(1− q))a−1 (1− q)b−1 .

In a realistic credit model the parameters a and b will be such that the probability mass of
the distribution is concentrated on the left side of the interval [0, 1], default being for most
credit classes a rare event. For q small we may use the approximation − log(1 − q) ≈ q to
observe that the functional form is extremely close to that of the beta distribution, which
has density g(q) = β(a, b)−1qa−1(1− q)b−1, a, b > 0. The idea of using the beta distribution
as a mixture distribution for a Bernoulli failure probability is a classical one in statistics
and the resulting Bernoulli mixture model proves to be particularly analytically tractible;
see Joe (1997) for more information.

In exchangeable models we introduce the notation π for the probability that a coun-
terparty defaults; it is easily calculated that π = E(Yi) = E(Q). Moreover, joint default
probabilities can be expressed as higher moments of the mixing distribution; we can define
and calculate

πk := P (Y1 = 1, . . . , Yk = 1) = E (E(Y1 · · ·Yk | Q)) = E(Qk).

For i 6= j, the covariance between default indicators and the default correlation are thus
determined by the first two moments of the mixing distribution.

cov(Yi, Yj) = π2 − π2 = var(Q) ≥ 0,

ρY := ρ(Yi, Yj) =
π2 − π2

π − π2
.

3.6 A Warning Concerning Correlations

The common default correlation ρY , should be carefully distinguished from the common
asset correlation ρ which appears in the one-factor version of the KMV/CreditMetrics
model.

It is common practice to compare one-factor credit models for homogeneous groups by
calibrating them so that they have the same default probability π and default correlation ρY

or, in other words, so that the first two moments of the distribution of Q agree in all cases.
Clearly if we do this for the four standard industry models then we fix the two parameters
of the mixing distribution and fully specify the models. Of the examples we have studied,
only the Frey-McNeil family of extensions to KMV/CreditMetrics allow the possibility of
extra parameters. In Section 3.8 we give an example of this kind of default-correlation-based
calibration.

If we restrict our attention to the KMV/Creditmetrics style of latent variable model,
and its extensions, then another approach to calibration is possible, although in our opinion
misguided. We can calibrate these models so that default probability π and latent variable
correlation ρ take prespecified values. However, this approach is subject to considerable
model risk and the values of risk measures for the portfolio loss can vary greatly depending
on our choice of multivariate model for the latent variables X.

In Frey, McNeil, and Nyfeler (2001) it is shown that it is essentially the copula of the
latent variables that drives the tail of the loss distribution and that it is possible to define
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models with identical default probabilities and latent variable correlations, but very different
copulas. We give an example here to reinforce our warning against model calibrations based
on asset correlation.

Group π ρ

1 0.05 0.10
2 0.05 0.20

Table 1: Values of π and ρ for the two groups in Table 2.

We consider two homogeneous groups of 1000 counterparties of poor credit quality as
defined in Table 1. Thus in both groups the default probability is 5%; in Group 1 the asset
correlation is 10% and in Group 2 it is 20%. To each group we calibrate three latent variable
models: a model which assumes multivariate normality of the latent variables as in standard
KMV/Creditmetrics; two models from the Frey-McNeil class which assume that the latent
variables have a multivariate t distribution with 10 and 5 degrees of freedom respectively.
We assume that all losses given default are equal to one unit so that the overall loss is
given by the number of defaulting counterparties. We then use Monte Carlo with 1 million
replications to estimate the 99% and 99.9% VaRs for the credit loss distribution, which we
label VaR0.99(L(1000)) and VaR0.999(L(1000)). Results are presented in Table 2.

Group Risk Measure KMV/CreditMetrics t Model (10 d.f.) t Model (5 d.f.)
1 VaR0.99(L(1000)) 170 255 320
1 VaR0.999(L(1000)) 242 384 482
2 VaR0.99(L(1000)) 250 327 389
2 VaR0.999(L(1000)) 386 512 600

Table 2: Estimates of VaR for two different portfolios of 1000 counterparties. In both cases
default probability π and latent variable correlation ρ are held fixed according to the values
in Table 1. Estimates are based on 1000000 Monte Carlo simulations. Losses are rounded
to nearest unit.

Clearly moving from a Gaussian assumption to a multivariate t assumption for the la-
tent variables has a massive effect on the VaR, even though the expected number of defaults
is alway the same (1000π = 50). As the “true” multivariate model for latent variables is
generally unknown, this example should be interpreted as a warning against calibration
approaches which are based exclusively on assumptions concerning latent variable correla-
tions.

3.7 Loss Distributions for Large Homogeneous Portfolios

In this section we state a result which shows that for large homogeneous groups the tail
of the portfolio loss distribution and, in particular, the risk measures that describe it, are
driven by the tail of the underlying mixture distribution of Q. This insight will help us
implement a simple risk measure estimation methodology for homogeneous groups that
obviates the need for simulation.

We introduce a sequence of iid exposures {Ei}i∈N with mean exposure µE and finite
variance. Assuming that the entire exposure is lost in the event of default the loss in a
portfolio of m obligors over the time period [t, t + ∆t] is given by L(m) =

∑m
i=1 EiYi

Proposition 3.2. Let VaRα(L(m)) and ESα(Lm) be the value-at-risk and expected short-
fall for a portfolio of m counterparties. Assume that the quantile function α → qα(Q) is
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continuous in α, i.e. that

G(qα(Q) + δ) > α for every δ > 0 . (11)

Then

lim
m→∞

1
m

VaRα(L(m)) = µE qα(Q) (12)

lim
m→∞

1
m

ESα(L(m)) = µE E (Q | Q ≥ qα(Q)) . (13)

A proof of (12) may be found in Frey and McNeil (2001) and (13) follows easily from
(12). A similar result is proved in Gordy (2001) and this work has been very influential in
the setting of capital charges in the Basel II proposals on credit risk. An early version of the
limit result, in the special case of the probit-normal mixing distribution (i.e. the one-factor
version of the KMV-model), can also be found in KMV-Corporation (1997).

In all models we consider the mixing variable Q has a strictly positive density and the
condition (11) is satisfied. This motivates our use of the following approximations to our
risk measures in large balanced portfolios.

VaRα(L(m)) ≈ m µE qα(Q)
ESα(L(m)) ≈ m µE E (Q | Q ≥ qα(Q)) .

For the standard industry models it is possible to calculate qα(Q) and E (Q | Q ≥ qα(Q))
accurately. To calculate the former simply requires inversion of the distribution function G
of Q, which is readily performed for the standard models. To calculate the latter we can
also use the formula

E (Q | Q ≥ qα(Q)) = qα(Q) + (1− α)−1

∫ ∞

qα(Q)
G(q)dq,

where G = 1−G denotes the tail function of Q; the integral can be evaluated numerically.
Accurate calculation is slightly more difficult in the case of the Frey-McNeil extensions to

KMV/Creditmetrics, since the distribution of Φ−1(Q) is a convolution, and the distribution
function G of the mixing variable Q must itself be calculated by numerical integration. We
restrict our attention in the following example to the standard industry models.

3.8 An Example

In this concluding example we show how both the risk measures discussed in Section 2 may
be calculated for large homogeneous portfolios.

Group π π2 ρY

1 0.05 0.0037 0.0255
2 0.05 0.0052 0.0578

Table 3: Values of π, π2 and ρY for the two groups in Table 4.

We compare risk measures for the loss distributions in the standard industry models for
two homogeneous portfolios of poor credit quality defined in Table 3. Thus for both groups
the default probability π and the default correlation ρY , or equivalently the joint default
probability π2, are assumed to be known and fixed. We set µE = 1 and consider a portfolio
of size m = 1000. Note that, in the special case of the KMV/CreditMetrics model, the two
groups coincide with the groups in Table 1; that is, the asset correlation values ρ in Table 1
are precisely the values that give the default correlations ρY in Table 3.
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Using direct calculation, and numerical methods where necessary, we determine the
parameters of the mixing distribution which are necessary to give the required first and
second moments. We then calculate risk measures for the mixing distribution and scale
them by portfolio size to estimate VaR and expected shortfall at different probability levels.
The results are contained in Table 4.

Group Risk Measure CreditRisk+ KMV/CreditMetrics CreditPortfolioView
1 VaR0.99(L(1000)) 162 169 175
1 VaR0.999(L(1000)) 218 241 265
1 ES0.99(L(1000)) 186 200 214
1 ES0.999(L(1000)) 241 271 301
2 VaR0.99(L(1000)) 237 250 268
2 VaR0.999(L(1000)) 340 384 445
2 ES0.99(L(1000)) 282 308 344
2 ES0.999(L(1000)) 380 439 514

Table 4: Estimates of risk measures for two different portfolios of 1000 counterparties.
Losses are rounded to nearest unit.

Although the model risk is not as severe as in Table 2 it is still clear that for these
portfolios of poorer quality the choice of model has an effect on the tail of the loss distribution
and the associated risk measures. Up to the 99th percentile the differences are not too great,
but at the 99.9th percentile there are large differences between the most optimistic model (in
this case CreditRisk+) and the most pessimistic model (CreditPortfolioView); the expected
shortfall estimate at the 99.9th percentile corresponds to a loss of 38% of portfolio value
in the case of CreditRisk+ and 51% for CreditPortfolioView. In Figure 1 we plot the tail
functions on a logarithmic y-scale for the three models. The differences clearly emerge
beyond the 99th percentile.

Clearly this methodology can provide useful insights into the extremal behaviour of
credit models. It is interesting to note that the technique may be applied equally easily to
both VaR and expected shortfall; therefore there is no insurmountable barrier to basing our
practical risk management on the coherent alternative measure.

References

Acerbi, C., and D. Tasche (2001): “On the coherence of expected shortfall,” working
paper, Department of Mathematics, TU-München.

Artzner, P., F. Delbaen, J. Eber, and D. Heath (1999): “Coherent Measures of
Risk,” Mathematical Finance, 9, 203–228.

Credit-Suisse-Financial-Products (1997): “CreditRisk+ a Credit Risk Management
Framework,” Technical Document, available from htpp://www.csfb.com/creditrisk.

Crouhy, M., D. Galai, and R. Mark (2000): “A comparative analysis of current credit
risk models,” Journal of Banking and Finance, 24, 59–117.

Frey, R., and A. McNeil (2001): “Modelling dependent defaults,” Preprint, ETH Zürich,
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A Proof of Lemma 2.7

Proof. Denote by ∆m−1 := {γ ∈ R
m : γi ≥ 0,

∑m
i=1 γi = 1} the standard (m− 1)-simplex.

Define a function

fρ : ∆m−1 → R ,γ 7→ fρ(γ) := ρ
(
L((0, γ1M, . . . , γmM)′)

)
.

Then the lemma is equivalent to the claim

fρ((1/m, . . . , 1/m)′) = min{fρ(γ) : γ ∈ ∆m−1} .

Since the Li (the losses on the individual bonds) are iid, and since ρ depends only on the loss
distribution, the function fρ is invariant under permutations of its arguments. Coherence
of ρ (subadditivity and positive homogeneity) implies that fρ is convex. Denote by Πm the
set of all permutations of {1, . . . ,m}. Then we have for Π ∈ Πm and γ ∈ ∆m−1

fρ(γ) = fρ

(
(γΠ(1), . . . , γΠ(m))

′)
=

1
m!

∑
Π∈Πm

fρ

(
(γΠ(1), . . . , γΠ(m))

′)

≥ fρ

(
1
m!

∑
Π∈Πm

γΠ(1), . . . ,
1
m!

∑
Π∈Πm

γΠ(m)

)

= fρ((1/m, . . . , 1/m)′) ,

where the inequality follows immediately from the convexity of fρ.
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Figure 1: Tail of the mixing distribution G of Q in three different exchangeable Bernoulli
mixture models: CreditRisk+ (essentially a beta mixing distribution); KMV/CreditMetrics
(probit-normal mixture); CreditPortfolioView (logit-normal mixture). In all cases the first
two moments π and π2 have the values for group 1 in Table 1. Horizontal line at 0.01 shows
that models only really start to diverge after 99th percentile of mixing distribution.
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