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Abstract This paper considers a general reduced form pricing model for
credit derivatives where default intensities are driven by some factor process
X. The process X is not directly observable for investors in secondary markets;
rather, their information set consists of the default history and of noisy price
observation for traded credit products. In this context the pricing of credit
derivatives leads to a challenging nonlinear filtering problem. We provide re-
cursive updating rules for the filter, derive a finite dimensional filter for the
case where X follows a finite state Markov chain and propose a novel particle
filtering algorithm. A numerical case study illustrates the properties of the
proposed algorithms.
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1 Introduction

This paper is concerned with the pricing of credit derivatives in reduced form
portfolio credit risk models under incomplete information. We consider models
where the default intensities of the firms in a given portfolio are driven by some
Markov process X. We assume that X is not directly observable for investors
trading in secondary markets; rather, their information set, denoted (FIt ), is
restricted to some special type of publicly available information, namely his-
torical default- and price information. In this incomplete information context
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the pricing of credit derivatives leads to a two step procedure: in the first step
one computes theoretical prices, (termed model values), with respect to a large
filtration (Ft) such that X is (Ft)-adapted; here Markov process techniques
can be fruitfully employed. In the second step the price of non traded credit
derivatives (from the viewpoint of secondary market investors) is computed by
projecting model values onto the investor information (FIt ). This projection
is essentially a nonlinear filtering problem; one has to determine πXt|FIt (dx),
the conditional distribution of Xt given FIt .

Credit risk models with incomplete information have been considered pre-
viously in the literature. Kusuoka (1999), Duffie & Lando (2001), Giesecke &
Goldberg (2004), Jarrow & Protter (2004), Coculescu, Geman, & Jeanblanc
(2008) and Frey & Schmidt (2009a) are concerned with structural models
where the value of assets and/or liabilities is not directly observable. Reduced
form credit risk models with incomplete information such as our paper have
been considered by Schönbucher (2004), Collin-Dufresne, Goldstein & Helwege
(2003) and Duffie, Eckner, Horel & Saita (2006). The structure of the latter
three models is relatively similar: default intensities are driven by an unobserv-
able factor (process) X; given information about X, the default times are con-
ditionally independent, doubly stochastic random times; finally, the investor
information (FIt ) is given by the default history of the portfolio, augmented
by economic covariates. Schönbucher (2004), and Collin-Dufresne et al. (2003)
model the unobservable factor by a static random vector X, called frailty ; the
conditional distribution πX|FIt is determined via Bayesian updating. Both pa-
pers point out that the successive updating of πX|FIt in reaction to incoming
default observations generates information-driven default contagion: the news
that some obligor has defaulted leads to an update in πX|FIt (dx) and hence
typically to a jump in the (FIt )-default intensity of the surviving firms. Duffie
et al. (2006) model the unobservable factor X by an Ornstein-Uhlenbeck pro-
cess. Their paper contains interesting empirical results; in particular, the anal-
ysis provides strong support for the assertion that an unobservable stochastic
process driving default intensities (a so calleddynamic frailty) is needed on
top of observable covariates in order to explain the clustering of defaults in
historical data.

Our paper differs from these contributions in two directions: First, we work
in a fairly general jump-diffusion model for the joint dynamics of the state pro-
cess X and the default indicator process Y (the jump process associated with
the default times). This model is a substantial extension over models with
conditionally independent doubly stochastic default times; it includes in par-
ticular models where X may jump in reaction to a default event. Joint jumps
of X and Y arise naturally in a variety of credit risk models, and several ex-
amples are given in Section 2.3. Joint jumps can among others be used for
the modeling of so-called physical default contagion, that is the fact that the
default of a major corporation has at least temporarily an adverse impact on
the survival probability of certain remaining firms. As shown in a recent em-
pirical analysis of Azizpour & Giesecke (2008), physical default contagion is
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relevant even after the inclusion of frailty effects into the model. Our model
is thus accounting for both potential sources for jumps in the prices of credit
derivatives at defaults, namely physical and information-based contagion. Sec-
ond, we use a different information set: in our setup the investor information
(FIt ) contains theoretical prices of traded credit derivatives observed in addi-
tive noise in addition to the default history of the firms under consideration.
This is important, as market quotes for traded credit products are a crucial
piece of information in any pricing model for credit derivatives.

In order to determine the conditional distribution πXt|FIt (dx) in our setup,
we have to solve a challenging nonlinear filtering problem with mixed observa-
tions of marked point processes and diffusion type and with common jumps of
point process observation Y and state process X. Filtering problems with com-
mon jumps of the unobserved state process and of the observations have previ-
ously been discussed in the literature. First results can be found in Grigelionis
(1972); the papers Kliemann, Koch & Marchetti (1990) and Ceci & Gerardi
(2006) are concerned with scalar observations described by a pure jump pro-
cess. The recent paper Cvitanic, Liptser & Rozovski (2006) on the other hand
treats the filtering problem for a very general marked point process model but
without common jumps of the state- and the observation process. All these
papers follow the innovations approach to nonlinear filtering.

In the present paper we take an alternative route which is based on ideas
from the reference probability approach. In this way we obtain new recursive
filter equations. In case that (X,Y) is a finite state continuous time Markov
chain these filter equations give rise to a finite dimensional filter. This is impor-
tant for two reasons: on one hand many credit risk models that have recently
appeared in the literature are of this form; on the other hand Markov chain
models can be used as computational tools in models with general state vari-
able processes. We establish a novel convergence result which justifies the use
of Markov chain approximations in our setup. Moreover, using our filter for-
mulas we are able to adapt - to our knowledge for the first time - particle
filters such as the algorithm of Crisan & Lyons (1999) to models with joint
jumps of X and Y. Suitable particle filters are a viable numerical scheme for
higher dimensions of the state spaces where Markov-chain approximations fail
(Budhiraja, Chen & Lee 2007). We carry out numerical experiments illustrat-
ing the performance of both filtering algorithms.

The paper is organized as follows. In Section 2 we introduce our setup and
provide various examples; moreover, we discuss the pricing of credit derivatives
under incomplete information. The ensuing filtering problem is then studied
in Sections 3 to 5.



4

2 An Information-based Approach to Credit-Derivatives Pricing

2.1 The Model

We work on some filtered probability space (Ω,F , (Ft), P ); all stochastic pro-
cesses considered will be (Ft)-adapted. Since our focus is on the pricing of
credit derivatives via martingale methods, P is interpreted as risk-neutral
pricing measure. Throughout we consider a fixed credit portfolio consisting of
a set of m firms. Our model is of the bottom-up type, that is we model the
stochastic evolution of the default-state of the individual firms in the port-
folio. The (Ft)-stopping time τi denotes the default time of firm i and the
current default state of the portfolio is summarized by the default indicator
process Y = (Yt,1, . . . , Yt,m)t≥0 with Yt,i = 1{τi≤t}. We assume that the factor
process X = (Xt,1, . . . , Xt,d)t≥0 and the default indicator process Y solve the
following SDE system

Xt = X0 +

t∫
0

b(Xs−,Ys−)ds+

t∫
0

σ(Xs−,Ys−)dWs

+

t∫
0

∫
E

KX(Xs−,Ys−, u)N (ds, du), (2.1)

Yt,j = Y0,j +

t∫
0

∫
E

(1− Ys−,j)KY
j (Xs−,Ys−, u)N (ds, du), 1 ≤ j ≤ m. (2.2)

Here W is a standard k-dimensional Brownian motion; the drift b = (b1, . . . , bd)
and the dispersion matrix σ = (σi,`), 1 ≤ i ≤ d, 1 ≤ ` ≤ k are functions from
SX × {0, 1}m to Rd and Rd×k respectively, SX ⊂ Rd is the state space of X;
N (ds, du) denotes a (P, (Ft))-standard Poisson random measure on R+ × E,
E some Euclidean space, with compensator measure FN (du)ds; W and N are
independent; X0 is a random vector taking values in SX ⊂ Rd; Y0 is a given
element of {0, 1}m. We assume that KY

j (x,y, u) ∈ {0, 1} for all x,y, u and all
1 ≤ j ≤ m, so that the solution of (2.2) is in fact of the form Yt,j = 1{τj≤t}.
By ΣX(x,y) ∈ Rd×d we denote the matrix σ(x,y)σ′(x,y). Define

DX
i (x,y) := {u ∈ E : KX

i (x,y, u) 6= 0} , 1 ≤ i ≤ d , (2.3)

DY
j (x,y) := {u ∈ E : KY

j (x,y, u) 6= 0} , 1 ≤ j ≤ m. (2.4)

We make the following assumptions.

A1. For every pair (x,y) ∈ SX × {0, 1}m the SDE system (2.1), (2.2) has
a global solution with X0 = x,Y0 = y; moreover, pathwise uniqueness
holds. Sufficient conditions for A1 are discussed in Remark 2.1 below.
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A2. For all 1 ≤ i ≤ d, 1 ≤ j ≤ m and all T ≥ 0 we have

E
( T∫

0

FN (DX
i (Xs,Ys)) ds

)
+ E

( T∫
0

FN (DY
j (Xs,Ys))ds

)
<∞.

A3. For all 1 ≤ j1 < j2 ≤ m and all (x,y) ∈ SX × {0, 1}m we have

FN (DY
j1(x,y) ∩DY

j2(x,y)) = 0 .

Assumption A2 ensures that the expected number of jumps of X on every
time interval [0, T ] is finite and that τi > 0 for all firms i such that Y0,i = 0.
Assumption A3 ensures that for j1 6= j2 the processes Yj1 and Yj2 have no
common jumps so that there are no joint defaults. Note however, that the
model (2.1), (2.2) allows for common jumps of X and Y. More precisely, there
is a strictly positive probability that the factor process X jumps at τj , if

FN
(
DY
j (Xτj−,Yτj−) ∩DX

i (Xτj−,Yτj−)
)
> 0 for some 1 ≤ i ≤ d . (2.5)

Note that by definition of the compensator of a Poisson random measure, the
process

Yt,j −
t∫

0

(1− Ys−,j)FN (DY
j (Xs−,Ys−)) ds , t ≥ 0 ,

is an (Ft)-martingale, so that λj(Xt−,Yt−) := FN (DY
j (Xt−,Yt−)) is the

(Ft)-default intensity of firm j. In Subsection 2.3 below we show how various
reduced-form credit risk models can be constructed as solutions of the SDE
system (2.1), (2.2).

Remark 2.1 (Sufficient conditions for A1) There are various types of con-
ditions ensuring strong existence and uniqueness for the SDE-system (2.1),
(2.2). In Theorem 2.2 of Kliemann et al. (1990) strong existence and unique-
ness is proved under growth conditions on b(x,y), ΣX(x,y), FN (DX

i (x,y)),
FN (DY

j (x,y)) and under the additional assumption that for every fixed y the
SDE dXt = b(Xt,y)ds + σ(Xt,y)dWs has a unique weak solution which is
moreover a Feller process. Alternatively, one can impose growth and Lipschitz
conditions on the data of the problem; see for instance Appendix 1, Section 4
of Ceci & Gerardi (2006).

Some notation. Typically we take Y0 = 0. In that case Assumption A2 per-
mits us to introduce the ordered default times 0 = T0 < T1 < · · · < Tm <
Tm+1 := ∞ and the counting process Nt := max{n ≤ m : Tn ≤ t}; for n ≥ 1
the rv ξn denotes the identity of the firm defaulting at Tn. The sequence
(Tn, ξn)1≤n≤m gives a representation of Y as marked point process. The σ-
field Ht = σ(Ys : s ≤ t) = σ

(
{(Tn, ξn) : n = 1, . . . , Nt}

)
is the internal

filtration of Y or, in economic terms, the default history of the portfolio at
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time t. Note that any Ht-measurable function at(·) : Ω × SX → R` is of the
form

at(ω;x) =
m∑
n=0

1{Tn(ω)≤t<Tn+1(ω)} an(t,x; Tj(ω), ξj(ω) : 1 ≤ j ≤ n
)
, (2.6)

for functions an : [0,∞)× SX ×
(
[0,∞)× {1, . . . ,m}

)n → R`. For further use
we finally define the functions

λ̄j(x,y) =
j∑
i=1

(1− yi)λi(x,y), 0 ≤ j ≤ m, and λ̄(x,y) := λ̄m(x,y). (2.7)

2.2 Credit Derivatives and Incomplete Information

Credit derivatives are securities whose payoff at maturity T depends on the
default history of some underlying reference portfolio; in abstract terms their
payoff is hence given by some HT -measurable random variable H. Examples
include corporate bonds, credit default swaps or collaterized debt obligations
(CDOs). We study the pricing of these securities using the popular martingale
modeling approach; as mentioned before, P represents the martingale mea-
sure used for pricing. For simplicity we assume that the default-free short rate
rt > 0 is deterministic. Recall that the σ-field FIt ⊂ Ft represents the infor-
mation available to secondary market investors at time t; a formal description
of (FIt ) is given in Assumption A4 below. We introduce two notions for the
the value/price of a credit derivative with maturity T > t and payoff H. The
model-value H̃t is defined to be

H̃t := E
(
e−

∫ T
t
rsdsH | Ft

)
, t ≤ T . (2.8)

In case that H is traded we view the model value H̃ as theoretical price of
the claim; in our setup actual market quotes may however deviate temporarily
from theoretical prices (see the discussion following Assumption A4 below).
For non traded credit derivatives we define the secondary market price by

Ht := E
(
e−

∫ T
t
rsdsH | FIt

)
. (2.9)

Note that in our context Ht is the correct notion of the secondary market price
for a non traded credit derivative since this quantity is defined with respect
to the information set actually available to investors.

By the Markovianity of the pair (X,Y), the model value H̃t is of the form
H̃t = at(Xt) for some Ht-measurable random function at : Ω×SX → R as in
(2.6). Now we get by iterated conditional expectations

Ht = E
(
E
(
e−

∫ T
t
rsdsH | Ft

)
| FIt

)
= E(at(Xt) | FIt ) . (2.10)
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In order to compute the secondary-market price Ht from the right hand side
of (2.10) we thus need to determine in weak form the conditional distribution
πXt|FIt (dx). This is a typical nonlinear filtering problem which is studied in
detail in Sections 3, 4 and 5.1

Remark 2.2 It is well-known that intensities with respect to subfiltrations can
be computed by projection. Hence the (FIt )-default intensity of firm j is given
by the left-continuous version of

λ̂t,j = E
(
λj(Xt,Yt) | FIt

)
=
∫
Rd

λj(x,Yt)πXt|FIt (dx) , t ≤ τj . (2.11)

In particular, new default information such as the news that obligor i 6= j has
defaulted leads to an update in the conditional distribution πXt|FIt (dx) and
hence to a jump in the (FIt )-default intensity of firm j.

The investor filtration. We assume that investors observe the default history
of the portfolio under consideration. Moreover, we assume that they have
noisy information about the model value at(Xt) = (at,1(Xt), . . . , at,`(Xt))
of ` traded credit derivatives. As explained below, in continuous time the
appropriate way to model this is to assume that investors observe the vector
at(Xt) in additive Gaussian noise. We therefore make the assumption

A4. FIt = Ht ∨ FZ
t , t ≥ 0, where the `-dimensional process Z solves the SDE

dZt = at(Xt)dt+ vdβt . (2.12)

Here β is an `-dimensional standard Brownian motion on (Ω,F , (Ft), P ),
independent of X and Y; v denotes an invertible `× ` matrix of constants;
at(·) : Ω × SX → R` is an Ht-measurable random function as in (2.6);
moreover, the functions an in (2.6) are continuous and bounded.

Now we turn to the financial interpretation of Z. Suppose that secondary
market investors observe market quotes for the traded credit derivatives such
as (logarithmic) prices or spreads at discrete points in time tk = k∆, and
that these quotes are of the form ztk = atk(Xtk) + εk for an iid sequence
of R`-valued noise variables (εk)k, independent of X, with E(ε1) = 0 and
cov(ε1) = Σ̃ε. Assume that Σ̃ε is positive definite and choose an invertible
root ṽ. Define the scaled cumulative observation process Z∆t := ∆

∑
tk≤t ztk

and let v =
√
∆ṽ. Then we have for ∆ small, using Donsker’s invariance

principle,

Z∆t =
∑
tk≤t

atk(Xtk)∆+∆
∑
tk≤t

εk ≈
t∫

0

as(Xs)ds+ vβt. (2.13)

1 In the important case of credit default swaps and CDOs (2.10) applies separately to the
premium payment leg and the default payment leg of the transaction; the fair secondary
market spread is then computed by equating the secondary market price of both legs of the
transaction.
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We have ΣZ := vv′ = ∆Σ̃ε, so that the instantaneous covariance matrix of
Z in (2.13) is proportional to the covariance matrix Σ̃ε of the noise variables
and inversely proportional to the observation frequency 1/∆. Note that with
this interpretation of Z the information contained in observable market quotes
is taken into account when pricing non-traded claims according to (2.9). The
noise - (εk)k respectively vβ - represents classical observation errors such as
bid-ask spreads, transmission errors or non-simultaneous quotes as well as
(spurious) deviations of market quotes from theoretical prices. In applications
the error covariance matrix v has to be chosen by the modeler by balancing
flexibility (the fact that with low error variances πXt|FIt reacts swiftly to new
price information) against stability of the filtering algorithm which is being
used.

Remark 2.3 As pointed out to us by a referee, traders might base their deci-
sions also on general economic conditions represented by observable covariates.
This case is not covered by Assumption A4. However, observable covariates can
easily be incorporated into our framework. The idea of interpreting observed
prices of derivatives as noisy observations of functions of some unobserved
factor processes is pursued also in Gombani, Jaschke & Runggaldier (2005).

2.3 Examples

The following examples show that a great variety of models are covered by our
framework.

1. We begin with the standard models with conditionally independent, doubly
stochastic default times. In these models it is assumed that X follows a jump
diffusion model of the form

dXt = b(Xt)dt+ σ(Xt)dWt + dJt, (2.14)

J an Rd-valued compound Poisson process with compensator measure FJ(dx)ds;
moreover, given FX

∞, the default times are conditionally independent with haz-
ard rate λi(Xt). A typical representative of this model class is the popular
affine jump-diffusion model of Duffie & Garleanu (2001). A possible choice for
N , KX and KY is as follows. Take E = Rd × R, FN = FJ × ν, ν Lebesgue-
measure on R, and put

KY
j (x,u) = 1[∑j−1

i=1 λi(x),
∑j
i=1 λi(x)

](ud+1), 1 ≤ j ≤ m, and (2.15)

KX
i (x,u) = ui1[−1,0)(ud+1) , 1 ≤ i ≤ d . (2.16)

Note that by the choice of KX and KY, FN (DX
i (x) ∩ DY

j (x)) = 0 for all
1 ≤ i ≤ d, 1 ≤ j ≤ m and all x in SX. A filter algorithm for the special case
where (FIt ) = (Ht) (only default information) and where the coefficients in
(2.14) are affine functions of Xt is proposed in Frey, Prosdocimi & Runggaldier
(2007).
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2. Next we discuss a version of the infectious-defaults model of Davis & Lo
(2001); here the state process does jump in reaction to default events. Assume
that X is modeled as a finite state Markov chain with state space SX =
{1, . . . ,K} and that the default intensity of firm j is given by λj(Xt) for
increasing functions λj : SX → R+. At a default time Tn, X jumps upward
by one unit with probability pξn (which may depend on the identity ξn of the
nth defaulting firm), and remains constant with probability 1 − pξn (unless,
of course, if XTn− = K, where X remains constant). If the system is in an
“ignited state”, i.e. if Xt ≥ 2, Xt jumps to Xt − 1 with intensity γ(Xt); these
downward jumps occur independently of the default history. An upward jump
of X at a default can be viewed as manifestation of physical default contagion,
as the default intensities of the remaining firms are increased. This leads to
a downward jump in the model value (and hence to an increase in the credit
spread) of a zero-coupon bond issued by non-defaulted firms. In Section 4.1
we show how this model can be embedded into the general framework (2.1),
(2.2) by a proper choice of FN , KX and KY.

3. Finally we turn to the model of Frey & Schmidt (2009b) (FS-model in
the sequel). This model is of interest in our context, since the state vari-
able process is itself the solution of a filtering problem, so that the common
jumps of state variable and default indicator are generated by information
effects. In the FS-model it is assumed that the default times are condition-
ally independent doubly stochastic random times on some filtered probability
space (Ω,F , (F̃t), P ) and that the (F̃t)-default intensities are driven by an
unobservable finite-state Markov chain Ψ with state space {1, . . . ,K} and
generator matrix QΨ modelling the state of the economy. Frey & Schmidt
(2009b) consider a market where ` credit derivatives with payoff H1, . . . H`

are traded. The model value of these contracts is defined as conditional ex-
pectations with respect to the information set Ft = Ht ∨ FUt , termed market
filtration, i.e. we have H̃t,j = E

(
exp(−

∫ T
t
rs ds)Hj | Ft

)
. The process U is

given by Ut =
∫ t

0
α(Ψs)ds+Bt, B a standard (F̃t)-Brownian motion indepen-

dent of Ψ and Y ; it models in abstract form the information about the state
of the economy Ψ contained in the prices of traded credit derivatives. Define
the conditional probabilities

pkt := P (Ψt = k | Ft), 1 ≤ k ≤ K, and let pt := (p1
t , . . . , p

K
t ). (2.17)

The process p = (pt)t≥0 is a natural state variable process for the model in
the market filtration; it thus plays the role of the process X from (2.1). The
reasons are the following: first, denoting the (F̃t)-default intensities by νi(Ψt),
the (Ft)-default intensities are given by λi(pt) :=

∑K
k=1 p

k
t νi(k). Moreover,

note that by the (F̃t)-Markovianity of Ψ and Y, the conditional expectation
E
(

exp(−
∫ T−t

0
rsds)Hj | F̃t

)
is given by someHt-measurable function ãt,j(Ψt).

By iterated conditional expectations theoretical prices can therefore be ex-
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pressed as Ht-measurable functions of pt as well:

H̃t,j = E(ãt,j(Ψt) | Ft) =
K∑
k=1

pkt ãt,j(k) =: at,j(pt) , 1 ≤ j ≤ `. (2.18)

Using the innovations approach to nonlinear filtering, in FS the following K-
dimensional SDE for the process p = (p1

t , . . . , p
K
t )t≥0 is derived:

dpkt =
K∑
i=1

QΨi,k p
i
tdt+

m∑
i=1

γki (pt−) d
(
Yt,i − λi(pt)dt

)
+ δk(pt−) dWt . (2.19)

Here Wt = Ut −
∫ t

0

∑K
k=1 α(k)pks ds is (Ft)-Brownian motion; the coefficients

in (2.19) are given by the functions

γkj (p) = pk
( νj(k)∑K

n=1 νj(n)pn
− 1
)
, δk(p) = pk

(
α(k)−

K∑
n=1

pnα(n)
)
. (2.20)

In the FS-model the process U is unobservable for secondary market investors;
these investors have to back out the conditional distribution of probability
vector pt given historical default- and price information. Assuming that their
information set (FIt ) is as in Assumption A4 of the present paper, this leads to
a nonlinear filtering problem with state variable process p and observations Y
and Z with Zt =

∫ t
0
as(ps)ds+ vβt. Thus the solution of the filtering problem

with respect to (Ft) becomes the state variable p = X of the filtering problem
with respect to the investor filtration (FIt ). The latter filtering problem is
covered by our setup, as the processes p and Y follow an SDE-system of the
form (2.1) (2.2). Note in particular that at a default time the probability
vector p is updated according to (2.19), so that there are common jumps of
state variable p and observation Y.

The FS-model has a number of attractive features: first, by (2.18) the
main numerical task is the evaluation of the functions ãt,j(ψ); as this function
is computed in a simple setup with conditionally independent defaults, com-
putations become relatively easy. Moreover, the model generates a rich set of
price dynamics with randomly fluctuating credit spreads and default conta-
gion. Results of numerical filter experiments for the FS-model are reported in
Section 4.3.

3 Filter Equations

The remainder of this paper is devoted to the analysis of the the following
filtering problem which is the crucial step in the computation of secondary
market prices: given a bounded function f : Rd → R develop a recursive
approach to computing πtf := E(f(Xt) | FIt ) .

We begin with a brief overview of our analysis. As a first step, in Sub-
section 3.1 we use a well known change of measure argument from the refer-
ence probability approach in order to reduce the filtering problem to the case



11

where (FIt ) consists only of the default history (Ht). In Subsection 3.2 we
study the dynamics of X between default events. This is a non standard step
which is necessary, given the common jumps of X and Y. Equipped with these
results we can derive general filter formulas in Subsections 3.3 and 3.4. Sec-
tion 4 is devoted to computational aspects: we derive a finite dimensional filter
for the case when (X,Y) follows a finite state Markov chain, adapt existing
particle-filtering algorithms to our more general setup and present some nu-
merical experiments. In Section 5 we finally discuss the the filter convergence
for finite-state Markov approximations.

Notation. In the sequel we use the following pieces of notation. By Σ−1
Z =

(vv′)−1 we denote the inverse of the instantaneous covariance matrix of Z; for
any vector a ∈ R` we define ‖a‖2Σ−1

Z
:= a′Σ−1

Z a.

3.1 Measure transformation and reduction to (Ht)

It will be convenient to model the processes X, Y and Z on a product space
(Ω,F , (Ft), R0) so that Z is independent of X and Y and to revert to the
original model dynamics via an equivalent change of measure. For this we
denote by (Ω2,F2, (F2

t ), P 0,`) the `-dimensional Wiener space with coordinate
process β0, i.e. β0

t (ω2) = ω2(t). Given some probability space (Ω1,F1, (F1
t ), P )

supporting a solution (X,Y) of the SDE-system (2.1), (2.2), let Ω := Ω1×Ω2,
F = F1 ⊗F2, Ft = F1

t ⊗F2
t , R0 := P × P 0,`, and put for ω = (ω1, ω2) ∈ Ω

Xt(ω) := Xt(ω1), Yt(ω) := Yt(ω1), and β0
t (ω) := β0

t (ω2).

Note that this implies that under R0, β0 is `-dimensional Brownian motion,
independent of X and Y. Define the process Zt := vβ0

t . Introduce a Girsanov-
type measure transformation of the form dR

dR0 |Ft
= Lt with

Lt(ω1, ω2) = exp
{ t∫

0

(
v−1as(Xs)(ω1)

)′
dβ0

s(ω2)− 1
2

t∫
0

‖as(Xs)(ω2)‖2Σ−1
Z

ds
}

= exp
{ t∫

0

a′s(Xs)(ω1)Σ−1
Z dZs(ω2)− 1

2

t∫
0

‖as(Xs)(ω1)‖2Σ−1
Z

ds
}
,

(3.1)

and note that the process L is indeed a R0-martingale of mean one as at(·) is
bounded by A4. Using the Girsanov theorem for Brownian motion we therefore
obtain that, under R, the process Z has the original dynamics (2.12); more-
over, since β0 is orthogonal to both W and the martingale that results from
compensating the counting measure N , the above measure transformation in-
duces no changes in the law of X and Y. Hence under R the triple of processes
(X,Y,Z) has indeed the correct joint law. Notice finally that by (3.1), L can



12

be expressed in terms of the observation Z. By the following Bayes formula,
known as Kallianpur-Striebel formula (Kallianpur & Striebel 1968), we then
have

πtf := ER(f(Xt) | FIt ) =
ER

0
(f(Xt)Lt | FIt )
ER0(Lt | FIt )

, (3.2)

so that, to compute πtf , it suffices to compute the numerator on the right-hand
side in (3.2).

Recall that FIt = Ht ∨ FZ
t . Next we reduce the conditioning on FIt to a

conditioning on Ht. Since Zt = vβ0
t with v invertible, we have FZ

t = Fβ
0

t ,
i.e. given FZ

t , the process ω2(s), s ≤ t is “known.” Using the Fubini theorem
and the product structure of (Ω,F , (Ft), R0) we therefore get

ER
0
(f(Xt)Lt | Ht ∨ FZ

t )(ω) = EP (f(Xt)Lt(·, ω2) | Ht)(ω1) . (3.3)

In order to compute πtf we thus have to evaluate the conditional expectation
on the right hand side of (3.3). Note that this involves only the first component
(Ω1,F1, (F1

t ), P ) of the underlying probability space and hence only the joint
law of X and Y. In orderto ease the notation expectations with respect to that
law will be simply denoted by E (instead of EP ); moreover the arguments of
Lt will usually be omitted.

3.2 Dynamics of X between default times

Next we discuss the dynamics of X for t ∈ [Tn−1, Tn) i.e. between default
times. This is a prerequisite for the filtering equations in the next subsections
and for the derivation of approximation results in Section 5. For this purpose
we define the new kernel

K̄X(x,y, u) :=

{
0, if u ∈ D̄Y(x,y) :=

⋃
{j :yj=0}D

Y
j (x,y) ,

KX(x,y, u) else.
(3.4)

We will see shortly that the kernel K̄X governs the jumps of X between default
times. For instance, in case of the extended Davis Lo model, KX(k,y, u) =
−1[−γ(k),0](u), k = 1, · · · ,K, reflecting the fact that between defaults X can
only jump downwards.

Consider, for t > Tn−1, the SDE system

X̃t = XTn−1 +

t∫
Tn−1

b(X̃s,YTn−1)ds+

t∫
Tn−1

σ(X̃s,YTn−1)dWs

+

t∫
Tn−1

∫
E

K̄X(X̃s−,YTn−1 , u)N (ds, du), (3.5)

Ỹt,j = YTn−1,j +

t∫
Tn−1

∫
E

(1− Ỹs−,j)KY
j (X̃s−, ỸTn−1 , u)N (ds, du), 1 ≤ j ≤ m.
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Comparing the system (3.5) with the original model dynamics (2.1), (2.2), we
see that KX has been replaced with K̄X; moreover, in the coefficients of the
equation the “initial value” YTn−1 replaces Yt−. Since, for Tn−1 ≤ t < Tn,
there are no atoms of N (ds, du) in {t}×D̄Y(Xt−,YTn−1), by definition of K̄X

in (3.4) we have for Tn−1 ≤ t < Tn the equality

t∫
Tn−1

∫
E

KX(Xs−,Ys−, u)N (ds, du) =

t∫
Tn−1

∫
E

K̄X(Xs−,YTn−1 , u)N (ds, du) .

Strong uniqueness of (3.5) implied by Assumption A1 therefore yields that a.s.

Xt = X̃t, Tn−1 ≤ t < Tn, and Yt = Ỹt, Tn−1 ≤ t ≤ Tn (Tn included) .
(3.6)

Denote by P̄(x,y) the law of the solution (X̄, Ȳ) to the SDE system (3.5)
starting at t = 0 in the point (x,y) ∈ Rd × {0, 1}m. Now the law of the
processes

(
X̃t+Tn−1 , Ỹt+Tn−1

)
t≥0

is obviously equal to P̄(XTn−1 ,YTn−1 ) and so
P̄(XTn−1 ,YTn−1 ) also governs the evolution of the original process (Xt−,Yt) for
Tn−1 < t ≤ Tn.

Define the stopping time T̄1 := inf{t ≥ 0 : ∆Ȳt 6= 0} and denote by
ξ̄1 ∈ {1, · · · ,m} the identity of the first jump firm in the “bar-model”. Note
that T̄1 is a standard doubly stochastic random time. Hence we have

P̄(x,y)

(
T̄1 > t | FX̄

∞

)
= exp

{
−

t∫
0

λ̄(X̄s,y)ds
}

and (3.7)

hT̄1,ξ̄1|FX̄
∞

(t, i | X̄) = λi(X̄t,y) exp
{
−

t∫
0

λ̄(X̄s,y)ds
}
, (3.8)

where hT̄1,ξ̄1|FX̄
∞

is the conditional density of T̄1, ξ̄1 under P̄(x,y), given FX̄
∞ (see

e.g. Section 9.6.2 of McNeil, Frey & Embrechts (2005)). Properties (3.7) and
(3.8) will be essential for the derivation of the filter equations.

3.3 Filtering between default times

Overview. Our filter formulas take the form of a recursion over the ordered
default times 0 = T0 < T1 < · · · < Tm. Denote the distribution of X0 given
FI0 (the initial filter distribution) by π0(dx) and for 1 ≤ n ≤ m by πTn(dx)
the filter distribution at t = Tn. In Theorem 3.1 we consider a time point
t ∈ [Tn−1, Tn) and show how πtf can be derived from πTn−1(dx) and from
the trajectory (Zs)Tn−1≤s≤t, representing the new price information received
over [Tn−1, t]. In Subsection 3.4 below we explain how to compute πTnf from
πTn−1(dx), the new price information received over [Tn−1, Tn] and the new
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default information (Tn, ξn). Since only the new price information (Zs)s≥Tn−1

matters for these considerations, in the sequel we use the lighter notation

Zns := Zs+Tn−1 and ans (·) := as+Tn−1(·) . (3.9)

Theorem 3.1 Consider a time point t ∈ [Tn−1, Tn) for two successive default
times Tn−1 and Tn. Then πtf is proportional to∫
Rd

πTn−1(dx) Ē(x,YTn−1 )

(
f
(
X̄t−Tn−1

)
Lnt−Tn−1

exp
{
−
t−Tn−1∫

0

λ̄(X̄s,YTn−1)ds
})

,

(3.10)
where the process Ln = (Lnu)u≥0 is defined by

Lnu = exp
{ u∫

0

(ans )′(X̄s)Σ−1
Z dZns −

1
2

u∫
0

∥∥ans (X̄s)
∥∥2

Σ−1
Z

ds
}
. (3.11)

The proportionality factor is given by (3.10) evaluated at f(x) ≡ 1.

Proof Recall that by (3.2) and (3.3), πtf ∝ E
(
f(Xt)Lt | Ht

)
. Denote by

FTnt = σ
(
1{Tn≤s} : s ≤ t

)
the filtration generated by the indicator of the

random time Tn. Now note that for Tn−1 ≤ t < Tn, Ht = HTn−1 ∨ F
Tn
t .

By the so called Dellacherie-formula (see for instance Lemma 3.1 in Elliott,
Jeanblanc & Yor (2000)) we get for any integrable, F∞-measurable random
variable U that

E
(
U1{Tn>t} | Ht

)
= 1{Tn>t}

E
(
U1{Tn>t} | HTn−1

)
P
(
Tn > t | HTn−1

) . (3.12)

With U = f(Xt)Lt we therefore obtain for t ∈ [Tn−1, Tn)

E(f(Xt)Lt | Ht) ∝ E(f(Xt)Lt1{Tn>t} | HTn−1) . (3.13)

By double conditioning we get

E
(
f(Xt)Lt1{Tn>t} | HTn−1

)
= E

(
LTn−1E

(
f(Xt)

Lt
LTn−1

1{Tn>t} | FTn−1

)
| HTn−1

)
. (3.14)

Recall the definition of the process Ln from (3.11). By the Markov property
of (X,Y) and the equality in law discussed in the previous subsection below
equation (3.6), the inner conditional expectation in (3.14) equals

Ē(XTn−1 ,YTn−1 )

(
f(X̄t−Tn−1)Lnt−Tn−1

1{T̄1>t−Tn−1}

)
. (3.15)

Using the survival function of T̄1 as given in (3.7) and double conditioning on
FX̄
∞, (3.15) is equal to

Ē(XTn−1 ,YTn−1 )

(
f(X̄t−Tn−1)Lnt−Tn−1

exp
{
−
t−Tn−1∫

0

λ̄(X̄s,YTn−1) ds
})

.
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Using the Kallianpur Striebel formula (3.2) and relation (3.3), expression
(3.14) is thus proportional to

∫
Rd

πTn−1(dx) Ē(x,YTn−1 )

(
f(X̄t−Tn−1)Lnt−Tn−1

exp
{
−
t−Tn−1∫

0

λ̄(X̄s,YTn−1)ds
})

,

proving the theorem.

3.4 Filtering at a default time Tn

Again by (3.2) and (3.3), at a generic default time Tn we have

πTnf ∝ E(f(XTn)LTn | HTn) .

Notice now that, due to the possibility of common jumps between X and
Y, the expressions E(f(XTn)LTn | HTn) and E(f(XTn−)LTn | HTn) do not
necessarily coincide. We shall therefore proceed along two steps. In Step 1 -
which is specific to the case of common jumps of X and Y - we show that
one can obtain the conditional expectation E(f(XTn)LTn | HTn) once one is
able to compute E(g(XTn−)LTn | HTn) for a generic function g(·). In this step
we use the joint distribution of the jumps ∆XTn and ∆YTn and hence the
particular structure of the given model. In Step 2 we then compute the latter
of those two quantities via Bayesian updating.

Step 1. (Reduction to the filter distribution of XTn− )

Proposition 3.2 We have the relation

E(f(XTn)LTn | HTn) = E(g(XTn−; YTn−1 , ξn)LTn | HTn).

Here the function g is given by

g(x;y, j) =

{∫
DY
j (x,y)

f
(
x+KX(x,y, u)

)
νj(du) , for FN

(
DY
j (x,y)

)
> 0

f(x) , else ;
(3.16)

the measure νj(dx) is defined by νj(A) = FN
(
Dyj (x,y)

)−1
FN (A ∩Dyj (x,y

)
,

provided that the denominator is strictly positive.

Remark 3.3 Note that without common jumps of X and Y, i.e. in case that
FN
(
DY
j (x,y) ∩ DX

i (x,y)
)

= 0 for all i, j,x,y, we have that KX(x,y, u) is
zero on DY

j (x,y) FN−a.s., so that∫
DY
j (x,y)

f
(
x+KX(x,y, u)

)
νj(du) = f(x) .

Consequently g(x,y, j) ≡ f(x) in that case, even for FN
(
DY
j (x,y)

)
> 0, and

so Step 1 becomes superfluous.
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Proof By (2.1), (2.2) we have for t ∈ (Tn−1, Tn] and for j with YTn−1,j = 0 the
equality {

(Tn, ξn) = (t, j)
}

=
{
N
(
{t} ×DY

j (Xt−,YTn−1)
)

= 1
}
,

or, in words, (Tn, ξn) = (t, j) if and only if N (ds, du) has an atom in the set
{t} ×DY

j (Xt−,YTn−1). Hence

HTn ⊂ F̃Tn− := FTn− ∨ σ
(

1{
N
(
{Tn}×DY

ξn
(XTn−,YTn−1 )

)
=1
}) . (3.17)

Since moreover XTn = XTn− +
∫
E
KX(XTn−,YTn−1 , u)N ({Tn}, du) , we get

by double conditioning, using (3.17),

E(f(XTn)LTn | HTn) = E

(
E
(
LTn

×
∫
E

f
(
XTn− +KX(XTn−,YTn−1 , u)

)
N ({Tn}, du) | F̃Tn−

)
| HTn

)
.

Now note that LTn and XTn− are FTn− measurable whereas N ({Tn}, du)
is independent of FTn− with compensator measure FN (du). Moreover, given
FTn−, conditioning on F̃Tn− is equivalent to conditioning on the fact that
N ({Tn}, du) has an atom in the set {Tn} × DY

ξn

(
XTn−,YTn−1

)
. Hence the

inner conditional expectation is equal to g(XTn−;YTn−1 , ξn)LTn , and the result
follows.

Step 2 (Updating of the conditional distribution of XTn−)

Theorem 3.4 Recall the definition of the process Ln from (3.11). Given the
information that a default has actually occurred at t = Tn and given the iden-
tity ξn of the defaulting firm, for a generic function g : Rd → R we have

E
(
g(XTn−)LTn | HTn

)
∝
∫
Rd

πTn−1(dx) Ē(x,YTn−1 )

(
g(X̄Tn−Tn−1)

× LnTn−Tn−1
λξn
(
X̄Tn−Tn−1 ,YTn−1

)
exp

{
−
Tn−Tn−1∫

0

λ̄(X̄s,YTn−1) ds
})

.

(3.18)

Proof The proof goes in two steps: first we reduce the claim to a statement
with respect to P̄(x,YTn−1 ); secondly we apply Bayesian updating. SinceHTn =
HTn−1 ∨ σ(Tn, ξn) we get

E
(
g(XTn−)LTn | HTn

)
= E

(
LTn−1E

(
g(XTn−) LTn

LTn−1
| FTn−1 , Tn, ξn

)
| HTn−1 , Tn, ξn

)
.

(3.19)
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We now concentrate on the inner expectation. Using (3.6) we get that

E
(
g(XTn−) LTn

LTn−1
| FTn−1 , Tn = t, ξn = i

)
= E

(
g(X̃Tn−)

× exp
{ Tn∫
Tn−1

a′s(X̃s)Σ−1
Z dZs −

1
2

Tn∫
Tn−1

∥∥∥as(X̃s)
∥∥∥2

Σ−1
Z

ds
}∣∣FTn−1 , Tn = t, ξn = i

)
.

Now note that, due to the equality in law as discussed after relation (3.6),
given FTn−1 , the joint law of

(
(Xs)Tn−1≤s<Tn , Tn − Tn−1, ξn

)
equals the law

of
(
(X̄s)0≤s<T̄1

, T̄1, ξ̄1
)

under P̄(XTn−1 ,YTn−1 ). Moreover, ∆X̄T̄1
= 0 a.s. Hence

the last term equals

Ē(XTn−1 ,YTn−1 )

(
g(X̄T̄1

) exp
{ T̄1∫

0

(ans )′(X̄s)Σ−1
Z dZns

− 1
2

T̄1∫
0

∥∥ans (X̄s)
∥∥2

Σ−1
Z

ds
} ∣∣∣ T̄1 = t− Tn−1, ξ̄1 = i

)
.

(3.20)

We are now in a position to do the Bayesian updating. Recall from (3.8) the
form of the conditional density hT̄1,ξ̄1|FX̄

∞
. By double conditioning on FX̄

∞ ∨
σ
(
T̄1, ξ̄1

)
and the Bayes formula, (3.20) is easily seen to be proportional to

Ē(XTn−1 ,YTn−1 )

(
g(X̄t−Tn−1)Lnt−Tn−1

× λi(X̄t−Tn−1 ,YTn−1) exp
{
−
t−Tn−1∫

0

λ̄(X̄s,YTn−1)ds
})

.

Combining this with (3.19), thereby using (3.2) and (3.3), gives the result.

4 Filter Computation

In this section we discuss two approaches for turning the filter equations from
the previous section into a computable filtering algorithm. In Section 4.1 we
derive a finite dimensional filtering algorithm (Algorithm 4.3) for the case
where the pair process (X,Y) follows a finite state Markov chain. Models of
this type are frequently being used in portfolio credit risk modelling (with
observable X); examples include the infectious defaults model discussed in
Section 2.3 or the Markov-chain models of Arnsdorf & Halperin (2007) and
of Frey & Backhaus (2007). Moreover, the results for the finite state Markov
case can be used to construct a filter approximation for general jump-diffusion
models, as will be shown in Section 5 below. While Markov chain approxi-
mations are very useful for lower dimensional state processes, computations
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become prohibitively expensive as soon as the dimension of X becomes mod-
erately large. In Subsection 4.2 we therefore explain how the filter equations
from Section 3 can be used to construct a particle filtering algorithm for the
jump-diffusion model (2.1) (2.2). The results of numerical experiments are
reported in Subsection 4.3

4.1 Filter equations for finite-state Markov chains

A general Markov chain model. Assume that the pair process (X,Y) follows
a finite-state Markov chain. W.l.o.g. we assume that the state space of (X,Y)
is given by the set {1, . . . ,K} × {0, 1}m. We denote the transition intensities
of (X,Y) by q(k,y; k̃, ỹ). In line with our general framework we restrict the
transition intensities so that default is an absorbing state and so that there are
no simultaneous defaults. Hence, denoting the current state by (k,y), there
are three possible transitions of (X,Y). First there may be a transition from
(k,y) to (h,y), h 6= k; this transition occurs with intensity q̄yk,h := q(k,y;h,y).
Second, there may be a ‘contagious default’, i.e. for for i ∈ {1, . . . ,m} with
yi = 0 and h 6= k there may be a transition from (k,y) to (h,yi), where
yi is obtained from y by flipping the ith coordinate. Third we may have a
‘pure default’, i.e. a transition from (k,y) to (k,yi). In particular, the default
intensity of a non-defaulted firm i is equal to λi(k,y) =

∑K
h=1 q(k,y;h,yi).

Next we show that one can find kernels KX and KY such that the model
fits into the general framework (2.1), (2.2). While the ensuing formulas are
somewhat lengthy, they appear only as an intermediate step. In particular,
the filtering algorithm for a finite state Markov chain (Algorithm 4.3 below)
can be expressed entirely in terms of the transition intensities of (X,Y). Since
there are three types of transitions we take E = R×{1, 2, 3}, u = (u1, u2) and
FN (du) = ν(du1)⊗

∑3
j=1 δj(u2) with ν(·) the Lebesgue measure and δj(·) the

Dirac measure in {j}. We put for 1 ≤ i ≤ m

KY
i (k,y, u) := 1( i−1∑

j=1

∑
h6=k

q(k,y,h,yj),
i∑
j=1

∑
h6=k

q(k,y,h,yj)
](u1) 1{2}(u2)

+ 1( i−1∑
j=1

q(k,y,k,yj),
i∑
j=1

q(k,y,k,yj)
](u1) 1{3}(u2) ; (4.1)

note that the first term generates a contagious default and the second term
generates a pure default. In modelling KX we have to account for transitions
from (k,y) to (h,y) and for the transition of X at a contagious default. We
therefore set

KX(k,y, u) :=
∑
h6=k

(h− k)1( ∑
`<h,
` 6=k

q̄y
k,`,

∑
`≤h,
` 6=k

q̄y
k,`

](u1) 1{1}(u2) (4.2)

+
m∑
i=1

∑
6̀=k

(`− k)1Ai,k,`(u1) 1{2}(u2) .
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Here jumps of N (ds, du) in Ai,k,` correspond to a contagious default where
firm i defaults and where X has a transition from k to `, so that Ai,k,` is given
by the half-open interval( i−1∑
j=1

∑
h6=k

q(k,y, h,yj)+
∑
ι<`,

ι 6=k

q(k,y, ι,yi),
i−1∑
j=1

∑
h6=k

q(k,y, h,yj)+
∑
ι≤`,
ι 6=k

q(k,y, ι,yi)
]
.

It follows that the the kernel K̄X(·) defined in (3.4) is given by the right hand
side of (4.2), as can also be seen from the fact that for t ∈ [Tn, Tn+1) the factor
process X follows a finite state Markov chain with transition intensities q̄YTn

k,h ,
k 6= h; we denote the corresponding generator matrix by Q̄y.

The filter equations. In the finite-state Markov case the filter distribution can
be summarized by the K-dimensional process πt = (π1

t , . . . , π
K
t ) with πit :=

P (Xt = i | FIt ). Obviously, it suffices to compute an un-normalized version
of πt. The key step in applying the filtering results of Section 3, in particular
Theorems 3.1 and 3.4, is thus the evaluation of expressions of the form

σtg[n,y] :=
K∑
i=1

πTn−1({i}) Ē(i,y)

(
g
(
X̄t

)
Lnt exp

{
−

t∫
0

λ̄(X̄s,y) ds
})

(4.3)

for generic g : {1, . . . ,K} → R, y ∈ {0, 1}. Put for h ∈ {1, . . . ,K}

σht [n,y] :=
K∑
i=1

π̄Tn−1({i})E(i,y)

(
1{X̄t=h}L

n
t exp

{
−

t∫
0

λ̄(X̄s,y) ds
})

, (4.4)

so that σt[n,y]g =
∑K
h=1 σ

h
t [n,y]g(h). In the next proposition we derive a

Zakai-type SDE for the vector process σt[n,y] = (σ1
t [n,y], . . . , σKt [n,y]) that,

as follows immediately from the previous development, represents a vector of
unnormalized conditional probabilities.

Proposition 4.1 The process σt = σt[n,y] solves the SDE

dσit =
( K∑
k=1

q̄yk,iσ
k
t − λ̄(i,y)σit

)
dt+ σit (ant )′(i)Σ−1

Z dZnt , 1 ≤ i ≤ K , (4.5)

with initial condition σi0 = πTn−1({i}).

Proof A similar reasoning as in Section 3.1 yields σht ∝ R̄π
(
X̄t = h | FZn

t

)
where under R̄π, X̄ is a Markov chain with generator matrix Q̄y, initial dis-
tribution π, and where Znt solves the SDE dZnt = ant (X̄t)dt + vdβnt , with
βnt =

(
βt+Tn−1

)
t≥0

.

The statement can now be derived from general results in Corollary 3.9 of
Elliott (1993). For this purpose we need to define an appropriate process H
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that we choose as Ht := exp
{
−
∫ t

0
λ̄(Xs,y)ds

}
, so that dHt = −λ̄(Xt,y)Htdt.

With this choice of H the coefficients in (3.1) of Elliott (1993) become β ≡ δ ≡
0 and αt = −λ̄(Xt,y)Ht. Equation (4.5) now corresponds to relation (3.18)
in Elliott (1993).

The filter distribution at a default time Tn. Here we have the following result.

Corollary 4.2 Using the convention 0/0 = 0, we have for 1 ≤ i ≤ K

πiTn := πTn({i}) =
∑
h6=i

P
(
XTn−= h | FITn

) q
(
h,YTn−1 ; i,YTn

)∑K
j=1 q

(
h,YTn−1 ; j,YTn

)
+ P

(
XTn−= i | FITn

) q
(
i,YTn−1 ; i,YTn

)∑K
j=1 q

(
i,YTn−1 ; j,YTn

) . (4.6)

Proof The result can be established by applying Proposition 3.2 to the kernels
KX and KY

i introduced previously. Alternatively, an analogous reasoning as
in the proof of Proposition 3.2 can be used to show that the expressions

q
(
h,YTn−1 ; i,YTn)∑K

j=1 q
(
h,YTn−1 ; j,YTn

) and
q
(
i,YTn−1 ; i,YTn

)∑K
j=1 q

(
i,YTn−1 ; j,YTn

)
give the conditional probability that X jumps from state h to state i at Tn
respectively that X stays in state i at Tn, given the observed transition of Y.

We summarize our filtering results for the finite-state Markov case in
the following algorithm. Recall that

(
σs[n,y]

)
s≥0

denotes the solution of
(4.5) with initial value σi0[n,y] = πTn−1({i}), Zns = Zs+Tn−1 and ans (·) =
as+Tn−1(·).

Algorithm 4.3 (Filtering for a finite-state Markov chain.)

1. Set n = 1, T0 = 0, Y0 = 0, and denote the initial filter distribution by π0.
2. Compute σit[n,YTn−1 ] for t ≥ Tn−1 according to (4.5) (for the actual com-

putation see the next paragraph).

3. For t ∈ [Tn−1, Tn), set (see Theorem 3.1) πit :=
σit−Tn−1

[n,YTn−1 ]∑K
k=1 σ

k
t−Tn−1

[n,YTn−1 ]
4. For t = Tn compute first (see Theorem 3.4)

P
(
XTn− = i | FITn

)
:=

λξn(i,YTn−1)σiTn−Tn−1
[n,YTn−1 ]∑K

k=1 λξn(k,YTn−1)σkTn−Tn−1
[n,YTn−1 ]

and determine then πTn =
[
π1
Tn
, . . . , πKTn

]
according to (4.6). Replace n by

n+ 1 and return to Step 2.

Note that all quantities appearing in Algorithm 4.3 can be expressed in term
of the transition intensities of the Markov chain (X,Y).
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Solving the Zakai-equation (4.5). In order to apply Algorithm 4.3, we need to
solve the SDE (4.5). Here two cases can be distinguished. If (FIt ) = (Ht) or,
equivalently, ant (·) ≡ 0 equation (4.5) reduces to the ODE-system

d

dt
σit =

K∑
k=1

q̄yk,iσ
k
t − λ̄(i,y)σit , 1 ≤ i ≤ K. (4.7)

In vector notation the solution of this equation is given by the matrix expo-
nential σt[n,y] = σ0[n,y] exp

{
t
(
(Q̄y)′ − diag(λ̄(1,y) · · · , λ̄(K,y))

)}
. This

matrix exponential can be computed by diagonalizing the matrix Q̄y. Alter-
natively, one can apply numerical schemes for ODEs to equation (4.7).

If ant (·) 6= 0, (4.5) is a stochastic differential equation. Numerical methods
for solving this equation are based on time discretization, e.g. according to
the Euler-Maruyama scheme. This is the natural approach if only discrete
time observations of Z are available; for a discussion of technical details we
refer to Clark (1978). An alternative approach, again due to Clark (1978),
is to reduce the stochastic differential equation (4.5) to a deterministic one
via a well chosen factorization. To this effect notice that a straightforward
application of Itô’s formula allows to show the following

Lemma 4.4 We have σit := At,i · ri(t,A) where

At,i := exp
{ t∫

0

(ans )′(i)Σ−1
Z dZns −

1
2

t∫
0

‖ans (i)‖2Σ−1
Z
ds
}
, i = 1, . . . ,K (4.8)

and where ri(·,A) solves the ODE-system

d

dt
ri(t,A) = A−1

t,i

K∑
k=1

At,k
(
q̄yk,i − λ̄(i,y)δik

)
rk(t,A) , r(0,A) = σ0 . (4.9)

In order to use this result one has to determine a trajectory of A = (At,1, · · · ,
At,K)|t≥0 given the observed trajectory of the process Znt . This can be accom-
plished by using stochastic partial integration to allow for a pathwise evalua-
tion of the stochastic integral in (4.8); we refer to Davis (1978) for details and
for a deeper discussion of pathwise non-linear filtering.

4.2 Particle filtering

In particle filtering the conditional distribution πXt|FIt is approximated by the
occupation measure π̃t of a branching particle system with particles in the state
space SX of X. This branching system is constructed by a recursion over dis-
crete time steps tk = k∆, k = 0, 1, . . . . The measure π̃tk+1 is constructed from
π̃tk in a two-stage procedure. In the prediction step one generates for each par-
ticle xik in the system at time tk a trajectory of the SDE (3.5) of length ∆ with
initial value xik. In the updating step, the new particle system is constructed
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by letting each particle branch into a random number of offsprings; the mean
number of offsprings is defined in accordance with Theorems 3.1 and 3.4 (see
Step 3 and 4 of Algorithm 4.5 below). Moreover, at a default time the parti-
cles are shifted by a random amount according to the conditional jump-size
distribution of X at a default time as given in Proposition 3.2.

Let β(tk) denote the number of particles at time tk, and consider (in ac-
cordance with (3.5)) for (x,y) ∈ SX × {0, 1}m the SDE

X̄t = x+

t∫
0

b(X̄s,y)ds+

t∫
0

σ(X̄s,y)dWs +

t∫
0

∫
E

K̄X(X̄s−,y, u)N (ds, du),

(4.10)

The evolution of the particle system can then be described as follows:

Algorithm 4.5 (Particle filtering.)

1. The initial state π̃0 is given by the occupation measure of β(0) particles
of mass 1/β(0), i.e. π̃0 = β(0)−1

∑β(0)
i=1 δxi(0); here {x1(0), . . . ,xβ(0)(0)}

represent independent draws from the initial distribution π0.
2. (Prediction step) Given the particles {x1

k, . . . ,x
β(tk)
k } in the system at time

tk, generate for i = 1, . . . , β(tk) independent trajectories X̄i = (X̄i(s))0≤s≤∆
of the SDE (4.10) with starting value x = xik and y = Ytk .

3. (Updating step/no defaults) Assume that there is no default in (tk, tk+1].
Given the new noisy price observation (Zt)tk≤s≤tk+1 , define (in accordance
with Theorem 3.1) for each trajectory X̄i, 1 ≤ i ≤ β(tk), the weights

Li := exp
{
−

∆∫
0

λ̄(X̄i
s,Ytk) ds

+

∆∫
0

a′tk+s(X̄
i
s)Σ

−1
Z dZtk+s −

1
2

∆∫
0

∥∥atk+s(X̄i
s)
∥∥2

Σ−1
Z

ds
} (4.11)

In a numerical implementation the stochastic integral in (4.11) may be
computed by Euler approximation. Define

µi :=
β(tk)Li∑β(tk)
j=1 Lj

,

and denote by [µi] the integer part of µi. At tk+1 each particle xik in
the system at tk produces independently a random number m(i) of off-
springs with mean number of offsprings equal to µi; in order to minimize
the variance of m(i) it is assumed that m(i) has support {[µi], [µi] + 1}.
Note that together with the requirement E(m(i)) = µi this determines the
distribution of m(i). The positions of the m(i) offsprings of particle i are
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given by X̄i(∆) (the endpoint of the trajectory with initial value xik). We
set β(tk+1) :=

∑β(tk)
i=1 m(i) and denote the new particles at time tk+1 by

{x1
k+1, . . . ,x

β(tk+1)
k+1 }. The approximation to the filter distribution at time

tk+1 is then given by

π̃tk+1 = β(tk+1)−1

β(tk+1)∑
i=1

δxik+1
. (4.12)

4. (Updating step at a default time) If there is a default event in (tk, tk+1],
we use Theorem 3.4 and proceed as follows2. Denote by ξ ∈ {1, . . . ,m}
the identity of the defaulting firm and put L̃i := λ̂ξ

(
X̄i(∆)

)
Li with Li

as in (4.11). The number of offsprings m(i) is determined by the same
mechanism as in Step 3 but with L̃1, . . . , L̃β(tk) instead of L1, . . . , Lβ(tk).
In accordance with Proposition 3.2 the position of the offsprings of particle
i is given by X̄i(∆) +KX(X̄i(∆),Ytk , U), where U ∼ νξ(du) with

νξ(A) :=
FN
(
A ∩DY

ξ (X̄i(∆),Ytk)
)

FN
(
DY
ξ (X̄i(∆),Ytk)

) .

The measure π̃tk+1 is then again given by (4.12).

This algorithm has a number of advantages, in particular for high-dimensional
problems. First, particles with small weights (corresponding to a-posteriori
unlikely trajectories of X) have a low probability of being carried forward,
so that the particles concentrate mostly in the more probable regions of the
state space. Moreover, the computational effort increases only linearly in the
dimensionality of the state process. Obviously, particle filtering algorithms
based on resampling instead of branching (see e.g. Budhiraja et al. (2007))
can be adapted to our setting in an analogous manner.

4.3 Numerical experiments

Next we present results from numerical experiments illustrating the perfor-
mance of the Markov-chain filter (Algorithm 4.3) and of the proposed particle
filtering algorithm. We work in a scalar version of the affine jump-diffusion
model of Duffie & Garleanu (2001), termed (scalar) DG-model, and in a spe-
cial version of the Frey & Schmidt (2009b)-model, termed FS-model. The
scalar DG-model has a low-dimensional state space and is therefore a useful
test case where Markov-chain filter and particle filter can be compared. The
FS-model is more demanding: in this model the state space of the signal pro-
cess is of higher dimension (we take K = 4 for the simulation study), and
there are common jumps of state space and default indicator process. For this
model we we relied exclusively on particle filtering.

2 Since the interval length is short we can neglect the possibility of more than one default
per time step. Moreover, we may assume that the default happens exactly at t = tk+1.
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For simplicity we assume that all firms have identical default intensities.
In the DG-model the signal is given by the default intensity λt = λXt, λ > 0,
of the firms under consideration; in the FS-model the signal corresponds to
the solution p = (p1

t , . . . , p
4
t )t≥0 of the SDE (2.19) representing the filter-

distribution of the market. The continuous observation process Z is given by
dZt = λXtdt+ vdβt (for the DG model) and by dZt =

∑4
k=1 λ(k)pkt dt+ vdβt

(for the FS-model) respectively; in both cases the parameter v models the size
of the observation noise.3 Note that the drift term in the observation represents
the (Ft)-default intensity of the firms under consideration; this term can be
interpreted as credit spread of a short term bond or CDS-contract (assuming
for simplicity a zero recovery rate). All simulations were carried out with
m = 100 firms.

Results. Numerical results are displayed in Figures 4.1 and 4.2 below. Inspec-
tion of these graphs points to the following observations.

– In both models, for low observation noise (low σε), the filtered default
intensity is very close to the market default intensity (see left panel of
Figure 4.1 respectively the bottom right panel of Figure 4.2). Interestingly,
for low observation noise4 the filtered probabilities (E(pt | FIt )) are quite
close to the market probability vector pt, as is revealed by the two left
panels of Figure 4.2; this is quite remarkable, since the signal is a four-
dimensional process whereas Z (the continuous part of the observation
process) is one dimensional. For high σε the filter performance is of course
somewhat worse but still quite good. Overall we found that the information
contained in Z has a stronger impact on the precision of the filter than the
default history; this is not surprising since for realistic parameter values
defaults are rare events.

– In the DG-model we can compare the Markov-chain filter and a particle
filtering algorithm. Both algorithms give roughly similar results even for a
coarse discretisation of the state space of X. While the Markov chain filter
is significantly faster, for low observation noise the numerical integration
of the Zakai equation tends to produce small numerical instabilities as can
be seen from the spikes on the left plot of Figure 4.1.

Note finally that Figure 4.2 gives a nice numerical illustration of the phe-
nomenon of information based default contagion: at a default the conditional
probability of being in State 1 (where default intensities are assumed to be
low) is decreased, whereas the conditional probability of being in States 3 and
4 (where default intensities are high) jumps upwards.

3 Recall from Subsection 2.2 that in order to model discrete observations occurring on
a fine time grid tk = k∆ one should take v = σε

√
∆, where σε represents the standard

deviation of the discrete observation noise.
4 The value σε = 0.5% or σε = 0.2% may seem very small at first sight, but one should

keep in mind that the default intensities are of the order of 1 or 2 %
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Fig. 4.1 Filtering results for the DG-model. Left: results for low observation noise
(v = 1/8000 respectively σε = 0.2%); right: results for high observation noise (v = 1/320
respectively σε = 5%).

Fig. 4.2 Filtering results for the FS-model. Top left: trajectories of E(pkt | FIt ) for low
observation noise (v = 1/3200 resp. σε = 0.5% ); top right: trajectories of E(pkt | FIt ) for
high observation noise (v = 1/400 resp. σε = 4% ); bottom left: trajectories of signal pt =
(p1
t , . . . , p

4
t ); bottom right: market default intensity

∑4
k=1 λ(k)pkt compared with investor

default intensity
∑4
k=1 λ(k)E(pkt | FIt ) for high and low observation noise.
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5 Filter Approximations

A viable approach to solve filtering problems for a general state variable X is to
consider approximations of X by a sequence Xm of finite state Markov chains
as a computational tool. In this section we provide the necessary theoretical
basis for this and show the convergence of the filter computed for a finite state
approximation Xm to the filter corresponding to the original state variable
process X. The proof of this result relies heavily on our general filter formulas.

An alternative representation of the filter. We begin with an alternative ex-
pression for the filter; while more abstract than the results from Section 4, this
expression is well suited for deriving approximation results. Consider a pair
of processes (X,Y) solving the original SDE system (2.1) (2.2); in particular,
the dynamics of X are given in terms of the drift vector b(x,y), the dispersion
matrix σ(x,y) or equivalently the matrix ΣX(x,y) = σ(x,y)σ(x,y)′ and the
kernel KX(x,y, u). Fix some t > 0. Put as before Nt := max{n ≤ m : Tn ≤ t}
and recall that the sequence (Tn, ξn), n = 1, . . . , Nt or equivalently the pro-
cess (Ys)s≤t represents the default history up to time t. In the sequel we
will always work with respect to given and fixed default observations (T̂n, ξ̂n),
n = 0, . . . , N̂t respectively (Ŷs)s≤t; the “hat-notation” is meant to indicate
that the default observations are fixed and can hence be considered determin-
istic.

Recall now the definition (3.4) of the kernel K̄X. Denote by (Ωd,Fd, (Fdt ))
the Skorokhod space Dd([0,∞)) with its canonical filtration and denote the
coordinate process on Ωd by X̄. For reasons that will become apparent in the
sequel, we define on (Ωd,Fd, (Fdt )) a predictable vector process by

Bt =

t∫
0

b(X̄s, Ŷs)ds+

t∫
0

∫
E

K̄X(X̄s−, Ŷs−, u)FN (du) ds (5.1)

+
N̂t∑
n=1

FN
(
DY
ξ̂n

(X̄T̂n−, ŶT̂n−1
)
)−1

∫
DY
ξ̂n

(X̄T̂n−,ŶT̂n−1
)

K̄X(X̄T̂n−, ŶT̂n−1
, u)FN (du);

a predictable Rd×d-valued process C̃ijt , 1 ≤ i, j ≤ d, by

C̃ijt =

t∫
0

ΣX(X̄s, Ŷs)ds+

t∫
0

∫
E

K̄X
i (X̄s−, Ŷs−, u)K̄X

j (X̄s−, Ŷs−, u)FN (du) ds (5.2)

+

N̂t∑
n=1

FN
(
DY
ξ̂n

(X̄T̂n−, ŶT̂n−1
)
)−1

∫
DY
ξ̂n

(X̄
T̂n−

,Ŷ
T̂n−1

)

K̄X
i (X̄s−, Ŷs−, u)K̄X

j (X̄s−, Ŷs−, u)FN (du);

and finally a predictable random measure ν on [0,∞)×Rd given for bounded
and measurable γ : Rd → R by
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t∫
0

γ(x)ν(ds, dx) =

t∫
0

∫
E

γ
(
K̄X(X̄T̂n−, ŶT̂n−1

, u)
)
FN (du)ds (5.3)

+
N̂t∑
n=1

FN
(
DY
ξ̂n

(X̄T̂n−, ŶT̂n−1
)
)−1

∫
DY
ξ̂n

(X̄T̂n−,ŶT̂n−1
)

γ
(
K̄X(X̄T̂n−, ŶT̂n−1

, u)
)
FN (du) .

The triple (B, C̃, ν) has the typical form of modified semimartingale charac-
teristics (Definition II.2.16. in Jacod & Shiryaev (2003)). We assume that

A5. The martingale problem associated with (B, C̃, ν) and initial law π0 is
well posed, i.e. there is a unique probability measure R̄ on Ωd such that X̄
is a semimartingale with modified characteristics (B, C̃, ν) and initial law
π0.

Furthermore, denote as in Section 3.1 by (Ω2,F2, P
0,`) the `-dimensional

Wiener space with coordinate process β0 and let (Ω̄, F̄ , R̄0) be the product
space

(Ω̄, F̄ , R̄0) = (Ωd ×Ω2,Fd ⊗F2, R̄× P 0,`) . (5.4)

According to the results from Section 3 (see, in particular, (3.2), (3.3) as well
as Theorems 3.1, 3.4 and Proposition 3.2) we obtain that, for a given time t, for
a given default history {(T̂n, ξ̂n) : n ≤ N̂t}, and for a bounded and continuous
function f : SX → R, the filter πtf can be expressed in the form

πtf(ω2) ∝ ER̄
(
f(X̄t)L1

tL
2
t (·, ω2)

)
, (5.5)

where

L1
t =

N̂t∏
n=1

{
λξ̂n (X̄T̂n−, ŶT̂n−1

) exp
(
−

T̂n∫
T̂n−1

λ̄(X̄s, ŶT̂n−1
)ds
)}

exp
(
−

t∫
T̂Nt

λ̄(X̄s, ŶT̂Nt
)ds
)
,

(5.6)

and where, by analogy with (3.1),

L2
t (·, ω2) = exp

{ t∫
0

a′s(X̄s)Σ−1
Z dZs(ω2)− 1

2

t∫
0

∥∥as(X̄s)
∥∥2

Σ−1
Z

ds
}
, (5.7)

with Zt(ω2) = vβ0
t (ω2) = v ω2(t).
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Approximating filter sequence. Consider a sequence of processes (Xm,Ym)m∈N,
solving the SDE system

Xm
t = Xm

0 +

t∫
0

∫
E

KX,m(Xm
s−,Y

m
s−, u)N (ds, du) (5.8)

Y mt,j = Y0,j +

t∫
0

∫
E

(1− Y ms−,j)KY
j (Xm

s−,Y
m
s−, u)N (ds, du). (5.9)

Note that KY
j is independent of m. In applications KX,m(·) will be chosen so

that (Xm,Ym) is a finite state Markov chain as e.g. in Section 4.1.
Given the default observation (T̂n, ξ̂n), n = 1, . . . , N̂t respectively (Ŷs)s≤t,

introduce the modified semimartingale characteristics (Bm, C̃m, νm) given by
(5.1), (5.2) and (5.3) with b = Σ = 0 and K̄X,m instead of K̄X. Choose a
sequence of initial distributions πm0 on the state space of Xm such that πm0
converges weakly to π0 and denote by the measure R̄m on (Ωd,Fd, (Fdt ))
the solution of the martingale problem associated with the characteristics
(Bm, C̃m, νm) and the initial distribution πm0 (we assume that this martin-
gale problem is well-posed for every m). The filter πmt f in the approximating
model can be expressed in the form

πmt f(ω2) ∝ ER̄
m (

f(X̄t)L1
tL

2
t (·, ω2)

)
. (5.10)

Below we shall give conditions on (Bm, C̃m, νm) so that the sequence of
measures R̄m converges weakly to R̄ (denoted R̄m ⇒ R̄) as m→∞. Assuming
for a moment such a convergence, here we show first the ensuing convergence
of the filters. We need the following additional assumption.

A6. The default intensities λj(x,y) are bounded and continuous in x.

Theorem 5.1 Fix some t > 0 and a default history {(T̂n, ξ̂n) : n = 1, . . . , N̂t}.
Suppose that Assumptions A1 to A6 hold and that R̄m ⇒ R̄. Then πmt f(ω2)
converges P 0,`-stochastically to πtf(ω2), i.e. P 0,` − limm→∞ πmt f = πtf .

Remark 5.2 1.) Although the convergence is in a weaker form than a.s. con-
vergence, it still implies that, for m sufficiently large, the probability that πmt f
differs from πtf by a given amount can be made arbitrarily small.
2.) Note that Theorem 5.1 is a filter approximation result for a model where
signal and observation cannot be made independent via a measure transfor-
mation. This sets the result apart from filter approximation results as in Zeng
(2003) which are based on general results by T. Kurtz and E. Goggins concern-
ing weak convergence of conditional expectations. By the same token, Zeng
(2003) obtains only weak convergence of the approximating filters, while here
we obtain convergence in probability.
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Proof (of Theorem 5.1) Denote by δd(x,y) the Prokhorov metric onDd([0,∞))
(see Jacod & Shiryaev (2003), Chapter VI, (1.26)). By Skorokhod embedding,
the weak convergence R̄m ⇒ R̄ implies that there is some probability space
- denoted again by (Ωd,Fd, R̄) for simplicity - and processes X̄m and X̄ with
laws R̄m and R̄ respectively such that limm→∞ δd(X̄m, X̄) = 0 , R̄ a.s. and
hence also R̄0 = R̄× P 0,` a.s. Now we have the following two Lemmas, whose
proof is relegated to Appendix A.

Lemma 5.3 Consider bounded and continuous functions f(·) and λ(·) We get
for processes X̄m, X̄ as above that

lim
m→∞

f(X̄m
t ) = f(X̄t) R̄0 − a.s. (5.11)

lim
m→∞

λ(X̄m
T̂n−

) = λ(X̄T̂n−), R̄0 − a.s. , n = 1, . . . , N̂t (5.12)

lim
m→∞

t2∫
t1

λ̄(X̄m
s , Ŷs)ds =

t2∫
t1

λ̄(X̄s, Ŷs)ds ; t1 < t2 < t; R̄0 − a.s. (5.13)

Lemma 5.4 Let L2,m
t denote the process L2

t defined in (5.7), but with X̄m re-
placing X̄ there. Then, for processes X̄m, X̄ as above, one has
R̄0 − limm→∞ L2,m

t = L2
t .

Now we return to the proof of Theorem 5.1. From the boundedness of f
and L1,m (see A6), the definition of L1,m according to (5.6) (with X̄m instead
of X) and the fact that ER̄

0(
(L2,m)2

)
≤ C < ∞ (due to the boundedness of

at(·)) we obtain uniform integrability for the sequence (f(X̄m
t )L1,m

t L2,m
t )m∈N.

From Lemma 5.3 as well as from Lemma 5.4 we then obtain that

f(X̄m
t )L1,m

t L2,m
t → f(X̄t)L1

tL
2
t in L1(Ω̄, F̄ , R̄0) , m→∞ . (5.14)

Using the product-form of R̄0, this L1-convergence can be written more ex-
plicitly as

lim
m→∞

∫
Ω2

ER̄
(∣∣∣f(X̄m

t )L1,m
t L2,m

t (·, ω2)− f(X̄t)L1
tL

2
t (·, ω2)

∣∣∣)P 0,`(dω2) = 0.

It follows that the inner expectation converges to zero in L1(Ω2,F2, P
0,`) and

therefore also P 0,`-stochastically, which proves the theorem.

Weak convergence. In the remaining part of this subsection, under a couple
of additional assumptions on the model, we give conditions on the modified
characteristics of X̄m for which we obtain weak convergence of X̄m to X̄. For
this purpose we base ourselves on Theorems 3.35 and 2.11 in chapter IX of
Jacod & Shiryaev (2003). The additional assumptions on the model are:

A7.1 (a strengthening of A2). There exists A ⊂ E with A compact such that
DX
i (x,y) ⊂ A for all x,y and all i = 1, · · · , d.
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A7.2 There exists a positive constant H such that for all x,y, all i = 1, · · · , d
and all u ∈ E,

d∑
i=1

| bi(x,y, u) |≤ H ;
d∑
i=1

| K̄X
i (x,y, u) |≤ H ;

d∑
i=1

| Σii
X(x,y) |≤ H .

Following Jacod & Shiryaev (2003) we introduce the following class of test
functions: C1 := {γ : Rd → R : γ continuous , |γ(x)| < 1, γ(0) = 0}. Fur-
thermore, for generic d, δd(x,y) denotes the Prokhorov metric on the d-
dimensional Skorohod space.

Proposition 5.5 Let Assumption A1 to A7 hold and suppose that for the
characteristics of the approximating Markov chains X̄m one has

δd(Bm, B ◦ X̄) R̄m−→ 0 ,

δd2(C̃m, C̃ ◦ X̄) R̄m−→ 0 ,

δ1(γ ∗ νm, (γ ∗ ν) ◦ X̄) R̄m−→ 0 for all γ ∈ C1 .

(5.15)

where R̄m is the sequence of measures making the coordinate process a semi-
martingale with modified characteristics (Bm, C̃m, νm) and initial distribution
πm0 with πm0 =⇒ π0. Then, for a given default sequence (T̂n, ξ̂n), we have the
weak convergence R̄m =⇒ R̄ for m→∞ .

The conditions (5.15) can be taken as guidelines when choosing the approx-
imating sequence of finite state Markov chains. While given in a somewhat
abstract form here, they assume a more specific form for a given problem at
hand. The proof of the proposition is given in Appendix A.

A Additional proofs for Section 5

Proof of Lemma 5.3. Note that by the form of the characteristics of X̄, for
t 6∈ Jt := {T̂n : n = 1, . . . , N̂t} we have ∆X̄t = 0, R̄0−a.s. Given the
R̄0−a.s. convergence of X̄m to X̄ in the Prokhorov metric, (5.11) follows from
Proposition VI.2.1 (b.5) in Jacod & Shiryaev (2003). On the other hand, if
ν({T̂n}×Rd) > 0 then also νm({T̂n}×Rd) > 0 for m sufficiently large, so that
Proposition VI.2.1 (b.6) in Jacod & Shiryaev (2003) implies that for T̂n ≤ t
we have R̄0−a.s.

lim
m→∞

X̄m
T̂n−

= X̄T̂n− and lim
m→∞

X̄m
T̂n

= X̄T̂n
. (A.1)

Relation (A.1) then implies (5.12) and, for t ∈ Jt, also (5.11). Relation (5.13)
is obvious from the definition of the Skorokhod topology.
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Proof of Lemma 5.4. We first consider the stochastic integral terms. Since
Zt = vβ0

t , we get

ER̄
0
(( t∫

0

a′s(X̄
m
s )Σ−1

Z dZs −
t∫

0

a′s(X̄s)Σ−1
Z dZs

)2
)

= ER̄
0
( t∫

0

∥∥(as(X̄m
s )− as(X̄s))

∥∥2

Σ−1
Z

ds

)
→ 0 , m→∞ ,

(A.2)

where the convergence follows from the assumption of continuity and bound-
edness of the function at(·) (see Assumption A4 ) as well as from bounded
convergence. Next, always by the Assumption A4 as regards at(·) as well as
by the triangle inequality we also have,

t∫
0

(∥∥as(X̄m
s )
∥∥2

Σ−1
Z

−
∥∥as(X̄s)

∥∥2

Σ−1
Z

)
ds ≤ 2 ‖a‖

t∫
0

∥∥(as(X̄m
s )− as(X̄s))

∥∥
Σ−1

Z

ds ,

and, as m→∞, the right hand side converges to 0 R0−a.s. This convergence
and relations (A.2) imply that for m→∞,

t∫
0

a′s(X̄
m
s )Σ−1

Z dZs−−
1

2

t∫
0

∥∥as(X̄m
s )
∥∥ 2

Σ−1
Z

ds
R̄0
−→

t∫
0

a′s(X̄s)Σ
−1
Z dZs−

1

2

t∫
0

∥∥as(X̄s)
∥∥2

Σ−1
Z

ds

and therefore also R̄0 − limm→∞ L2,m
t = L2

t for arbitrary fixed t.

Proof of Proposition 5.5. The proof is based on the following two lemmas.

Lemma A.1 Under the assumptions of Proposition 5.5 the sequence of mea-
sures R̄m, m ∈ N, is tight.

Proof The proof is based on that for Theorem 3.35 in Chapter IX of Jacod
& Shiryaev (2003). We show that, under our assumptions, Conditions i),ii),v)
and vi) of that theorem are satisfied.

Condition i) (Strong majorization hypothesis II) can, on the basis of As-
sumption A7.1 and A7.2, be seen to be satisfied if in the definition of the strong
majorization condition (Definition 3.11 in Chapter IX of Jacod & Shiryaev
(2003)) one takes as deterministic increasing càdlàg functions the following:

Ft = [2H +H(1 +H)FN (A)] t+H(H + 1) N̂t (A.3)

with A and H from Assumptions A7.1 and A7.2 respectively; for γ ∈ C1 we
take

F γt = FN (A) t+ N̂t . (A.4)

Recall that we work with a given observed sequence (T̂n, ξ̂n), so that the func-
tions Ft and F γt are deterministic functions of time. The remaining conditions
are immediate: Condition ii) (Condition on the big jumps) is automatically
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satisfied under the given assumptions; Condition v) holds by assumption on
the initial conditions; Condition vi) corresponds to (5.15).

The statement of the lemma follows now from the first part of the proof
of Theorem 3.35 in Chapter IX of Jacod & Shiryaev (2003), which in turn is
based on Theorem 3.20 in the same chapter.

Lemma A.2 Under the hypotheses of Proposition 5.5 every weakly converging
sequence X̄m has as limit a semimartingale process with modified characteris-
tics (B, C̃, ν)

Proof Here we rely on Theorem 2.11 in Chapter IX of Jacod & Shiryaev (2003).
Condition i) in that Theorem is satisfied since the assumption made by requir-
ing (5.15) is stronger than this condition. Condition ii) (majorization condi-
tion) is here a rather immediate consequence of assumptions A7.1 andA7.2.

There remains Condition iii), namely the (Continuity condition) for the
modified characteristics (B, C̃, ν) in the Skorokhod topology. This condition
has to hold a.s. with respect to the limit measure, in our case R̄. Next recall
that each of the characteristics is composed of terms expressed as an integral
with respect to time and one term given by a sum over T̂n. The time integrals
are automatically continuous. The term given by the sum over T̂n can on
the other hand be treated by analogy to Lemma 5.3 noticing that we have
λj(Xt−, Ŷt−) = FN (DY

j (Xt−, Ŷt−)) and for λj(·,y) we have the continuity
assumption A6. Having now all conditions of Theorem 2.11 in Chapter IX of
Jacod & Shiryaev (2003) satisfied, the statement here follows from that same
Theorem.

We can now conclude with the proof of Proposition 5.5: By the tightness
result of Lemma A.1 we have that every sequence R̄m has a weakly converging
subsequence. By Lemma A.2 each of these converging sequences has a weak
limit that corresponds to the same modified characteristics (B, C̃, ν), namely
those of the original process X̄. By Assumption A5 the weak limit is unique
and this gives us the statement of the proposition.
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