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Abstract

This note refers

to the paper “Changes of Numeraire, Changes of Probability Measure and Option Pricing” by
Geman et al. [GER95], in which an extension of the Geske—formula for compound options to the
case of stochastic interest rates is proposed. We show that such an extension is not possible in
general. However, we point out modifications of Geske’s original problem in which closed formulas
can still be obtained under stochastic interest rates. In particular we consider the case of an option
on a futures—style option. Moreover, we sketch a numerical solution to Geske’s original problem

when interest rates are random.
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1. Why there is no simple Generalization of the Geske—Formula to Stochas-

tic Interest Rates

In his 1979 paper “The Valuation of Compound Options” Geske [Ges79] studied the
valuation by arbitrage of a call option on a call option on a stock in the framework
of the Black—Scholes model. More precisely, if we denote by S, the price of the stock
at time 7 > 0 and by Cr, (S1y, K1,T1) the price at time 0 < Ty < T3 of an European
Call option on the stock S with strike K; maturing at time 77 Geske was interested

in the time 0 < t < T5 value of the following payoff received at time 7T5:
(1) Ccs = [Cr (S, K1, Th) — Ko

He used the framework proposed by Black—Scholes, i.e. he essentially assumed the

process of the stock price to be given by the solution to the SDE
dSt = ’I"Stdt + O'Stth,

where r and o are constants and W is a one dimensional standard Brownian motion.
In this framework the price of a European call option at time 7 on S with strike K

and maturity 7" is given by

C,(S;,K,T) =S, N(d) — Ke """ N(dy)  where

In % +1i52(7 =
P i B L ks O RN e
o/ (T —1)

This is easily seen to be strictly monotonically increasing in S; from zero to infinity

as S; goes from zero to infinity. Hence for any K* € IRy there is exactly one
S*(K*) € Ry such that C,(S*, K,T) = K*. The existence of such an S* is crucial
for the derivation of the Geske formula because it allows the decision whether the
compound call as defined in equation (1) is to be exercised or not at time T5 to be
reduced to the question of whether S7, > S*(K>). Given this fact and using the law
of iterated expectations, by absence of arbitrage (see [HP81]) the price at time t < Th

of the compound call can be written as

CEO = Et [exp{—r(T2 — t)}l{ST2>S* (K2)}

(ET2 [exp —r(Ty — T5)(S7, — K1)1{5T1>K1}] - 1@)] :



Geske’s formula and stochastic interest rates 3

Using the law of iterated expectations and the change of measure technique it is now

easy to derive the Geske formula under deterministic interest rates (see [DR92]).

In their paper “Changes of Numeraire, Changes of Probability Measure and Option
Pricing” Geman et al. [GER95] claim that this formula can be generalized to the
case of stochastic interest rates. They do not specify any particular model of the
term structure of interest rates. All they require for their formula to hold is that the
volatility of the stock price be deterministic. We show that under these general
conditions their formula for the compound call under stochastic interest rates is
wrong. In particular we argue that if a generalization of the Geske formula to
stochastic interest rates was to be possible this would require unacceptably severe
restrictions on the volatility of the stock price process and on its correlation with the

price processes of zero coupon bonds.

In order to see this let us extend our above model for the stock price so that
it encompasses an arbitrage free model of the term structure of interest rates with
deterministic volatilities of forward rates and hence of zero coupon bond prices along
the lines of Heath et al. [HIM92]. We assume that zero coupon bonds of all maturities
T € [0,T] are traded. For ¢t < T the price at t of the zero coupon bond maturing
at T shall be denoted by B(t,T). In an arbitrage free market in the absence of
credit risk we must of course have that B(T,T) = 1 for all T € [0,T]. If B(t,T) is
differentiable in the second argument the instantaneous forward rate f(¢,T) exists and
is defined as f(t,7) = — 2 In B(t,T). If all forward rates exist we have the relation
B(t,T) = exp(— ftT f(t,s)ds). The process (ri)o<; = (f(t,1))o<, Will be called the
short rate process. Finally, by £, 7 := exp{ ftT rsds} we denote the accumulation
factor or savings account. Since we are only interested in the pricing of derivatives by
no-arbitrage arguments and we will presently assume that markets are complete it is
legitimate to model the asset price dynamics directly under the risk-neutral measure

P. Under this measure all non-dividend paying assets are (local) martingales after

As shown by Harrison and Pliska [HP81] market completeness is equivalent to uniqueness of the

risk-neutral measure such that there is no ambiguity here.
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discounting with the savings account, hence their instantaneous growth rate equals
r¢. As shown by Heath et al. [HJM92] this implies that under P the drift of the

forward rates can be expressed in terms of their volatilities. We make

Assumption 1.1 We are given a d-dimensional standard Brownian motion W/
on a probability space (Q,]:, (ft)0§t§T7P)' The filtration is the augmented natural
filtration of W& and F = Fp.

1. Let o(t,T) : D :={(t,T) e R} |0< ¢t <T,0< T < T} - R" be a continuous
function. Define n® R2 — R by nB(t,T) = —ft o(t,s)ds if (¢,T) € D and

0 otherwise. We assume the following dynamics for the forward rates under P:

df(t,T) = =P (t,T) - o(t,T)dt + o(t, T)dW

2. The stock price evolves according to
dSt = rtStdt + St’l’]detd
where 7y = (nﬁt, ...,nit) is a continuous R?-valued function of time only.

3. There are d traded assets such that for allt € [0,T] the instantaneous covariance

matriz of these assets is strictly positive.

REMARKS: As shown in [HJM92] this implies that B(t,T') satisfies the SDE
(2) dB(t,T) = rB(t,T)dt + B(t, T)n?(t,T)dW}.

The definition of the bond price “volatilities” implies that 72 (t,-) is differentiable
in the second argument on D and that n®(T,T) = 0. Alternatively we could have
started by specifying bond price volatilities n® with these two properties and define
bond prices as solution to the SDE (2), the short rate r; being implicitely defined
via rp = —B%|T:t In B(t,T). The volatility of the forward rates is then given by
o(t,T) = —2nPB(t,T). This approach is taken in [EKR89], [EKMV92a]. Point 3 of
this assumption implies that the market is complete, i.e. every integrable contingent
claim adapted to the filtration generated by W¢ can be replicated by a dynamic
trading strategy, see section 6.I of [Duf92].
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The Novikov criterion moreover implies that the discounted bond and stock price
processes specified in Assumption 1.1 are strictly positive P-martingales (and not only
local martingales). Theorem 1 of [GER95] therefore ensures that the price system we
obtain by using one of these assets as new numeraire admits an equivalent martingale
measure and is therefore arbitrage-free. As shown by Delbaen and Schachermayer in
[DS95], if the new numeraire is only a local martingale it can happen that the price-
system corresponding to this new numeraire allows arbitrage opportunities, even if
the original price system admits an equivalent local martingale measure and is hence
arbitrage-free. These authors also give a general characterization of those numeraires
that preserve the no-arbitrage property. However, in our context we have no need of
their general result.

In this framework, using the change of measure technique, it is easy to derive a

generalized Black—Scholes formula for a European call option on the stock.

Proposition 1 Under Assumption 1.1 the generalization of the Black—Scholes for-

mula to stochastic interest rates is given by

C: (S;,B(r,T),K,T) = S;N(d1) — KB(r,T)N (d2)  where

I (2l ) + L [ IS — 0P (s,7)]%ds T
dy = (KB( ’T)) 20T and dy = di — / |77§ - ﬂB(S,T)PdS
VIE s = (s, ) 2ds "

We do not give a proof of this result here as Proposition 1 is a special case of Theorem

3.1 in [FS96].

The first observation to make about this formula is that it depends on the volatilities
of the stock and the bond. Hence, the value of the compound call as in equation (1)
cannot, be independent of the volatility of the zero coupon bond maturing at T as
claimed in [GER95]. More important than this is the fact that the formula depends
on two random variables, namely S, and B(r,T), rather than one. This implies that
under stochastic interest rates in contrast to deterministic ones it is not clear that
the decision to exercise or not to exercise the compound call can still be reduced to
a one—dimensional problem. The following theorem shows that a necessary condition
for this to be possible is that in T the logarithms of the stock and of the bond

maturing at T} be perfectly correlated.
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Theorem 1 Under Assumption 1.1 a necessary condition for the existence of a
number S*(K,) € Ry with the property that Cr,(St,, B(T>,T\), K1, T}) > Ky &
St, > S*(K>) is that the diffusion coefficients of the stock price process are given by

(3) bnd, =0l (t,Ty) — (L=bnl(t,To) Vt€[0,T] and i=1,....d,

where b is a constant. As a consequence the Fr, -measurable random variables In B(T5, T})

and ln S, must be perfectly correlated.

PROOF: A necessary condition for the existence of such a number S* even under
stochastic interest rates is that the pricing formula in Proposition 1 can be written as
a function of S, only. Hence, it must be possible to express B(T»,T7) as a function

of St,. Now
1>
ST2 = ST2/B(T2, TQ) = gS(TQ) exp {/ ’I]ZSv — nB (t, TQ)th}
0

B(TQ,Tl) = B(TQ,Tl)/B(TQ,TQ) = gB(TQ,Tl)exp {/T2 nB(t,Tl) — nB(t,TQ)th} 5
0

where gs and gp are constants. Now, if B(T»,T1) = f(St,) there is clearly a function

f such that
T2 - T2
/ n®(t,Ty) — n®(t,To)dW; = f (/ - ﬂB(t,TQ)th> .
0 0

Since the Lh.s. of the last equation and the argument of f are normally distributed
random variables with expected value equal to zero, and since normality is preserved

only under affine transformations we have
. B B ! . S B
@ | e m) -t zawi Lo [ af - P maw,
0 0
for some constant b. By the isometry for stochastic integrals we get
T> ,
|+ = o, 1) - 0P, Pat Lo
0
Finally, due to the continuity of the diffusion coefficients in ¢ we havefori =1,... ,d

b+ (L= P (6, To) — P (1, T)) =0 Vi€ [0,Ty),
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which proves the first part of the theorem. By (4) we see that In B(T»,T7) is an affine
transformation of In St,, which proves the perfect correlation between the two. This
completes the proof of the theorem.

Clearly condition (3) must be dismissed as unreasonable and unacceptable in any
serious stochastic model of stock and bond markets. We therefore conclude that
in general under the assumption of stochastic interest rates the decision whether or
not to exercise the compound call depends on the realization of the pair of random
variables St, and B(T%,T1). The set on which the compound call is exercised is given

by A = {w € Q|(S1,(w), B(Ty, T1)(w)) € A}, where
() A={(8,B) € R{|Cr,(S, B, K1,Th) > K2}

and not as in Geman et al. [GER95] by 41 = {w € Q]S (w) > S*} with S* the
supposedly unique value of Sz, that equates the price of the underlying option at 1%

and the strike of the compound option.

2. Modified Geske—Formulas under Stochastic Interest Rates

A simple inspection of the formula for the call on a stock under stochastic interest
rates shows that a Geske—type formula can still be obtained in this case if the second
option is not written on the spot price of the underlying option but on the T} forward
price of the latter since this is a strictly monotonically increasing function of the T;
forward price of S alone. Given this modification, Geske’s argument goes through
unaltered even under stochastic interest rates and the exact formula can be obtained
using the change of measure technique. Somewhat more interesting is the fact that
a Geske—type formula also exists if the option underlying the compound call option
is a futures—style option, i.e. if it is continuously marked to market. It is well known
that this is equivalent to saying that the second option is written on a futures on the

underlying option. We have

Proposition 2 (1) Under Assumption 1.1 the price at 0 < 7 < T of a futures—style
option on the stock S with maturity date T and strike price K is given by

F(T, T)N(dl) — KN(d2) ,
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where N is the cumulative standard normal distribution function and

T

ST T T
F(r,T) = BT P {—/ nan(t,T)dH/ InB(t,T)|2dt}
InF(r,T) =K + L [T |nf —nB(t,T)|ds

VI s =B, 1)Pds

T
dy = dl—\// Ing —nB(t,T)|%ds.

(ii) If the underlying of a compound call option with strike Ko maturing at Ty is a

d =

futures—style call option on S with strike K maturing at Ty > Ty, under Assumption

1.1 the price at time 0 <t < Ty of the compound call is given by

XNa(dy,ds, p) — K1 B(t, T5)N2(e1, ez, p) — KaB(t, T5)N(e1) where

e % {7%/:1 |77SS|27|77B(S’TI)|2Jr‘77]3(57712)\2ds+%/;1\I/X(S,Tl,Tz)|2ds}
vx = 5 +0"(s,T2) = n”(s,T1)
d = It Th) — In F*(K2) + % ftT2 ‘77;? —nP(s,T1)[ds + ftT2 (7755 —nB(s,T1))nB (s, To)ds
\/ftT2 [n5 —nB(s,T1)|?ds
o = DFET)-Ki+; [ 1ng — 0P (s, T)1Pds + [ (05 — 0P (s,T1))n® (s, To)ds
\/ftTl S —nPB(s,T1)|2ds
) = S ng — 0B (s, T0)|?ds

T T
VIE S —nB (s, T0)2ds [T n§ —nPB (s, T1)[2ds

Ts
er = di— / [ng —n®(s,T1)|2ds
t

T
e = d2—\// In$ — nB (s, Ty)|2ds,
t

where No is the bivariate cumulative standard normal distribution function with correlation coeffi-

cient p and

Proor: ad (i) As pointed out a futures—style option can be regarded as a futures
on an ordinary European option. It is well known (see [CIR81]) that in a complete
market futures prices are martingales under the risk neutral measure, which we have

denoted by P. Hence, we have for the price at 7 of the futures—style option

El' [[Sr - KI'] = F(r,T)EF [dQ/dP 1(r(; myaq/ap> 1|~ K EF [1ir( 1myi0/iP> k1] »
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where dQ /dP := exp {—% fTT2 IS —nP(s,Ty)|?ds + fTT2 ns —nB(s, Tl)dWs} is a Radon
Nikodym derivative. Applying Girsanov’s theorem gives the required result.

ad (ii) By absence of arbitrage we have
~eo _ P | g1 P + +
Co = B |64, [BRIST - Ki*] - Ka] ]

By (i) the price of a futures—style call at T is strictly monotonically increasing in
F(T»,T1). Hence, there is exactly one F*(K>) such that this price is equal to Ko.

Therefore, we may express the price of a compound option in the following way:
Ci* = Ef [ﬁiﬂ [(ST1 — K1) Lp(ny, 1) > Fe (ko) {Smy > K0} — K21{F<T27Tl>>F*<K2>}H

Now note that 8,4, S, = X; exp {—% [ ok (s, Ty, To) 2ds + [ v (s, T, Tg)dWs},
since we have defined n? (s, T) = 0 for s > T. Hence the result follows from Girsanov’s

theorem and some tedious but straightforward calculations.

3. A Near Explicit Solution for Geske’s original Problem under Stochastic

Interest Rates

Much as in general it is not possible to obtain a closed valuation formula for
compound options under stochastic interest rates the change of measure technique
still facilitates the numerical valuation of a compound option and the derivation of

the hedge portfolio. We have

Proposition 3 (1) Under Assumption 1.1 the price at time 0 < t < T of a com-

pound call as specified in equation (1) is given by

~ s Ty
Ci = SEP [N(di(T2))1a] — KiB(t, T1)E? " [N (d2(T3))14]
—K,B(t,T»)Q" 4],
where di, d» and C are as specified in Proposition 1, A is the set on which the

dQs B[i;«2ST2 dQTi 5arlpl.B(Ti,Ti)
dP — T S dP T T B(O,T)

compound call is exercised (see section 1), and
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(ii) The hedge portfolio for the compound call as specified in (i) is given by

Q° ;
ds(t) = Ef [N(di(T»))14] units of the stock
dp(.m)(t) = —~K,EQ" [V(d2(T))14] wunits of the bond maturing at Ty
Op(.m)(t) = —K5QT2 [A] units of the bond maturing at Ts.

REMARK: Obviously under each of the above probability measures In St, and In B(T5,T})
are bivariate normally distributed. Thus the evaluation of the above formula boils
down to integrating the arguments of the above expectations over the set A as in (5)
with respect to the respective bivariate normal distribution corresponding to @, QT
and Q2. There are a number of numerical techniques to perform these integrations.
For a more detailed discussion of this point see section 4 of [FS96]. Also notice that
due to the change of measure technique the price of the option and the hedge portfolio
can be derived in a single step and with equal precision.
Proor

(i) By absence of arbitrage we have
C7 = Bf |34, (SnN (@ (T2)) = Ky B(To, TN (d(T2)) — Ko B(T3,T3) ) 1]

Using the change of measure technique to introduce Q° and Q¢ as defined in the

proposition the first statement immediately follows.

(ii) We need to compute the martingale part of the price process of the compound
option. In order to apply Ito’s formula as a first step we have to compute the deriva-
tives of the compound call with respect to S;, B(t,T1) and B(t,T>). Consider the
example of 8C~'tc° /0S;. Exchanging integration and differentiation as in [EKMV92b]

we obtain

9 ~eo [0 -1 ~ +
a—stct = E R [ﬂt,TZ (Cr, — B(T27T2)K)] ]

= Bl g5 [k G - BEL TR

= E |1a-N(di(T2))B, - 5;;2]

= B2 [14 N(d(T2))]
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Similarly we get

0

méﬁo = —K;E?" [N(dy(T»))14] and

6 ~Neo Ts
mct = -K>Q"? [4]

Hence by Ito’s formula the martingale part [C'EO]M of the price process of the com-

pound option is given by

A = EQT N(dy(T2)1a] d[SiM — KL E@” [N (dy (T2)1a] d[B(t, T)[M
—K>Q™ [A]d[B(t, Ty)|M.

Using the self-financing condition for the value process of the hedge portfolio we see
that this is the same as the martingale part of the value process of the proposed port-
folio. Now observe that the price process of the compound call is linear homogeneous
in S, B(-,T1) and B(-,T). Hence the value of the proposed hedge portfolio equals the
price of the compound call for all 0 < t < T which completes the proof. For a more
detailed version of these arguments in a similar context see the proof of Theorem 4.1

in [FS96].

4. Conclusion

In this note we have explored some of the difficulties that arise when one tries to
generalize Geske’s formula for compound options to the case of stochastic interest
rates. We have pointed out some special cases where a closed formula still exists and
have sketched an efficient numerical procedure for calculating the option price and
the hedge portfolio when closed formulas are no longer available.

A general feature that emerges from this discussion is that the change of measure
technique proposed by Geman et al. [GER95] is a powerful tool for dealing with
option pricing models that incorporate interest rate risk. In fact, as long as non path
dependent European options are considered due to this technique deriving valuation
formulas in a framework of stochastic interest rates is no more difficult than deriving
them under deterministic interest rates. However, as soon as path dependent options
are considered difficulties may arise that cannot be solved by the change of measure

technique. Hence, situations may occur in which a closed valuation formula that
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exists under deterministic interest rates cannot be generalized to a framework with
stochastic interest rates. A case in point is the compound call considered in this note.
But even in this case the change of measure technique is helpful in designing efficient

numerical valuation procedures.
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