Risk-minimizing Hedging Strategies under Restricted Information:
The Case of Stochastic Volatility Models Observable only at Discrete

Random Times

Ridiger Frey Wolfgang J. Runggaldier
Swiss Banking Institute Dipartimento di Matematica
University of Ziirich Pura ed Applicata
Plattenstr 14 Universita di Padova, Via Belzoni 7
CH-8032 Ziirich [-35131-Padova, Italy
freyr@isb.unizh.ch* runggal@math.unipd.it

July 18, 1999

Abstract

We consider a market where the price of the risky asset follows a stochastic volatil-
ity model, but can be observed only at discrete random time points. We determine a
local risk minimizing hedging strategy, assuming that the information of the agent is
restricted to the observations of the price at its random jump times. Stochastic filter-
ing also comes into play when computing the hedging strategy in the given situation
of restricted information.
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1 Introduction

In this paper we consider a market with a risky and a nonrisky asset. The price of the risky
asset follows a stochastic volatility model, where the volatility is influenced by some latent
process X. Stochastic volatility models, which were developed to overcome some of the
empirical deficiencies of the classical Black Scholes model, have received a lot of interest

in the financial literature; see e.g. [11] for a survey of option hedging in these models.
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We consider the problem of hedging a derivative contract in this market from the
viewpoint of an agent who observes the precise value of the stock price Sy only at discrete,
random points in time 77 < 75 < ---. This departure from the usual modelling approach
in Finance, where one assumes that prices are monitored on a continuous basis, makes
sense from an economic viewpoint: as soon as agents incur some cost or have to invest
some (small) effort in order to obtain accurate and up-to-date price information, it is
reasonable to assume that they acquire precise price information only at certain discrete
points in in time. This implies in particular, that they do not have precise information

about the current volatility level.

The main purpose of this paper is to describe an approach to determine a hedging
strategy for an agent who has only incomplete price observations. Clearly, any reason-
able strategy for this agent has to depend in some way on the unobservable latent state
process. We are thus in presence not only of an incomplete market situation, but also of
partial information. We show that the criterion of (local) risk minimization is particularly
appropriate to deal with this situation. Following a line of attack analogous to [8], where
observable prices are modelled as diffusions, we proceed along two steps : first we determine
a risk minimizing strategy assuming full knowledge also of the latent state process. Then,
in line with [19] (see also [6]), we obtain the risk minimizing hedging strategy under partial
information by ”projecting” the full information strategy onto the subfiltration describing
the available partial information that comes from observing the prices (or, equivalently,
their logarithms) at the discrete random times where a trade occurs. In order that this
two-step procedure is applicable, we model the price of the risky asset directly under a

martingale measure.

To actually compute the projections onto the subfiltration, an important tool is the
conditional distribution of the latent state process, given the available price observations.
This leads to a nonlinear filtering problem with marked point process observations, that
we study in the companion paper [12]. In the last section we recall the main features of
the solution of this filtering problem and show how it can be applied to our setting, thus

leading to a complete solution to the given hedging problem.

2 The model

Consider some underlying filtered probability space (£, F, {F; }o<i<7, P) and some termi-
nal date T'. We are interested in the following three models for the dynamics of the latent
process X which is assumed to influence the asset price volatility in our setup. In economic
terms the process X can be interpreted as the rate at which private/insider information

is absorbed by the market.



A1l) X is a RCLL piecewise constant interpolation of a discrete time, finite state Markov
chain over an equispaced time grid with step A > 0. The state space is Ej; :=

{z1,---, 2z} and the transition probability matrix is IT = {p;;}i j=1,... M-

A2) X isa continuous-time finite state Markov chain with state space Ens := {z1, -+, 2znm}

and generator matrix R = {rj;};i j=1,... M-
A3) X is a diffusion, i.e. for a Wiener process {w}} on (2, F,{F;}, P) we have
dX; = alt, X;)dt +n(t, X;)dw; (1)

with coefficients such that there exists a unique weak sense solution.

We assume that the asset price S follows a stochastic volatility model of the form

dSy = Si\/v(t, S, X;) dw) (2)

for a second Brownian motion w", which is independent of the filtration generated by X.
Here the function v : [0, 7] x RT x R — IR is continuous with values v(t, S, z) € [v,7], Vt €
[0,7], S € R", z € R where 0 < v <% < co. The initial condition Sy is supposed to be

deterministically given.

Besides S, there is a risk-free asset B traded in this market (a bond or money market
account). For simplicity we take the price B, = 1, i.e. S represents the forward price of
the risky asset. Note that under this assumption model (2) implies that the measure P is

a martingale measure for S.

As mentioned in the Introduction, we consider the problem of hedging a derivative
contract in this market from the viewpoint of an agent who observes the precise value of
the stock price S; only at discrete, random points in time 77 < T5 < ---. The random times
T,, are modelled as jump times of some point process N = (N;), whose {F;}—intensity
At = A(t,X;—) depends on X;. More precisely, A : [0,7] x R — R is continuous and
nondecreasing in x with A(t,z) € [A\,A],> Vt € [0,T], z € R where 0 < A < X < o0.
Assuming that A is nondecreasing makes sense from an economic viewpoint as the agent
is likely to monitor the market more frequently in periods where the market is very active
or where a lot of new economic information reaches the market (high volatility periods).
The time dependence in A and in v above is introduced to allow for the incorporation of
seasonal effects, which are typical for high frequency data. For more information about

qualitative properties of high frequency data we refer the reader to [13].

Since observing S; or its logarithmic value L; = log S; is equivalent, we assume that the
information available to our economic agent comes from observing L; at the random times

T),. Notice that T, is the time of the last jump of N prior to t. The price information



available to our agent can therefore be summarized by an information process Y defined
via

Y, := Ly, - (3)
The process (Y;) is thus a marked point process (see [4] for the terminology); moreover,
the jump times of Y and N coincide P—a.s. Marked point processes have recently become

popular as models for asset price dynamics; see e.g. [1], [17] or [18].

The information available to our economic agent can be modelled by the subfiltration

{.7-"2/ }, generated by the process Y, which can equivalently be expressed as
FY ={Ny,s<t; Ly,, T; < t}; (4)
we shall furthermore assume that, for t =T,
FY ={Ns, s<T; Ly, T; <T; Ly} (5)

i.e., at the terminal date T the value of Ly (equivalently S7) can be observed exactly.

For the filtering results in Section 6 we need an additional assumption on the point
process N. To formulate this assumption in a mathematical precise manner we introduce
the filtration {G;} defined by G, := F} vV F3*. Note that {G;} contains information about

all the future of the state variable process.

A4) N is a conditional Poisson process (Cox process), i.e. it admits the P,{G;}-
intensity A(¢, X;).

Note that A4) is stronger than assuming that N is a point process with P,{F;}-
intensity A\(¢, X;_); in particular A4) excludes the possibility that the jump-times of the

processes N and X coincide.

3 Problem formulation

We shall consider the problem of hedging a contingent claim H € .7-"% , when the information
of the economic agent is restricted to the filtration {F}}. Since our market is incomplete
even with continuous price observations, we have to choose some approach to hedging
derivatives under incompleteness to determine hedging strategies. In this paper we shall
use the criterion of risk minimization (see [9], [10]). Notice that, when working under a
martingale measure, the criteria of local and remaining risk are equivalent. As we shall see,
this (quadratic) criterion is particularly well suited to dealing with hedging under restricted
information (in this context see [6], [19]). Although the results on risk minimizing hedging
strategies are valid for general claims H € £%(Q, Fr, P), for actual computation we shall

restrict ourselves to claims, whose payoff is a function H(S7) with E{(H(Sr))?} < oo.



A dynamic {F}-trading strategy (§,m) = {(§,m), 0 <t < T'} is a rule to hold & units
of the risky asset S and 7; units of B at time ¢. As usual we require & to be {F; }-predictable
and 7 to be {F;}-adapted. The value process of this strategy is given by

Vi = Vi€, m) == & X + e, (6)

and the strategy is said to hedge against H if Vp = H. As we are working in an incom-
plete market context, our strategies will not necessarily be self-financing. We define the

(cumulative) cost process of a trading strategy via

t
Ci=Cifém) = Vi— [ &uds.. (7)
Note that a strategy is self-financing if and only if the cost process is constant.

In computing his strategy, our hedger has only the information contained in {F} }
at his disposal. He is therefore restricted to the subclass of {F} }-strategies where ¢ is
{FY }-predictable and 7 is {F} }-adapted. If moreover,

E{/Tgfv(t, st,xt)sfds} < oo and B {sup{[Vi(e,n)], 0<t < TP} <00,  (8)
0

a {FY }-strategy is called {F} }-admissible.

As in [9], [10] we take the conditional variance of the cost-process as measure of the
risk of our strategy. The {F) }-risk process RY (¢,n) of an {F) }-admissible strategy is
defined as

RY (&,n) := B{(Cr(&,n) — Cul&,m)2 |7} 9)

Finally we can give

Definition 3.1 Given a contingent claim H(St) € L*(Q, Fr,P). An {F) }-admissible
strategy (€,m) which hedges against H is called {F} }-risk minimizing if R} (&,m) < Rz/(é, 7)
P-a.s. for all t € [0,T] and any {F} }-admissible strategy (5,77) which hedges against H.

As shown in [6] and [19], to compute {F} }- risk-minimizing strategies, one can pro-
ceed in two steps. In a first step one determines the risk-minimizing strategy under “full
information”, i.e. for an agent who is able to use {F;}-trading strategies. The {F} }-
risk-minimizing strategy can then be computed by “projecting” the {F;}-risk-minimizing

strategy onto the set of {F} }-admissible strategies.

4 Risk minimizing hedging strategies under full information

We shall now determine a risk minimizing hedging strategy under full information {F;}.

For this purpose define the P—martingale
g(t, Sy, Xy) := E{H(ST) | Fi} (10)



where the definition is justified by the Markov property of (S, X;). We have

Proposition 4.1 Under sufficient reqularity, the function g(t,S,z) in (10) satisfies the
following PDE’s (Kolmogorov backwards equations) in [0,T] x R™ x Ey; respectively in
[0,7] x RT x R.

a) under assumption A1) for X; :

gt(ta Sa :E) + %U(ta Sa x)SZgSS(ta Sa (I;) + ZI?:O:O l{t:kA} [H - I] g(ta Sa (I;) =0
9(T, S, z) = H(S)
where [T —1I]g(t,S,m) = X2 Pxjl9(t,S,5) — g(t, S,w)] with psj the transition
probabilities in A1).

(11)

b) Under assumption A2) for X; :
gi(t, S, x) + 2v(t, S, 2)S%gss(t, S, x) + Rg(t,S,z) = 0
g(T,S,z) = H(S)
where Rg(t, S, x) = 32y 12,5 19(2, 5, 7) — g(t, S, z)].
c) Under assumption A3) for X; (and in [0,T] x Rt x R) :

gt(ta S,(L‘) +gX(ta S,III) a(t,x) + %gSS(ta S,(L‘)U(t, S,(II)SZ + %gXX(ta S,x)nZ(t,x)] =0
g(T,S,z) = H(S).
(13)

Furthermore, in all three cases the risk minimizing hedging strategy under full information
(&7 ,n7) is given by :
fg: = gS(ta Stath)

(14)
77;‘,7: = g(ta StaXt) - gt]:‘s’t

Proof : From [10] or [9] we know that, if one can determine the Kunita Watanabe decom-
position (KW)

T
H(Sy) = Hy +/ s, + MY (15)
0

of the claim H, where M is a P—martingale orthogonal to the P—martingale S, then

7 = ¢! and M determines the cost process.

For this purpose let us first consider the process X; according to assumptions A1) or

A2). Using Ito’s formula, we may write

H(ST) = g(Ta STaXT) = g(oa SOaXO) + f[]T gS(ta StaXt—)dSt
+ ) [gt(t, S, Xi—) + 3v(t, St, Xi—)S?gss(t, StaXt—)] dt (16)

+ ZtST [g(ta St7 Xt) - g(ta Sta Xt—)] .



Under Al) we now have that
ngt:nA [9(37 Ss, XS) - g(s, Ss, XS—)]
(17)
1
= M{" + SR (T = 1) g(kA, Sea, X-1)a)
where Mt(l) is a (P, F)-martingale with piecewise constant trajectories and jump-times
equal to kA, k = 1,2,..., K. Following now a rather standard approach (see e.g. [11]),
we have that all predictable finite variation terms have to vanish, since g(¢, S, X;) is a
(P,{F;})— martingale. This leads on one hand to (11), on the other hand to the repre-

sentation .

H(Sr) = 9(0,50,X0) + [ gs(t, 51, X dSi + M50, (18)
which is the required KW-decomposition of H(S7), as the finite variation martingale M (1)
is orthogonal to the P—martingale S.

Analogous considerations apply under A2). It is well-known that the process

t
MP =3 g(s, 80, Xs) — g(5, S0, X ) —/0 Ry(s, Sy, X, )ds (19)
s<t

is a martingale. Hence, under (12) we have the representation
T
H(ST) = g(O,S(),X()) +/0 gS(ta StaXt—)dSt +M]("’2) ) (20)

which proves the claim, as S and M? are again orthogonal.

Coming to A3) and using always Ito’s formula as well as the equations (2) and (1) for

S and X respectively, we may write

H(Sr) = g(0,S0,X0) + [y [g:(t, Se. Xu) + gx (t, Sp, Xp) alt, Xy)] dt
+ I3 [3955(t, Sty Xe)v(t, Sh, Xi)S? + §gxx (&, Sh X (8, Xo) | dt - (21)

+ f(;T gS(ta Sta Xt)dSt + f(;T gx (ta Sta Xt)n(ta Xt) dwtl :
Again, since g(t, S¢, X;) is a P—martingale, the (predictable) finite-variation terms have to

vanish, which leads to (13). Furthermore, {w} } being independent of {w}, the last term

on the right in (21) is a P—martingale, orthogonal to S;, which proves c).

Q.E.D.

To compute the hedging strategy and its value, we need thus to compute g¢(¢,.5, )
and for this we may either compute the expectation in (10) or solve the PDE’s in (11)-
(13). Exact (analytical) solutions are difficult to obtain and so one is led to search for

numerical/approximate solutions:



e To solve numerically the PDE’s in (11)-(13) one usually employs finite difference
methods; see e.g. ch 10.4 in [7] or [20] for a general account on these methods and [3]
for a method which is particularly well suited for problems with a multidimensional

state space.

e The numerical computation of the expectation in (10) can be obtained by a Monte
Carlo simulation approach (see e.g. [2]) combined with discretization schemes for
SDE’s (see e.g. [14]).

5 Risk minimizing hedging strategies under incomplete in-

formation

We now go back to the original situation where the hedger is restricted to the information
contained in {F}} as defined in (4), (5). Applying Theorem 2.5 and in particular relation
(3.3) of [19] we get that a {F} }-risk-minimizing strategy (¢£*,7*) can be computed from
(¢7,n7) as follows:

& = B{ot5,X) 8\ P} E Lo, 8, X)) SEFCY (22)
i = B{H(Sr) -&SIF }; (23)

see also Theorem 1 of [6] for a related result.

According to our model, the hedger does not receive “significant new information”
between the jump-times of N. Hence it is legitimate to assume that he updates his portfolio
only immediately after the jumps of N, in particular, if the time between the jumps is

small. More precisely, we assume that our hedger follows a piecewise constant strategy

(€,77*) given by

&= |l €] L ®) and i o= [l | L (). (24)

Note that at the jump-times of N the value of S is observable. Hence we have for
te (E7E+1)

5; = E{v(ﬂvsTmXTz)fiu:%:}/E {U(EvsTivXTi)u:%:}
(25)
= E {U(TivSTivXTi)gS(TiaSTiaXTi)|‘7:7¥i} /E {”(Tiv STi’XTi)|F]¥’;} .

At the jump times T; we define the strategy so that 5* becomes left-continuous and 7*

right-continuous.

In the sequel we make also the following assumption :



A5): The function g defined in (10) satisfies the Kolmogorov backward equations (11)-
(13). Moreover, for all fixed values of ¢, .S, we have that g(¢, S, -) and its derivative gs(t, S, *)

are bounded in z.

Since v(-) is assumed to be continuous and bounded, under assumption A5) the required
conditional expectations in (25) can be computed whenever one can compute a conditional
expectation of the form E {F (XTZ)|]-'£ } with F(-) continuous and bounded. This will be

the subject of the next section.

6 Computation of the conditional expectations via nonlin-

ear stochastic filtering techniques

The purpose of this section is to present a method to compute conditional expectations
of the form E {F (XT1)|.7-"%€ } where F'(-) is continuous and bounded, X; is the unobserved
process satisfying one of the assumptions A1)-A3), T; are the jump times of the process
N, at which the price S; of the risky asset (or, equivalently, its logarithmic value) can
be observed, {F}} is the observation filtration as defined in (4), (5). This is a typical

nonlinear stochastic filtering problem.

It is shown in [12] that for our model there exists a measure ) on (€, Fr), equivalent
to P, under which (X;) and (Y;) are independent. Denote by A; := de/de the
Radon-Nikodym derivative of ) with respect to P. By the exponential formula from
Lebesgue-Stieltjes calculus we get that A; is a functional of the trajectories of X and Y
up to time ¢, i.e. Ay = Ay(X?,Y?). By the so-called Kallianpur-Striebel formula (see e.g.

[15]), which is related to Bayes’ formula, one has

E{F(X)A A}
EQ{ANFYY

BP{F(X,)| 7} = (26)
The advantage of this formula is that it reduces the computation of the desired conditional
expectation on the left to two expectations on the right which, due to the independence of
(X:) and (Y;) under @, are (roughly speaking) just ordinary expectations of a functional
of the process (X;), in which Y; is fixed at the observed values. The measure @ can, fur-
thermore, be chosen so that (see again [12]) the distribution of (X;) under ) remains the
same as under P. We now explain how this measure transformation approach leads to (ap-
proximative) recursion formulas for the conditional distribution of X; given observations
up to time ¢. We start with the case where X satisfies Al).



6.1 Case of assumption Al)

Putting
V(Y3 F) i= BYUYF(X)A 1R ) (27)
let, for z; € Epy (1=1,---, M)
0 (i) = Vi (YV50p0y) = B2 {1 x, o) AT (X" 91 | (28)

where ' denotes the observed trajectory of (Y;) from time 0 up to and including t. With
(28) we may write (27) as

M
Vi(Y;F) =Y F(z:)q) (%) (29)
=1

so that (26) becomes (since (X;) has the same distribution under P and @, we can now

drop the superscript in the expectation symbol)
Yty F(wi) af (x:)
ity gl ()
. YN o Y (o M Y N : . . . . . .
showing that p; (z;) := ¢/ (z;) / >j=14 (x;) is the conditional distribution (filter distri-

bution) of the unobserved process X;, given past and present observations of (Y;). Conse-

E{F(X:)|F} = (30)

quently, ¢} (z;) can be viewed as unnormalized filter distribution.

Our filtering problem is thus solved, whenever we are able to compute the vector
q = (qf (z1),-,q) (z M)) of unnormalized filter distributions, which we need for all
values of ¢ = T;. In the next Proposition, assuming that the function v in (2) does not
depend on S, we present for ¢} a recursion over the discrete time grid with step A > 0

(see assumption A1)). For this purpose we put g} := g} .

Proposition 6.1 Suppose that, in addition to the given assumptions, the function v in
(2) does not depend on S. Then the vector q,lc/ of unnormalized filter distributions with

components as given in (28) satisfies the following recursion
ab = (7 EF) - qf (31)
where 1T is the transpose of the transition probability matriz of X; as given in assumption
A1) and where
EF .= diag (E;?; j= 1,---,M) (32)
with

1 v Tm - Tm—
Ef = exp {A — fk(ZH)A A(t, ) dt + Z [5 log ( _jgm 2 )

mefl v(t,zj) dt

EA<Tm<(k+1)A
1 T, . _ _ (Lm_mel)2 1 .
+ 3 ( o v(t zg)dt — (T, Tmfl)) (y(Tme_l) TT:_lv(t,m]-)dt 4> + log A(Tm,:p])l}
(33)

10



Here v(t,z) is as in (2) (independent of S), v is the lower bound on v(t,z), A(t,z) the
intensity of the point process N, Ty, the observed jump times of N in (KA, (k + 1)A] (if
no jump of N is observed in (KA, (k + 1)A], the sum in the right of (33) drops out), L,
is the value of L =log S as observed at t =T, and xz; is the j—th element in E)ys.

Remarks :

1. Recursion formulae of the form (31) are particularly useful if new observations arrive
very frequently. In a financial context this quick arrival of new information is typical

for High Frequency Data.

2. If the functions v and A\ do not depend explicitly on time, the expression for EJ’c

simplifies considerably and E;“ itself becomes time independent.

3. In the special case when one neglects the information coming from the jump-heights
of Y, which corresponds to assuming v(¢, S, ) = v = T, we obtain a known formula

(see e.g. [5]) for pure jump observations.

As a detailed mathematical proof is given in the companion paper [12], we discuss only
the basic idea behind the result. To derive the recursion formula (31) one conditions on
F7 in (28), evaluated at t = (k + 1)A. The result then follows from the fact that the
multiplicative increment of the likelihood has a particular form as X is piecewise constant:

we have in fact

1 (vkA kA - 2 1{X(k)A=wj}Ef'
AkA (X Y ) j=1

Notice also that, in the companion paper [12], the process S; satisfies (2) with a drift term
—2S%v(t, S, Xy) (in [12] it is the log-price L; that is a P—martingale). This implies a
slight change in the expression for the Radon-Nikodym derivative and, consequently, also
in the expression for Ef (the only difference being that, here, we have the additional term
—1/4 in the right hand side of (33)).

6.2 Case of assumptions A2) and A3)

In both these cases we still have formula (26), but the functional V;(Y’; F') is now the ex-
pectation of a functional of a continuous time process, and this makes it considerably more
difficult to compute, unless one uses a Monte Carlo type approach. In particular, as soon
as the state space of X is infinite, the filtering problem does not admit a recursive solution.
Using the independence under @ of (X;) and (Y%), it can be shown (see Proposition 3.2 in
[12]) that Vi(Y; F') in (27) can be approximated arbitrarily closely by the sequence

V(Y3 F) = B{F(XAT (X)) } (34)

11



where X" = (X}') is a sequence of discrete time and finite state Markov chains, whose

piecewise constant time interpolations converge weakly on the Skorokhod space D to the

original process X = (X;). Such a sequence can be constructed for X, satisfying both

A2) and A3), since under these assumptions it does not admit deterministic times of

discontinuity (i.e. P{X; # X;_} = 0). Various ways to construct such a sequence can be

found in the existing literature (see e.g. [16]). For the computation of the approximating

functional V;™(Y’; ') one can then use the results of the previous subsection.
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