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1 Introduction

Mixture models play an important role in the modeling of portfolio losses. In these models
the risk of default of individual obligors (indexed by i ∈ {1, . . . , m}) depends on an underlying
set of common economic factors, denoted Ψ. Given these factors, the losses due to default
li of individual obligors are assumed to be stochastically independent. Dependence between
different obligors stems only from dependence of the individual default probabilities on the set
of factors. These models are used for both risk management of credit portfolios and valuation
of multi-name credit derivatives. The current article investigates both issues.

The numerical evaluation of the portfolio loss distribution is usually based on the two-stage
structure of mixture models. For instance, in order to sample from the loss distribution by
standard Monte Carlo, one generates first a realization of the systematic factor variable Ψ.
In a second step one generates a sequence of independent variates l̂i, 1 ≤ i ≤ m, according
to the conditional distribution of (li)1≤i≤m given Ψ. Standard Monte Carlo can be quite
slow, and so various numerical techniques for estimating the distribution of the total loss
of a portfolio in mixture models have been developed. In this paper we focus on the the
second stage, i.e. the conditional loss distribution given the underlying factors, and propose
an alternative way for evaluating the conditional distribution of the total loss L =

∑m
i=1 li.

Our approximation is based on a central limit theorem; error bounds can be derived from the
Berry-Esseen-inequality. We compare the numerical performance of our method relative to the
standard Vasicek-approximation and the true loss distribution obtained by standard Monte
Carlo methods. It turns out that our suggested approximation technique often provides more
accurate results than the Vasicek-approximation while being computationally less expensive
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than Monte Carlo algorithms. In particular, we use the loss distribution estimates for the
calculation of CDO spreads and find that the accuracy is significantly improved if our method
is used instead of the Vasicek approximation; this improvement comes with low additional
numerical cost. Related work is surveyed in the interesting paper Glasserman and Ruiz-Mata
[4]

The paper is structured as follows: Section 2 introduces the mixture model in which we
work and provides an analysis of the approximation method. In Section 3 we present two
methods for the estimation of portfolio loss probabilities in a Gaussian one-factor model and
illustrate these techniques numerically for different portfolios.

2 Approximation and Error Bounds

We consider a portfolio of m obligors. The loss resulting from obligor i ∈ {1, 2, . . . , m} is
modeled by a random variable which is denoted by li ≥ 0. We are interested in the distribu-
tion of the portfolio loss L(m) =

∑m
i=1 li. In particular, we provide methods to estimate the

tail function of the loss distribution, i.e. the probability P [L(m) > x] of the event that L(m)

exceeds a certain threshold x. This quantity is of interest for a variety of reasons: in credit risk
management an estimate of the tail of the loss distribution can be used to compute risk mea-
sures such as Value at Risk or Expected Shortfall and hence economic and regulatory capital.
Moreover, an efficient numerical procedure for computing the tail function of the portfolio loss
distribution (under a risk-neutral measure) is useful also for the computation of CDO tranche
spreads in factor copula models.

For the analysis we need the following condition on the structure of the model.

Assumption 2.1.

(i) For some d < m there exists a d-dimensional random vector Ψ = (Ψ1, ...,Ψd)′ such that
individual losses li are independent conditional on Ψ.

(ii) The first three conditional moments of the random variables li, i = 1, 2, . . . , m, are assumed
to be finite. We introduce the following notation1 for the conditional mean, and the centered
conditional second and third moments:

l̄i(ψ) := E[li|Ψ = ψ],
σ2

i (ψ) := Var[li|Ψ = ψ],
γi(ψ) := E[|li − l̄i(ψ)|3|Ψ = ψ], (ψ ∈ R

d).

Letting H be the distribution function of the random vector Ψ, we denote by F
(m)
L (x) =

P [L(m) ≤ x] and F
(m)
L|Ψ(x|ψ) = P [L(m) ≤ x|Ψ = ψ] the unconditional resp. conditional distri-

bution function of the total portfolio loss. The following proposition provides approximations
1The functions l̄i, σ2

i and γi are only PΨ-almost surely well-defined. This technical detail will not cause any
difficulties in the applications which we have in mind.
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for F (m) and F
(m)
L|Ψ together with error bounds which are derived from the central limit theorem

and the Berry-Esseen inequality.

Proposition 2.2. Suppose that Assumption 1 is satisfied. Letting Φ be the distribution function
of the standard normal distribution, we consider the family of distribution functions

G
(m)
L|Ψ(x|ψ) := Φ

⎛
⎝x − ∑m

i=1 l̄i(ψ)√∑m
i=1 σ2

i (ψ)

⎞
⎠ .

Moreover, we set

G(m)(x) :=
∫

G
(m)
L|Ψ(x|ψ)H(dψ).

Then there exists some constant A, independent of m, such that we have the following error
estimate for the conditional and unconditional loss distribution and their approximations:

sup
x≥0

∣∣∣F (m)
L|Ψ(x|ψ) − G

(m)
L|Ψ(x|ψ)

∣∣∣ ≤ A

∑m
i=1 γi(ψ)(∑m

i=1 σ2
i (ψ)

)3/2
and

sup
x≥0

∣∣∣F (m)(x) − G(m)(x)
∣∣∣ ≤ A

∫ ∑m
i=1 |li − l̄i(ψ)|3(∑m

i=1 σ2
i (ψ)

)3/2
H(dψ). (1)

Remark 2.3. 1. In the sequel we will sometimes refer to G(m)(x) as second-order approxima-
tion of the portfolio loss distribution.
2. For typical portfolios the integral term on the right hand side of (1) becomes very small for
m large. In particular, it will be shown in (3) below, that for a homogeneous portfolio the right
hand side of (1) decays like m−1/2. Bounds on the constant A are discussed in Remark 2.6
below.

The proof of the proposition is based on the following theorem which we quote from Petrov
[8]:

Theorem 2.4 (Petrov, Theorem V.2.3). Let Z1, ..., Zm be independent random variables
with E[Zi] = 0 and E[|Zi|3] < ∞, i = 1, ..., m. Then there exists a constant A such that

sup
x∈R

∣∣∣∣∣∣P
⎡
⎣ 1√∑m

i=1 σ̃2
i

m∑
i=1

Zi < x

⎤
⎦ − Φ(x)

∣∣∣∣∣∣ ≤ ACm, (2)

with

σ̃2
i = E

[
Z2

i

]
and Cm =

∑m
i=1 E

[ |Zi|3
]

(∑m
i=1 σ̃2

i

)3/2
.
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Proof of Proposition 2.2. Since the individual losses li, i = 1, 2, . . . , m, are conditionally inde-
pendent, Theorem 2.4 implies:

sup
x≥0

∣∣∣∣∣∣P
⎡
⎣∑m

i=1(li − l̄i(ψ))√∑m
i=1 σ2

i (ψ)
< x

∣∣∣∣Ψ = ψ

⎤
⎦ − Φ(x)

∣∣∣∣∣∣ ≤ A

∑m
i=1 γi(ψ)(∑m

i=1 σ2
i (ψ)

)3/2

which is equivalent to

sup
x≥0

∣∣∣∣∣∣P
[

m∑
i=1

li < x

∣∣∣∣Ψ = ψ

]
− Φ

⎛
⎝x − ∑m

i=1 l̄i(ψ)√∑m
i=1 σ2

i (ψ)

⎞
⎠

∣∣∣∣∣∣ ≤ A

∑m
i=1 γi(ψ)(∑m

i=1 σ2
i (ψ)

)3/2
,

and thus proves the approximation for the conditional distribution function. Taking expecta-
tions, Jensen’s inequality yields the approximation for the unconditional distribution function:∣∣∣F (m)(x) − G(m)(x)

∣∣∣ ≤
∫

|F (m)
L|Ψ(x|ψ) − G

(m)
L|Ψ(x|ψ)|H(dψ)

≤ A

∫ ∑m
i=1 γi(ψ)

(
∑m

i=1 σ2
i (ψ))3/2

H(dψ).

Homogeneous portfolios. Suppose that the individual losses li, i = 1, . . . , m, are identically
distributed given Ψ, so that the portfolio is homogeneous. In that case the conditional moment
functions are independent of i, l̄i = l̄, γi = γ, and σi = σ, and we obtain the following
simplifications for G(m) and the error bound.

Corollary 2.5. Suppose that Assumption 1 holds. If the portfolio is moreover homogeneous,
we obtain that

G(m)(x) =
∫

Φ
(

x − m l̄(ψ)√
mσ̄(ψ)

)
H(dψ),

sup
x≥0

∣∣∣F (m)(x) − G(m)(x)
∣∣∣ ≤ A√

m
E

[
γ̄(ψ)
σ̄3(ψ)

]
. (3)

Remark 2.6. The optimal universal constants A in Proposition 2.2 and Corollary 2.5 are
unknown, but lower and upper bounds can be provided. A lower bound for A is given by
3+

√
10

6
√

2π
, see Esseen [2]. Useful for applications are small upper bounds, since these can be used

for the constant A in inequalities (1) and (3) which allows explicit calculations. Van Beek
[1] gave the upper bound 0.7975. Using computational methods, Shiganov [9] obtained an
upper bound of 0.7915 for the optimal constant in inequality (1) (the general case) and an
upper bound of 0.7655 for the optimal constant in inequality (3) (the case of a homogeneous
portfolio).
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In practical applications it is often assumed that the individual losses are of the form

li = ei · δi(ψ) · Yi (i = 1, 2, . . . , m)

where the positive constant ei denotes the exposure due to obligor i, δi : R
d → (0, 1] is the

corresponding percentage loss given default which is modeled as a deterministic function of the
underlying factors, and the random Bernoulli variable Yi represents the default indicator of
obligor i (Yi = 1 corresponds to default, Yi = 0 to survival of firm i). The default indicators
are assumed to be independent given the factors Ψ, and the default probability of obligor i
conditional on Ψ = ψ is denoted by pi(ψ). If all firms have the same deterministic exposure
ei = e, and if both the conditional loss given default and the conditional default probabilities
do not depend on i, i.e. δi(ψ) = δ(ψ) and pi(ψ) = p(ψ) for all i, then the portfolio is
homogeneous, and (3) can be expressed in terms of the constant e and the functions δ and p.
We have

γ̄(ψ) = (eδ(ψ))3(1 − p(ψ))p(ψ) (1 − 2 · p(ψ))
σ̄3(ψ) = (eδ(ψ))3(p(ψ){1 − p(ψ)})3/2

The error bound becomes

sup
x

∣∣∣F (m)(x) − G(m)(x)
∣∣∣ ≤ 0.7655√

m
·

∫
1 − 2 · p(ψ)√

p(ψ)
√

1 − p(ψ)
H(dψ);

note that the right hand side of this expression depends only on the law of the random variable
Q := p(ψ). Some popular choices for the law of Q are discussed in Section 8.4 of McNeil, Frey
& Embrechts [7].

3 Numerical Case Studies

In this section we test the numerical performance of the approximation proposed in the previous
section. For this we compare the “true” distribution (computed by extensive standard Monte
Carlo simulation) to the Vasicek approximation and the approximation which we propose in
the current article. For the convenience of the reader we briefly describe the corresponding
simulation algorithms in Section 3.1; numerical case studies are provided in Section 3.2; the
application to CDO-tranches is discussed in Section 3.3.

The model. In our numerical analysis we will focus on a Gaussian one-factor Bernoulli
mixture model. The underlying factor Ψ has a standard normal distribution, Ψ ∼ N(0, 1).
We consider m obligors with unconditional default probabilities p̄i and individual losses li =
eiδi(·)Yi, i = 1, ..., m, where exposure ei, loss given default δi(·), and default indicators Yi,
i = 1, ..., m, are defined as before. The default indicators are constructed from the factors as
follows. Let εi, i = 1, 2, . . . , m, be independent standard normals which are independent of the
factor Ψ. Setting

Xi =
√

ρ · Ψ +
√

1 − ρ · εi, i = 1, 2, . . . , m,
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and xi = Φ−1(1 − p̄i), the default indicators

Yi = 1{Xi≥xi}, i = 1, 2, . . . , m,

are conditionally independent given Ψ. The default probability of obligor i equals p̄i, and the
corresponding conditional default probability pi(ψ) is given by

pi(ψ) = P (Yi = 1|Ψ = ψ) = P (Xi ≥ xi|Ψ = ψ) = Φ
(

Φ−1(p̄i) +
√

ρψ√
1 − ρ

)
. (4)

3.1 The Algorithms

We now describe the algorithms for computing the conditional loss distribution used in the
simulation study. In all simulations below the factor variable Ψ is not simulated; instead we
apply numerical integration using the trapezoidal rule.

Vasicek method (first-order approximation). Vasicek’s classical approximation is based
on the law of large numbers. Under suitable conditions the average loss of a large portfolio can
be approximated by the average conditional mean, i.e.

lim
m→∞

1
m

L(m) = lim
m→∞

1
m

m∑
i=1

E [li|Ψ] ,

see Frey and McNeil [3]. Sufficient conditions are, e.g., that the exposures are bounded and
that the sum on the right hand side converges.

A simple approximation of the conditional distribution of L(m) given Ψ = ψ with ψ ∈ R is
provided by the Dirac measure which is concentrated on the conditional mean

∑m
i=1 E [li|Ψ = ψ].

The first-order approximation can thus be described as follows:

P [L(m) > x|Ψ = ψ] ≈ 1{∑m
i=1 eiδi(ψ)pi(ψ)>x} =

{
1 if

∑m
i=1 eiδi(ψ)pi(ψ) > x,

0 otherwise

The approximate unconditional probability P [L(m) > x] is obtained by integration over the
factor Ψ.

Second-order Approximation. Proposition 2.2 in Section 2 leads to the following estimate
for the conditional probability P [L(m) > x|Ψ = ψ] for fixed ψ ∈ R:

Second-Order Algorithm:

1. Calculate pi(ψ) = Φ
(

Φ−1(p̄i)+
√

ρψ√
1−ρ

)
.

6



2. Calculate the second order estimator for P [L(m) > x|Ψ = ψ]:

1 − Φ

⎛
⎝ x − ∑m

i=1 ei δi(ψ) pi(ψ)√∑m
i=1 e2

i δ2
i (ψ)pi(ψ)(1 − pi(ψ))

⎞
⎠ .

Again, the approximate unconditional probability P [L(m) > x] is obtained by integration over
the factor Ψ.

Remark 3.1. A comparison of these algorithms explains our terminology “first-order” and
“second-order”: in the Vasicek method the conditional loss distribution is replaced by its mean
and all randomness is due to fluctuations in Ψ. These constitute a first order effect, since
they are of size O(m). In contrast, in the second-order approximation also fluctuations in
the conditional loss distribution – which are of order O(

√
m) – are taken into account via the

normal approximation of the conditional loss distribution.

Both the first-order and second-order approximations rely on the evaluation of the Gaussian
distribution function. This is computationally less demanding than Monte Carlo simulations.
In the next section we provide numerical case studies and compare both precision and compu-
tational costs of the two methods and a Monte Carlo benchmark.

3.2 Numerical Results

We focus on two different applications. First we estimate probabilities of large portfolio losses
which are important quantities for credit risk management. In this application, the probabil-
ity measure P needs to be interpreted as the statistical measure. The second application is
the calculation of CDO prices based on the portfolio loss distribution. In this situation, the
probability measure P signifies a risk-neutral or pricing measure.

3.2.1 Numerical results for loss probabilities

We analyze the effect of three parameters, namely asset correlation ρ, default probabilities pi,
and portfolio size m.

The effect of the asset correlation ρ. The value of the parameter ρ determines the
degree of dependency between different obligors: defaults are independent for ρ = 0; the
larger ρ, the more dependent are the defaults. For varying ρ, we consider the first- and second-
order approximation for portfolios of 200 obligors with identical annual default probabilities
p = 0.0112. This value corresponds to BB-rated firms, see McNeil, Frey, and Embrechts [7].

Figure 1 displays the probabilities of exceeding a given loss amount as a function of this loss
threshold level. For ρ = 0 the first-order approximation does not provide a reasonable estimate,
whereas the second-order approximation still gives acceptable results. The larger ρ, the better
are the first- and second-order approximations. The second-order approximation outperforms
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the first-order approximation in most cases. This effect is most significant for small exceedance
probabilities which correspond to larger threshold levels. The first-order approximation sys-
tematically understates the exceedance probabilities for large threshold levels, since it does not
account for large values in the conditional loss distributions.

The impact of the parameter ρ itself on the accuracy of the approximations can be un-
derstood as follows. It is apparent from equation (4) that ρ governs the degree of dispersion
of the random variable Qi := pi(Ψ) around its mean p̄i: for small ρ the distribution of Qi is
very concentrated around p̄i, for larger values of ρ the distribution becomes more dispersed.
This has implications for the overall unconditional loss distribution. If Qi is very concentrated,
almost all fluctuations of the loss distribution are due to fluctuations in the conditional loss
distributions. If Qi becomes more dispersed, the unconditional loss distribution is a mixture of
the conditional loss distributions. The fluctuations of the conditional loss distributions become
less important, while the influence of the factor distribution increases. This has the consequence
that the accuracy of the approximation of the conditional loss distributions becomes less im-
portant (as long as it is unbiased), if we are interested in an approximation of the unconditional
loss distribution.

The effect of p̄i. Again, we compare the algorithms for homogeneous portfolios of 200 oblig-
ors with identical exposures of ei = 1. However, this time we keep ρ = 0.054 fixed and vary
the value of the default probability. According to their rating classes, the individual default
probabilities are taken from McNeil, Frey and Embrechts [7].

Rating class p̄

BB 0.0112
B 0.049

CCC 0.188

The results are displayed in Figure 2. The second-order approximation is better than the first-
order approximation, in particular for low exceedance probabilities which correspond to large
threshold levels. The first-order probability improves when the individual default probabilities
are increased. It does still systematically understate the exceedance probabilities for large
threshold levels, but the effect becomes less pronounced.

The effect of portfolio size m. For larger portfolios the difference between the first-order
and the second-order approximation becomes less significant, although the second-order still
gives slightly better results for low exceedance probabilities which correspond to larger threshold
levels. This is illustrated in Figure 3 where we consider a portfolio of 2000 B-rated obligors.
Since both the first-order and the second-order approximation converge to the true distribution
as the size m of the portfolio, it is not surprising that their accuracy for a portfolio of 2000
obligors is extremely high.
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Inhomogeneous portfolios. All numerical examples so far analyze the performance of the
approximations for homogeneous portfolios. However, Figure 4 illustrates that the second-order
approximation is also an adequate choice for inhomogeneous portfolios.

3.3 Application to synthetic CDO tranches

In the current section we apply the first-order and second-order approximations to collateral-
ized debt obligations (CDO). Pricing tranches of CDOs requires a model for the cumulative
loss process of a credit portfolio. A classical benchmark model which has been discussed in the
literature is a Gaussian copula model which can equivalently be represented as a factor model;
see for instance Section 9.7 of McNeil, Frey and Embrechts [7]. Here we focus on this particu-
lar model and investigate the accuracy of price estimates if we use the first- and second-order
approximation to the portfolio loss distribution. Note however, that the second-order approxi-
mation for the conditional loss distribution can be applied to other factor copula models such as
the double-t copula of Hull and White [5] or the NIG copula proposed by Kalemanova, Schmidt
and Werner [6]. In the current context, the probability measure needs to be interpreted as a
pricing or risk-neutral measure. In order to emphasize this fact we denote it by Q instead of
P . All expectations are taken with respect to Q.

Theoretical background. A synthetic CDO tranche is based on a portfolio of m single-
name credit default swaps on m different reference entities. The number of names m is typically
equal to 125. The notional N of the CDO is the total exposure of the portfolio. A tranche
is characterized by a maturity date T and lower and upper attachment points 0 ≤ l ≤ u ≤ 1
which are given as fractions of the notional of the CDO. The cumulative loss up to time t of
the tranche [l, u] is L

[l,u]
t := (Lt − lN)+ − (Lt − uN)+. Default and premium payments can

conveniently be expressed in terms of the cumulative loss process.
At a time τ ≤ T of the default of a name in the portfolio a default payment of size

	L[l,u]
τ := L[l,u]

τ − L
[l,u]
τ−

is made. Assuming that the short term interest rate is (r(t))t≥0, the initial value of all default
payments up to time T is given by

V def
[l,u] = E

[∫ T

0
exp

(
−

∫ t

0
r(s)ds

)
dL

[l,u]
t

]
.

To keep our analysis simple we assume that the interest rate is deterministic. Partial integration
allows us to express the value of the default payments in terms of expectations of the loss
process,

V def
[l,u] = exp

(
−

∫ T

0
r(s)ds

)
E

(
L

[l,u]
T

)
+

∫ T

0
r(t) exp

(
−

∫ t

0
r(s)ds

)
E

(
L

[l,u]
t

)
dt.
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The premium payment leg consists of regular payments2 at fixed future dates

t1 < ... < tN = T.

Given a spread x and setting t0 = 0, the value of the regular premium payments equals

V prem
[l,u] (x) = x

N∑
n=1

(tn − tn−1) exp
(
−

∫ tn

0
r(s)ds

) [
(u − l)N − E

(
L

[l,u]
tn

)]
.

The fair tranche spread x[l,u] is then determined by equating the value of default and premium
payments,

V def
[l,u] = V prem

[l,u] (x[l,u]).

If we assume in addition that default can only occur at the dates t1 < ... < tN , then both sides
of the equation can be expressed as functions of

E
(
L

[l,u]
t

)
= E

(
(Lt − lN)+ − (Lt − uN)+

)
, t = t1, . . . , tN . (5)

In the context of the Gaussian copula model which is specified below these expectations can
be estimated on the basis of the first-order and second-order approximations.

The model. CDO pricing requires a dynamic model. However, as we have seen, the fair
spread x[l,u] can be calculated, if the finite number of expectations in display (5) can be evalu-
ated. This can be done, if the loss distributions Lt are specified for each date t = t1, . . . , tN .

To be more precise, denote by τi the default time of firm i. We assume that defaults are
independent conditional on a factor variable Ψ which is assumed to be standard normal. The
risk-neutral conditional default probabilities at times t are given by

Q(τi ≤ t|Ψ) = Φ
(

Φ−1(Fi(t)) +
√

ρΨ√
1 − ρ

)
,

where t 
→ Fi(t) = Q(τi ≤ t) is the distribution function of the default time τi. In a constant
intensity framework, we have Fi(t) = 1− e−λit where λi is the risk-neutral default intensity for
firm i. In this model, defaults can occur at any point in time, not only at the dates t = t1, ..., tN .
For simplicity, however, we approximate τi by tn whenever τi ∈ (tn−1, tn], n = 1, . . . , N . Since
the computation of CDO-spreads can then be reduced to evaluating the distribution of Lt for
t = t1, ..., tN , we are faced with the same problem as in the evaluation of loss distributions.

Numerical results. For our numerical experiments we choose the following parameters:
identical exposures ei = e = 1, a constant percentage loss given default δi = δ = 0.6, maturity
T = 5, identical default intensities λi = λ = 0.007, and r = 0. ρ represents the implied tranche

2In practice, there is moreover an accrued payment after default which is ignored for simplicity.
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correlation. Implied tranche correlation3 is chosen differently for every tranche to match market
data (observed CDO-spreads) from August 4, 2004, see Hull and White [5].

The following table summarizes our calculations of the CDO-spreads. The fair tranche
spread is given for each tranche and the corresponding value of implied tranche correlation ρ.
The calculations of the fair spread is based on the formulas discussed above and requires a
characterization of the loss distribution for every quarter. The true spread is obtained from
Monte Carlo simulation. We compare this value to results which we obtain from the first-order
and second-order approximation. Note, that the value for the equity tranche ([0, 3]) corresponds
to an upfront payment on the notional; the running spread is set to 5% by market convention.
Levels for all other tranches are with no fixed running spread.

tranche [0, 3] [3, 6] [6, 9] [9, 12] [12, 22]
ρ = 0.219 ρ = 0.042 ρ = 0.148 ρ = 0.223 ρ = 0.305

first-order 30.66% 0.79% 0.53% 0.36% 0.18%
second-order 29.38% 1.51% 0.66% 0.42% 0.20%
true value 28.38% 1.55% 0.68% 0.42% 0.20%

We find that for all tranches the second-order approximation is a significant improvement
compared to first-order approximation and even attains the true spread for the two most senior
tranches. However, while first-order approximation gives poor results for the [3, 6] and the
[6, 9] tranche, it performs better for the two most senior tranches. One can explain this by
the fact that a loss of more than 10% of the total exposure is only possible for large Ψ, i.e.
the losses in these tranches are driven by the factor risk and the approximation technique for
the conditional loss distribution does not have much influence so that the results for all three
methods are relatively close. This is in line with the findings from Section 3.2.1. Overall the
second-order approximation outperforms the Vasicek approximation in the CDO setting.

3.3.1 Analysis of Computational Effort and Theoretical Error

In this section we analyse the computational effort of first- and second-order approximation.
Furthermore, for the case of identically distributed losses we compare the actual numerical
difference between the true distribution and the results obtained by second-order approximation
with the theoretical error given by the Berry-Esseen inequality.

Computational Effort We compare the computing times for both first- and second-order
approximation. In our implementation we obtain the following values for the calculation of
P [L(m) > x] and of a CDO spread using the different methods:

computing time [seconds] first-order second-order
calculation of P [L(m) > x] 0.088 0.090
calculation of CDO spread 145 149

3Implied tranche correlation is a convenient way to quote prices. It is the credit risk analogue of implied
volatility in the equity world. Like the Black-Scholes model, the Gaussian copula model is merely a transforma-
tion tool which should, of course, not be interpreted as a realistic default model.
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It is not surprising that first-order approximation is faster than second-order approximation,
since the calculation of the first-order estimator is a bit simpler. However, if an efficient
implementation for the normal distribution is used, the computation times for both techniques
are really close. The time-consuming parts of the algorithm are integration over the underlying
factor Ψ and the calculation of the estimator for all times ti, i = 1, ..., N (in the CDO case).
Those steps have to be done for both algorithms. Note that in order to reach a similar level of
precision standard Monte Carlo simulation would require a multiple of the times above.

Theoretical Error In the case of iid losses the theoretical error of second-order approxima-
tion is given by A√

m
E

[
γ̄(ψ)
σ̄3(ψ)

]
, see Corollary 2.5. According to Remark 2.6 we choose A = 0.7655

and want to compare the theoretical error to the actual numerical difference between second-
order results and the true distribution. The calculation of the error is straightforward, we
display it in the first column of the following table. In the second column we list the maximum
difference between the second-order estimator G(m)(x) and the true distribution for various
portfolios.

theoretical error max difference (computation)
200 CCC obligors 0.1944735 0.0130957

200 B obligors 0.5132462 0.0432077
200 BB obligors 1.2299930 0.1441425

We notice that the actual deviation from the true value is much smaller than the theoretical
error. This stems from two reasons: first, the constant which we use in the Berry-Esseen theo-
rem is not optimal, as discussed in Remark 2.6; second, the application of Jensen’s inequality
gives a very rough estimate in the proof of Proposition 2.2.

4 Conclusion

We have introduced a second-order approximation for estimating the distribution of portfolio
losses. Compared to first-order approximation it provides a significant improvement in accuracy
while it is easy to implement and much faster when compared to standard Monte Carlo. It
is most useful for the estimation of small exceedance probabilities (< 10%) for portfolios with
less than 2000 obligors when asset correlations or default probabilities are low.
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A Appendix

All figures display tail probabilities, i.e. the probabilities of exceeding a given loss amount as
a function of this loss threshold level. The x-axis represents the loss threshold in percent of
total exposure; the y-axis represents the probability that the portfolio losses exceed the given
threshold level. This probability is displayed on a logarithmic scale for greater clarity.
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Figure 1: Impact of varying ρ.
For ρ = 0 the obligors are independent and the first-order approximation does not provide a reasonable
estimate, whereas the second-order approximation still gives acceptable results. The larger ρ, the better
are the first- and second-order approximations. The second-order approximation outperforms the first-
order approximation in most cases. This effect is most significant for small exceedance probabilities
(which correspond to larger threshold levels).
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Figure 2: Impact of varying p̄.
The second-order approximation is better than the first-order approximation, in particular for low ex-
ceedance probabilities (which correspond to large threshold levels). The first-order probability improves
when the individual default probabilities are increased.
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Figure 3: Impact of portfolio size.
For a portfolio of 2000 obligors with identical default probability of p̄ = 0.049 the results of both first-
and second-order approximation nearly reach the true distribution. The second-order still gives slightly
better results for low exceedance probabilities (which correspond to large threshold levels).
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Figure 4: Impact of heterogeneity.
For an inhomogeneous portfolio of 40 BB-rated obligors with identical exposures ei = 5, 60 B-rated
obligors with identical exposures ei = 2 and 100 CCC-rated obligors with identical exposures ei = 1
the second-order approximation performs better than the first-order approximation. The effect is most
significant for low exceedance probabilities (which correspond to large threshold levels).
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