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Abstract

The paper is concerned with the hedging of credit derivatives, in particular synthetic
CDO tranches, in a dynamic portfolio credit risk model with spread risk and default conta-
gion. The model is constructed and studied via Markov-chain techniques. We discuss the
immunization of a CDO tranche against spread- and event risk in the Markov-chain model
and compare the results with market-standard hedge ratios obtained in a Gauss copula
model. In the main part of the paper we derive model-based dynamic hedging strategies
and study their properties in numerical experiments.

Keywords: Dynamic hedging, portfolio credit risk, credit derivatives, incomplete markets,
default contagion.

1 Introduction

The risk management for books of synthetic CDO tranches has become an issue of high concern
for many investors on credit markets. Typically an investor has taken a protection-seller position
in one or several CDO tranches and tries to offset the ensuing risk by taking an opposite
(protection-buyer) position in the single-name credit default swaps (CDSs) or in the CDS-
index underlying the tranche. In practice, the size of the hedging positions is determined by
a pragmatic approach, akin to the use of duration in interest rate risk management: in order
to protect a CDO tranche against fluctuations in credit spreads the tranche is first priced via
the Gauss copula model, using observed CDS spreads and implied-correlation methodology
to determine the model parameters. Next one varies the swap spread of one of the underlying
names, name k, say, and defines the so-called spread delta of that name as the ratio of the change
in the market value of the CDO tranche and of a CDS on name k. The hedge ratios immunizing
the tranche against a change in the index spread are determined in a similar way. Sometimes
investors also seek to protect their position against defaults in the underlying reference pool
(hedging of jump-to-default risk). The hedge ratio immunizing a CDO tranche against the
default of firm k is known as jump-to-default ratio; it is computed as the ratio of the loss due to
the default of that name in the tranche and in the CDS on name k. In computing these losses it
is assumed that the credit spreads of the surviving firms are not affected by the default event.
Further details on market-standard hedging practice can for instance be found in Neugebauer
(2006).
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The market-standard approach has a number of problems: contagion effects (the fact that
credit spreads of surviving firms often jump in reaction to default events) are neglected, and there
is no theoretically consistent methodology supporting the definition of spread deltas and jump-
to-default ratios. These issues are clearly important also from a practical point of view. To begin
with, the current financial crisis underlines the relevance of default contagion on credit markets -
just think of the events surrounding the default of Lehman Brothers - and neglecting contagion
effects may lead to inappropriate hedge ratios. Moreover, it is well-known from markets for
other types of derivatives that ad-hoc hedging strategies frequently lead to unaccounted drift-
and time-decay effects (see for instance El Karoui, Jeanblanc-Picqué & Shreve (1998)). The
lack of a sound hedging methodology for portfolio credit derivatives is of course closely related
to the fact that the market-standard copula models are static, so that theoretically consistent
dynamic hedging strategies cannot be derived in copula models. Note that this deficiency is
inherent in the copula framework; it cannot be rectified by using more sophisticated copulas
than the Gauss copula.

In this paper we make an attempt to address these issues. In Section 2, we propose a dynamic
credit risk model which allows for the explicit modelling of default contagion and spread risk,
and which is therefore an ideal workbench for analyzing the hedging of CDO tranches. The
model belongs to the class of models with interacting default intensities such as Jarrow & Yu
(2001), Davis & Lo (2001), Giesecke & Weber (2006), Bielecki & Vidozzi (2008), or Herbertsson
(2008); it is closely related to the Markov-chain models within the so-called top-down approach
to credit portfolio modelling studied by Arnsdorf & Halperin (2007), Lopatin & Misirpashaev
(2007) or Cont & Minca (2008). In Section 3 we give a formal description of the cash-flow
dynamics of CDSs and CDOs. In Section 4 we compute jump-to-default ratios and spread
deltas for the Markov-chain model and compare the results with the market-standard values
from a Gauss copula model. It turns out that in many cases the hedge ratios differ substantially,
mainly because of contagion effects. In Section 5 we study the dynamic replication of CDO
tranches using martingale representation results for marked point processes. We find that
in the special case where credit spreads evolve deterministically between default times (pure
jump-to-default risk) the market is complete; the dynamic replication strategy coincides with
the jump-to-default ratio for the Markov-chain model. With spread risk and jump-to-default
risk on the other hand markets are typically incomplete, so that we resort to the concept
of risk-minimization introduced by Föllmer & Sondermann (1986). Numerical experiments
further illustrate certain properties of risk-minimizing hedging strategies. It is shown that risk-
minimizing hedging strategies interpolate between the hedging of spread- and jump-to-default
risk and that deviations from the popular assumption of a homogeneous portfolio can have
a sizeable impact on the form and on the performance of hedging strategies. At this point
it is worth mentioning that while in the present paper we concentrate on CDO tranches, the
theoretical results we obtain apply to many other credit derivatives such as index spread options
or basket swaps, often with merely notational changes.

The dynamic hedging of credit risky securities is studied among others by Bielecki, Jeanblanc
& Rutkowski (2004), Elouerkhaoui (2006), Bielecki, Jeanblanc & Rutkowski (2007) and Laurent,
Cousin & Fermanian (2008). The latter two papers are closely related to our contribution.
Laurent et al. (2008) study the hedging of CDO tranches via dynamic trading in CDS indices
in the Markov-chain model of Frey & Backhaus (2008). However, they concentrate on the case
without spread risk and hence on complete markets. Bielecki et al. (2007) derive interesting
theoretical results on the hedging of basket swaps in a generic dynamic credit portfolio model
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without spread risk. Since the hedging against random fluctuations of credit spreads is an
issue of high concern for practitioners, we believe that the inclusion of spread risk and the
application of incomplete-market methodology is an important extension over these papers.
Rosen & Saunders (2009) derive interesting results on static hedging strategies for CDOs.

2 The model

Notation. Fix some filtered probability space (Ω,F , (Ft), Q). The σ-field Ft represents the
information available to investors at time t; all processes introduced below will be (Ft)-adapted.
We consider a fixed portfolio of m firms, indexed by i ∈ {1, . . . ,m}. The (Ft)-stopping time τi
with values in (0,∞) represents the default time of firm i. The default state of the portfolio
is thus described by the default indicator process Y = (Yt,1, . . . , Yt,m)t≥0 where Yt,i = 1{τi≤t};
note that Yt ∈ {0, 1}m. For simplicity we assume that the that the exposure of each firm is
normalized to one. Denoting the percentage loss given default (LGD) of firm i at time t by the
predictable random variable δt,i ∈ (0, 1], the loss state Lt = (Lt,1, . . . , Lt,m) of the portfolio and
the aggregate portfolio loss Lt at time t are given by

Lt,i =
∫ t

0
δs,i dYs,i , 1 ≤ i ≤ m, and Lt =

m∑
i=1

Lt,i . (1)

Moreover, Yt can be recovered from Lt via Yt,i = 1{Lt,i>0}, 1 ≤ i ≤ m. Since we consider only
models without simultaneous defaults, we can define the ordered default times T0 < T1 < . . . <

Tm recursively by

T0 = 0 and Tn = min{τi : 1 ≤ i ≤ m, τi > Tn−1} , 1 ≤ n ≤ m.

By ξn ∈ {1, . . . ,m} we denote the identity of the firm defaulting at time Tn, i.e. ξn = i if
Tn = τi. We use the following notation for flipping the ith coordinate of a default state: given
y ∈ {0, 1}m we define yi ∈ {0, 1}m by yii := 1− yi and yij := yj , j ∈ {1, . . . ,m} \ {i} .

General setup. Following the literature we assume throughout the paper that the default-
free interest rate is deterministic and equal to r(t) ≥ 0; p0(t, T ) = e−

∫ T
t r(s)ds denotes the price

of the default-free zero-coupon bond with maturity T . Moreover, it is assumed that the measure
Q represents the risk-neutral measure used for pricing, so that the price of any FT -measurable
claim H is given by

Ht := p0(t, T )EQ(H | Ft) , t ≤ T . (2)

It is standard practice in the literature to construct portfolio credit risk models directly under
a risk-neutral measure Q (martingale modelling), because pricing and calibration is done under
Q anyhow. We come back to this issue in Remark 5.1.

Next we turn to modelling the Q-dynamics of the default indicator process. For this we
introduce an (Ft)-adapted factor process Ψ representing for instance the macroeconomic en-
vironment; the overall state of the economic system is described by the pair process ΓY :=
(Yt,Ψt)t≥0. For tractability reasons Ψ is modelled as a finite-state Markov chain with state-
space SΨ = {ψ1, . . . , ψK} and generator matrix qΨ =

(
qΨ(ψi, ψj)

)
1≤i,j≤K ; this can be viewed

as an approximation to the more standard jump diffusion dynamics for factor processes. We
assume that the default intensity of firm i is given by some nonnegative bounded function
λi(t,Ψt, Yt). In this way fluctuations in Ψ will lead to random fluctuations in credit spreads
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between default times (spread risk). Moreover, since λi depends on the current portfolio state
Yt, the default intensity of a firm may change if there is a change in the default state of the
portfolio, so that default contagion can be modelled explicitly. In addition, we assume the LGD
is state-dependent and of the form δt,k = δk

(
Yt−
)

for some function δ : {0, 1}m → (0, 1].
The mathematical properties of ΓY are summarized in the next assumption.

Assumption 2.1. The process ΓY is a Markov chain on (Ω,F , (Ft), Q) with state space SΓY :=
{0, 1}m × SΨ and transition intensities given by

qΓY

t

(
(y, ψ), (ỹ, ψ̃)

)
:=


qΨ(ψ, ψ̃), if ỹ = y and ψ̃ 6= ψ ,

(1− yi)λi(t, ψ, y), if ψ̃ = ψ and ỹ = yi for some 1 ≤ i ≤ m,

0, else.

(3)

We discuss some of the implications of Assumption 2.1. First, simultaneous defaults of several
firms are excluded by assumption. Second, the probability that firm i defaults in the small
time interval [t, t + h) corresponds to the probability that ΓYt = (Yt,Ψt) jumps to the new
state

(
Y i
t ,Ψt

)
in this time period. Such a transition occurs with rate λi(t,Ψt, Yt), so that this

quantity is in fact the default intensity of firm i at time t; a formal argument is given in Frey &
Backhaus (2008). Third, the form of the transition intensities in (3) implies that the process Ψ
is individually Markov with generator matrix qΨ and that there are no joint jumps of Y and Ψ.
From a mathematical point of view this assumption could be relaxed without major difficulties;
it reflects the fact that we interpret Ψ as an exogenous factor process whose dynamics are not
affected by defaults in the portfolio.

For further use we note that due to the assumption of a state-dependent LGD, under As-
sumption 2.1 the pair process (Ψ, L) is Markov as well; the generator of ΓL is given by

LΓLf(ψ, l) =
∑
ψ̃ 6=ψ

qΨ(ψ, ψ̃)
(
f(ψ̃, l)− f(ψ, l)

)
+

m∑
i=1

1{li=0}λi(ψ, y)
{
f
(
ψ, (l1, . . . , δi(y), . . . , lm)

)
− f(ψ, l)

}
,

(4)

where of course y = y(l) =
(
1{l1>0}, . . . , 1{lm>0}

)
.

Homogeneous-portfolio models. Homogeneous models with exchangeable loss processes
are an important special case of Assumption 2.1. Assuming exchangeable loss processes is
admittedly somewhat unrealistic for many credit portfolios such as the pool of names underlying
the i-Traxx index. However, homogeneity drastically simplifies the numerical treatment of the
model and is therefore frequently assumed in the literature. As discussed in Frey & Backhaus
(2008), with exchangeable loss processes default intensities and loss given default take the form

λi(t, ψ, y) = h
(
t, ψ,

m∑
i=1

yi
)

and δi(y) = δ
( m∑
i=1

yi
)
, (5)

for functions h : [0,∞) × SΨ × {0, . . . ,m} → (0,∞) and δ : {0, . . . ,m − 1} → (0, 1]. It is well
known that the introduction of an increasing LGD-function improves the fit of CDO-pricing
models to observed CDO spreads, see for instance Frey & Backhaus (2008) or Andersen &
Sidenius (2004). Concerning the modelling of default intensities, we mostly use the following
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parametric form for the function h, labelled convex counterparty risk model (Frey & Backhaus
(2008)),

h(t, ψ, n) = λ0ψ + λ1
λ2

(
exp

(
λ2

[n−µ(t)]+

m

)
− 1
)
, λ0 > 0, λ1, λ2 ≥ 0 . (6)

Here µ(t) is some deterministic threshold measuring the expected number of defaults up to time
t, typically obtained by calibration to an observed CDS index spread. The first summand of
the intensity function, λ0ψ, gives the linear dependency on the factor process; the parameter λ0

mainly determines the credit quality of firms in the portfolio. The second term models contagion
effects: for n > µ(t) the default intensity h(t, ψ, n) is larger than λ0ψ. The parameter λ1 gives
the slope of function l 7→ h(t, ψ, n) for l ↓ µ(t), so that λ1 models the strength of the default
contagion for a ‘normal’ number of defaults. Note finally that h is convex in n with the degree
of convexity being controlled by λ2. Convexity of h implies that a large number of defaults leads
to very high values of default intensities, thus triggering a cascade of further defaults. We stress
at this point that other parametric forms of h(·) such as the model proposed by Herbertsson
(2008) are well within the reach of our analysis.

Denote by Mt :=
∑m

i=1 Yt,i the number of defaulted firms by time t. With default intensities
of the form (5), the process ΓM = (Mt,Ψt)t≥0 is a Markov chain with state space SΓM :=
{0, . . . ,m} × SΨ; see Lemma 2.4 of Frey & Backhaus (2008). Moreover, in the homogeneous
case we have Lt =

∑Mt
i=1 δ(i − 1) so that there is a one-to-one relation between Mt and the

aggregate portfolio loss Lt.2 The Markov chain ΓM thus provides a self-consistent model for the
dynamics L, and the homogeneous model can be embedded in the so-called top-down-approach
to credit portfolio modelling. In this approach the the aggregate loss L is the modelling primitive
and information related to credit quality and default state of individual names is ignored; see
for instance Giesecke & Goldberg (2007), Schönbucher (2006), Arnsdorf & Halperin (2007),
Lopatin & Misirpashaev (2007) or Cont & Minca (2008). In fact, from a mathematical viewpoint
the homogeneous version of our model is essentially equivalent to the Markov-chain models
considered in the latter three papers.

Numerical treatment and calibration. Semi-analytic and numeric methods for comput-
ing prices of credit derivatives in Markov-chain models are discussed among others in Frey &
Backhaus (2008) and in Herbertsson (2008). It turns out that for relatively homogeneous port-
folios analytic approaches based on the Kolmogorov equations or on matrix exponentials work
quite well. For large heterogeneous portfolios on the other hand one has to resort to simulation
approaches as in (Crépey & Carmona 2008); this is due to the fact that

∣∣SΓY
∣∣ = 2m ·

∣∣SΨ
∣∣

which is prohibitively large unless m is a small number. This curse of dimensionality plagues
most dynamic credit portfolio models with default contagion and is one of the reasons for the
popularity of top-down approaches.

In principle a heterogeneous model should be calibrated to single-name CDS spreads and -
if available - to observed spreads of portfolio products such as CDOs or basket swaps. While
heterogeneous models are typically sufficiently rich in parameters for such a calibration exercise,
the ensuing computations are very challenging from a numerical point of view, unless the port-
folio is small or has a homogeneous-group structure as in the example considered in Section 5.4.
Homogeneous models on the other hand imply identical CDS spreads for all names in the port-
folio by definition, so that these models can be calibrated only to observed index- and tranche

2Note that in the heterogeneous case on the other hand the current loss state Lt cannot be inferred from the

current default state Yt; nonetheless with state-dependent recovery rates L is of course adapted to the default

history (FY
t ).
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spreads. This is in line with the modelling philosophy of the top-down approach where informa-
tion related to individual firms is ignored. Within the top-down approach various sophisticated
calibration methodologies have been developed (see in particular Arnsdorf & Halperin (2007)
and Cont & Minca (2008)); these techniques can be applied to to the homogeneous-portfolio
version of our model in a straightforward way.

The natural area of application of heterogeneous models is thus the hedging of basket swaps
where the underlying portfolio is small and where one uses single name CDSs as hedging in-
strument. For applications to CDO tranches on the other hand one has to resort to fairly
homogeneous Markov-chain models; in that case the natural hedging instrument is the index on
the underlying portfolio. In the subsequent analysis we nevertheless derive hedging strategies
for the general model introduced in Assumption 2.1, using single-name CDSs as hedging instru-
ment. Specializing these results to the homogeneous case we then obtain the hedging strategy
in the corresponding index; this is also the hedging strategy in a top-down model where the
portfolio-loss dynamics are given by the Markov-chain ΓM . Working in the inhomogeneous
setup permits us in particular to study the impact of portfolio-heterogeneity on the form and
the performance of the model-based hedge ratios (see Section 5.4.) This sheds some light on
the robustness of our results with respect to the somewhat unrealistic homogeneous-portfolio
assumption and illustrates certain limitations of the top-down approach for hedging purposes.
Moreover, in this way the hedging of basket credit derivatives is included in our theoretical
results.

Example 2.2. In the numerical experiments we mostly work with the following parametrization
of the homogeneous-portfolio model: the riskless interest rate is equal to r = 0; default intensities
are given by the convex counterparty risk model (6); the LGD was taken to be δ ≡ 0.6. We have
chosen four different grids of different coarseness for SΨ, generating different levels of spread-
volatility: SΨ

0 corresponds to a constant factor process, SΨ
1 corresponds a low spread volatility,

SΨ
2 to a medium volatility and SΨ

3 to a relatively high volatility of credit spreads. Throughout
we take

∣∣SΨ
i

∣∣ = 11 and Ψ0 = 0.005; moreover, it is assumed that Ψ can only jump to neighboring
states with transition intensity νΨ = 5.0, i.e. the generator matrix qΨ of Ψ is tridiagonal with
off-diagonal elements equal to νΨ. In order to obtain reasonable parameter values the model
was calibrated to iTraxx tranche spreads from January 2006; see Table 8 in the appendix for
the exact values. These spreads were representative for the iTraxx before the credit crisis3;
during the credit crisis iTraxx spreads have changed dramatically. Unfortunately we were not
able to repeat the entire numerical analysis of the paper with new data. However, in Section 4
we briefly indicate how the change in market spreads affects the hedge ratios generated by the
Markov chain model.

The sets SΨ
0 , . . . , S

Ψ
3 and the corresponding parameters of the convex counterparty risk model

(6) are given in Table 1. Note that with increasing spread volatility the contagion parameter
λ1 is reduced in the calibration procedure, as a large part of the dependence between defaults
is generated by fluctuations in the common factor Ψ.

3 Credit Derivatives

In this section we discuss the payments, the market value and the gains process of CDSs and
CDOs; this serves to set up the notation and is moreover a necessary prerequisite for studying

3The first version of the paper was written early in 2007
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SΨ λ0 λ1 λ2

SΨ
0 = {0.0050, 0.0050, . . . , 0.0050, . . . , 0.0050, 0.0050} 0.85910 0.18803 22.125

SΨ
1 = {0.0045, 0.0046, . . . , 0.0050, . . . , 0, 0054, 0.0055} 0.85827 0.18789 22.126
SΨ

2 = {0.0025, 0.0030, . . . , 0.0050, . . . , 0.0070, 0.0075} 0.87052 0.16363 24.372
SΨ

3 = {0.0005, 0.0014, . . . , 0.0050, . . . , 0.0086, 0.0095} 0.89696 0.11306 30.538

Table 1: State space of Ψ and corresponding model parameters.

the dynamic hedging of portfolio credit derivatives. The gains process of a security/position
is the sum of the current market value and of the cumulative cash-flows associated with the
position (spread-, interest- and default payments). Since we are mainly interested in the case
where an investor tries to hedge a protection-seller position in a CDO tranche by taking a
protection-buyer position in the CDSs or in the CDS index underlying the transaction, we
model the cash flows of the CDO tranche from the viewpoint of a protection seller and the cash
flows of CDSs from the viewpoint of a protection buyer.

In the following we denote by T the maturity of all credit products considered. The spread
payments of all contracts are scheduled at N payment dates 0 < z1 < · · · < zN = T . We define
z0 := 0, ∆zn := zn − zn−1, and, for t ≥ 0,

nzt :=
∣∣{i = 1, . . . , N : zi ≤ t}

∣∣; (7)

note that nzt is the number of the spread payment dates up to time t. The LGD δt,k = δk(Yt−)
is assumed to be state dependent.

Single-name CDSs. The market value V CDS
t,k of a protection-buyer position in a CDS on firm

k with fixed spread sk is given by the difference between the value of the default payment and
the value of the future premium payments (regular and accrued). Hence we get

V CDS
t,k =1{τk>t}E

Q

(
δτk,k p0(t, τk)1{τk≤T}

− sk
N∑

n=nzt+1

(
(∆zn)p0(t, zn)1{τk>zn} + (τk − zn−1)p0(t, τk)1{zn−1<τk≤zn}

)∣∣∣Ft). (8)

In the Markov-chain model the Markov-property of ΓY and the assumption of a state-dependent
LGD imply that V CDS

t,k = vCDS
k (t, Yt,Ψt) for some function ṽCDS

k : [0, T ] × {0, 1}m × SΨ → R.
Note that at a spread payment date zn < τk there is a jump of size sk∆zn > 0 in the market
value and that V CDS

t,k ≡ 0 for t ≥ τk. The gains process GCDS
k has dynamics

dGCDS
t,k = −sk{(∆znzt )(1− Yt,k)} dn

z
t +

(
δt,k − sk(t− znzt )

)
dYt,k + dV CDS

t,k , t ≤ T . (9)

For convenience premium payments are sometimes modelled by an absolutely-continuous pay-
ment stream with rate sk. In that case (9) simplifies to

dGCDS
t,k = −sk(1− Yt,k)dt+ δt,kdYt,k + dV CDS

t,k , t ≤ T. (10)
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CDS indices. The payoff of a CDS-index with fixed spread sInd on the reference pool equals
the payoff of a portfolio consisting of one single-name CDS per name with identical spread
sk = sInd, k = 1, . . . ,m. Define the remaining notional of the index at time t as N Ind

t :=
m−Mt (the number of surviving firms at time t). The cash-flow stream of the default-payment
leg is given by the cumulative portfolio loss L; the future regular premium payments can be
written in the form sInd

∑N
n=nzt+1(∆zn)N Ind

zn and the accrued premium payments are given by
sInd

∑m
k=1(Tk − zn−1)1{zn−1<Tk≤zn} . The market-value and the gains process can be computed

as in (8), (9) or (10).

Remark 3.1. It will turn out that in a homogeneous portfolio the hedge ratios of a CDO
tranche with respect to the individual CDSs are identical, θt,k ≡ θt for all k. In that case a
hedging strategy can be implemented by taking a protection-buyer position of size θt directly in
the CDS index, which is much easier than running a dynamic portfolio strategy in, say, m = 125
single-name CDSs. Obviously θt is also the hedging strategy in a top-down model where the
portfolio-loss dynamics are given by the Markov-chain ΓM .

CDO Tranches. A synthetic CDO tranche on the reference portfolio is characterized by fixed
lower and upper attachment points 0 ≤ l < u ≤ 1. The tranche consists of a default payment
leg and a premium payment leg. Define the cumulative tranche loss L[l,u]

t by

L
[l,u]
t := (Lt −ml)+ − (Lt −mu)+ , (11)

i.e. the part of Lt falling in the layer [l, u], and denote the remaining notional of the tranche by
N

[l,u]
t := m(u− l)− L[l,u]

t . At a default time Tk ≤ T there is a default payment of size

∆L[l,u]
Tk

:= L
[l,u]
Tk
− L[l,u]

Tk− .

The premium payment leg consists of regular and accrued premium payments. The regular
premium payment at date zn is given by s[l,u](∆zn)N [l,u]

t , s[l,u] the annualized tranche spread.
The accrued payment at a default time τ ∈ (zn, zn+1] equals s[l,u](τ − zn)∆L[l,u]

τ . For the equity
tranche there is moreover an upfront payment at t = 0, quoted in the form supfN

[l,u]
0 , supf the

so-called upfront spread. The market value of a protection-seller position equals

V
[l,u]
t =EQ

(
−
∫ T

t
p0(t, s)dL[l,u]

s + s[l,u]
N∑

n=nzt+1

{
p0(t, zn)(∆zn)N [l,u]

zn

+
m∑
k=1

p0(t, Tk)(Tk − zn−1)∆L[l,u]
Tk

1{zn−1<Tk≤zn}

}
| Ft

)
.

Note that by the Markovianity of ΓL, in the Markov-chain model V [l,u] = v[l,u](t, Lt,Ψt) for
some function v[l,u] : [0, T ]× (0, 1]m × SΨ → R. The gains process G[l,u]

t has dynamics

dG
[l,u]
t = s[l,u](∆znzt )N

[l,u]
t dnzt + s[l,u](t− znzt ) dL

[l,u]
t − dL[l,u]

t + dV
[l,u]
t . (12)

If spread payments are modeled as an absolutely continuous payment stream, (12) becomes

dG
[l,u]
t = s[l,u]N

[l,u]
t dt− dL[l,u]

t + dV
[l,u]
t . (13)
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Market values at a default time. At a default time Tk the market value of a CDO tranche
changes for a number of reasons: first, the increase in Lt at Tk makes it more likely that a
tranche with ml > Lt will be hit in the future; second, if ∆L[l,u]

Tk
> 0, there is a change in the

remaining nominal of the tranche affecting the size of future premium payments. Moreover,
there may be an indirect contagion effect: with default contagion, the default event affects the
default intensities of the surviving firms and thereby the market value of the tranche. This
contagion effect also has an impact on the market value of a non-defaulted CDS. Table 2 shows
that the indirect contagion effect can be quite substantial. In this table we compare the change
in market value of a non-defaulted CDS and of various CDO tranches at a default time a) in a
Gauss copula model and b) in the homogeneous Markov-chain model described in Example 2.2.
In case a) we follow standard market practice and assume that the default event has no impact
on the default probability of surviving firms. It turns out that the change in market value is
much larger for the Markov-chain model with contagion effects than for the Gauss copula model.
Moreover, the change in the market value decreases with increasing spread-volatility and hence
decreasing interaction-parameter λ1. It will turn out below that this has a substantial impact
on the form of the ensuing hedge ratios.

Product CDS [0,3] [3,6] [6,9] [9,12] [12,22]

Gauss Copula 0.0000 -0.001 -0.103 -0.014 -0.0049 -0.0062
Markov chain, SΨ

0 0.0179 -0.369 -0.388 -0.163 -0.1101 -0.3018
Markov chain, SΨ

3 0.0114 -0.233 -0.252 -0.091 -0.0645 -0.1939

Table 2: Change in market value ∆V CDS
t and ∆V [l,u]

t at t = T1. Model parameters are given in
Example 2.2. The opposite signs in ∆V CDS

t and ∆V [l,u]
t are due to the fact that we consider a protection-

buyer position in the CDS and a protection-seller position in the CDO tranches.

4 Sensitivity-based hedging with default contagion

In this section we consider the sensitivity-based hedging strategies used in practice (see for
instance Neugebauer (2006)) in the context of the Markov-chain model with spread risk and
default contagion.

Immunization against spread risk. Market practitioners frequently immunize a protection-
seller position in a CDO tranche against fluctuations in the spread of the underlying CDS index.
Following market practice (Neugebauer (2006)), we define the corresponding hedge ratio - the
so-called index-spread delta of a CDO tranche - at a given spread-level s as

∆spread
t := −

V
[l,u]
t |sInd=s+1bp − V

[l,u]
t |sInd=s

V Ind
t |sInd=s+1bp − V Ind

t |sInd=s

; (14)

spread deltas with respect to individual names are defined analogously. In the market stan-
dard base-correlation approach based on the Gauss copula model V [l,u]

t |sInd=s+1bp is computed
by calibrating the model to the index spread s + 1bp, leaving the implied-correlation struc-
ture unchanged. In the same spirit, in the homogeneous Markov-chain model of Example 2.2
V

[l,u]
t |sInd=s+1bp is computed by calibrating the level-parameter λ0 to the spread sInd = s+ 1bp,
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leaving all other parameters unchanged. Numerical values for the Markov-chain model of Ex-
ample 2.2 and for the homogeneous Gauss copula model with tranche correlations and default
probabilities calibrated to the same iTraxx data are given in Table 3, row 1 and 3. It turns
out that in this example the Gauss copula model leads to larger values for ∆spread than the
Markov-chain model, in particular for mezzanine tranches.

Immunization against jump-to-default risk. The jump-to-default ratio of a CDO tranche
with respect to name i, denoted Jdef

t,i , gives the number of CDSs on firm i one has to hold at time
t in order to immunize the portfolio against the change-in-value occurring in the hypothetical
scenario where name i defaults at time t. As just explained, in the presence of default contagion
the default of firm i impacts the market value V CDS

t,j , j 6= i. Assume for simplicity that T1 > t

(no defaults in the portfolio up to time t). In that case the vector (Jdef
t,1 , . . . , J

def
t,m) thus has to

solve the following system of m linear equations, indexed with i ∈ {1, . . . ,m}

0 != ∆G[l,u]
t |τi=t +

m∑
k=1

Jdef
t,k ∆GCDS

t,k |τi=t

= ∆G[l,u]
t |τi=t + Jdef

t,i

(
δt,i − sCDS

i (t− znzt )− V
CDS
t,i

)
+
∑
k 6=i

Jdef
t,k ∆V CDS

t,k |τi=t . (15)

If firm k has already defaulted one has Jdef
t,k = 0 and the kth equation drops from the system.

Note that by (12), ∆G[l,u]
t |τi=t consists of the change in the market value

∆V [l,u]|τi=t = v[l,u]
(
t, (Lt−,1, . . . , δi(Yt−), . . . , Lt−,m),Ψt

)
− v[l,u]

(
t, Lt−,Ψt

)
,

and of the default payment and the accrued premium payment triggered by the default event.
In a homogeneous portfolio Jdef

t is identical for all firms; the system (15) reduces to

Jdef
t = − ∆G[l,u]

t |τi=t
(m−Mt− − 1)∆V CDS

t |τi=t − V CDS
t + δ(Mt−)− sCDS(t− znzt )

= −∆G[l,u]
t |τi=t

∆GInd
t |τi=t

, (16)

and the portfolio can be immunized by taking a position of size Jdef
t directly in the underlying

CDS index, see also Remark 3.1.

Numerical results. Next we compare the jump-to-default ratio in the Markov-chain model
of Example 2.2 to the jump-to-default ratio in a homogeneous Gauss copula model with tranche
correlations and default probabilities calibrated to the same iTraxx data. In the copula model
Jdef
t,i is simply given by the ratio −∆G

[l,u]
t |τi=t/∆GCDS

t,i |τi=t where ∆G[l,u]
t |τi=t is computed under the

assumption that the fair swap spread of all non-defaulted firms remains unchanged. Numerical
values for both models are given in Table 3, row 2 and 4. We see that there are sizeable
differences between the jump-to-default ratios for the two models. These differences can be
explained by the indirect contagion effect discussed in the previous section, which leads to a
substantially higher change in the market value of CDS and CDO contracts for the Markov-chain
model than for the copula model.

It is shown in Section 5.2 below that in the Markov-chain model the jump-to-default ratio
is a perfect dynamic replication strategy, if the factor process is deterministic. Hence it is of
interest to compare this model-based replicating strategy (row 4 of Table 3) with the market
standard hedge, namely ∆spread computed in the Gauss copula framework (row 1 of Table 3).
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It turns out that for equity and mezzanine tranches the market-standard hedge ratio is larger
than Jdef whereas for the senior tranche this inequality is reversed. Qualitatively similar results
are given in Laurent et al. (2008), Table 11.

Finally we also show numerical values for ∆spread and Jdef in the Markov chain model
calibrated to spread data from 2009. We see that there are sizeable numerical differences to
the results obtained before the credit crisis. In particular, Jdef is now much higher for senior
tranches because of the strong contagion effect necessary to explain the market quotes observed
in 2009.

Tranche [0,3] [3,6] [6,9] [9,12] [12,22]

∆spread, Gauss Copula 0.564 0.295 0.082 0.042 0.081
Jdef , Gauss Copula 1.002 0.171 0.023 0.008 0.010
∆spread, Markov-chain model 0.535 0.141 0.044 0.027 0.070
Jdef , Markov-chain model 0.344 0.138 0.058 0.039 0.107
∆spread, Markov-chain model, spread data from 2009 0.046 0.208 0.14 0.079 0.074
Jdef , Markov-chain model, spread data from 2009 1.545 0.698 0.285 0.109 0.164

Table 3: Comparison of jump-to-default ratio Jdef and of the spread-delta ∆spread in the Markov-chain
model and in the Gauss copula model.

5 Dynamic risk-minimizing hedging strategies

5.1 Risk-minimizing hedging strategies

In this section we study the hedging of credit derivatives for the Markov model introduced in
Assumption 2.1, using model-based dynamic hedging strategies. We use one CDS per underlying
name in the portfolio as hedging instrument, but the methodology obviously applies to other
sets of hedging instruments as well. With jump-to-default risk and spread risk, that is for
stochastic Ψ, we expect the market to be incomplete, so that a typical CDO tranche cannot be
replicated perfectly by dynamic trading in one CDS per underlying name.4 In order to deal with
this problem we use the concept of risk minimization as introduced by Föllmer & Sondermann
(1986). Denote by G̃[l,u]

t and by G̃CDS
t,k , 1 ≤ k ≤ m, the discounted gains processes of the CDO

tranche and of the CDSs under consideration. A dynamic hedging strategy is a pair (θ0,θ),
where θ = (θt,1, . . . , θt,m)0≤t≤T is an (Ft)-predictable process so that θt,k gives the number of
CDS on name k in the portfolio at time t, and where the (Ft)-adapted process θ0 describes the
cash position of the strategy. For any dynamic hedging strategy we have a representation of the
form

0 = G̃
[l,u]
t − G̃[l,u]

0 +
m∑
k=1

∫ t

0
θs,kdG̃

CDS
s,k +G⊥t , 0 ≤ t ≤ T. (17)

Here the process G⊥ - which obviously depends on the hedging strategy θ - represents the
hedging error of the strategy. According to Föllmer & Sondermann (1986), a strategy θ is
called risk-minimizing if the the so-called remaining risk (the conditional variance of the hedging

4Note that in certain cases market completeness can be restored if more than one hedging instrument per

name is used; this depends on the form of the hedging instruments and on details of the dynamics of Ψ.
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error), given by
EQ
(

(G⊥T (θ)−G⊥t (θ))2
∣∣∣ Ft) , (18)

is minimized over all suitable strategies θ simultaneously for all 0 ≤ t ≤ T . It is well-known,
that a risk-minimizing strategy exists and that it can be computed from the Kunita-Watanabe
decomposition of the Q-martingale G̃[l,u] with respect to the Q-martingales G̃CDS

k , 1 ≤ k ≤ m;
see Föllmer & Sondermann (1986) for details. In particular, the process G⊥ must be orthogonal
to the hedging instruments, i.e. 〈G⊥, G̃CDS

k 〉t ≡ 0, k = 1, . . . ,m, . Using this result we can
derive from (17) the system of equations

d〈G̃[l,u], G̃CDS
j 〉t = −

m∑
k=1

θt,kd〈G̃CDS
k , G̃CDS

j 〉t, j = 1, . . . ,m, (19)

from which the processes θ1, . . . , θm can be determined. The cash-position θ0 of the strategy is
finally determined by the requirement that the discounted market value of the overall portfolio
has to be equal to zero,

θt,0 +
m∑
k=1

θt,kṼ
CDS
t,k + Ṽ

[l,u]
t

!= 0, 0 ≤ t ≤ T .

Note that the risk-minimizing strategy θ is in general not selffinancing; the cumulative injections
or withdrawals of funds up to time t are given by G⊥t (θ)−G⊥0 (θ), and a tranche can be replicated
perfectly if and only if G⊥t (θ) is constant.

In the remainder of the paper we show how to compute the risk-minimizing strategy θ and
study some of its properties. We begin with the case where Ψ is deterministic and show that in
that case the market is complete. In Section 5.3 we discuss the general case where Ψ follows a
non-deterministic Markov chain.

Remark 5.1. Risk-minimization in the sense of Föllmer & Sondermann (1986) is well-suited
for applications in credit risk, as the Kunita-Watanabe decomposition (19) is relatively easy to
compute and as it suffices to know the risk-neutral dynamics of credit derivative prices. From a
methodological point of view it might however be more natural to minimize the remaining risk
(18) under the historical probability measure. This would lead to alternative quadratic-hedging
approaches such as local risk-minimization (Föllmer & Schweizer (1991) or Colwell, El-Hassan
& Kwon (2007)) or variance-minimizing hedging (Schweizer 2001). However, with discontinuous
security prices - which arise naturally in the presence of jump-to-default risk - the computation
of the corresponding strategies becomes a very challenging problem. Moreover, it is quite hard
to determine the dynamics of CDS and CDO spreads under the historical measure as this
requires the estimation of historical default intensities. For these reasons we prefer the simpler
risk-minimization approach. Note also that in the complete-market case of Subsection 5.2 this
issue does not arise, as the perfect-replication property is invariant with respect to an equivalent
change of probability measures.

5.2 Constant factor process

If Ψ is constant, Ψt ≡ ψ, the gains process of all securities involved are adapted to the default
history (FYt ), so that (FYt ) can be taken as the underlying filtration. Note that the assump-
tion of state-dependent recovery rates enters crucially at this point. Moreover, the number
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of driving risk factors (the default indicator processes Y1, . . . , Ym) is equal to the number of
hedging instruments, and we expect the market to be complete. In this case there is a direct
way for computing the hedging strategy θ which is not based on the system (19). Define the
compensated default indicator processes by

Nt,i = Yt,i −
∫ τi∧t

0
λi(s, ψ, Ys)ds , 1 ≤ i ≤ m. (20)

Since there are no joint defaults in our model, the default history (FYt ) is generated by the
marked point process (Tn, ξn)1≤n≤m with mark space {1, . . . ,m}. By standard results from
stochastic calculus - see for instance Brémaud (1981), Chapter VIII, Theorem T8 - every (FYt )-
martingale can therefore be represented as stochastic integral with respect to the m martingales
Nt,1, . . . , Nt,m, i.e. there are predictable processes φ[l,u]

t,1 , . . . , φ
[l,u]
t,m and φkt,1, . . . , φ

k
t,m, 1 ≤ k ≤ m,

such that

dG̃
[l,u]
t =

m∑
i=1

φ
[l,u]
t,i dNt,i, dG̃CDS

t,k =
m∑
i=1

φkt,idNt,i, k = 1, . . . ,m . (21)

In order to determine the hedging strategy θ we argue as follows: From (17) we get, as G⊥ ≡ 0,

dG̃
[l,u]
t = −

m∑
k=1

θt,k dG̃
CDS
t,k = −

m∑
k=1

θt,k d
( m∑
i=1

φkt,idNt,i

)
= −

m∑
i=1

( m∑
k=1

θt,kφ
k
t,i

)
dNt,i . (22)

Denote by At := {i = 1, . . . ,m : Yt−,i = 0} the set of non-defaulted firms immediately prior to
time t. Comparing (22) with the first equation in (21), it is immediately seen that a hedging
strategy θ exists if and only if the following system of equations has a solution:∑

k∈At

θt,kφ
k
t,i = −φ[l,u]

t,i , i ∈ At , 0 ≤ t ≤ T ; (23)

for k /∈ At we let θt,k = 0. Note that (23) is a linear system of |At| equations for |At| unknowns
with coefficient matrix Φt :=

(
φjt,i
)
i,j∈At .

It remains to determine the integrands φkt,i and φ
[l,u]
t,i in the martingale representation (21).

If (21) holds, we have ∆G̃[l,u]
t =

∑m
i=1 φ

[l,u]
t,i ∆Yt,i and ∆G̃CDS

t,k =
∑m

i=1 φ
k
t,i∆Yt,i. Hence

φ
[l,u]
t,i = (1− Yt,i)∆G̃[l,u]

t |τi=t and φkt,i = (1− Yt,i)∆G̃CDS
t,k |τi=t. (24)

Summing up, we have the following result.

Proposition 5.2. If the matrix Φt has full rank for all t ∈ [0, T ], the gains process G[l,u]

(and in fact every FYT -measurable claim H) can be replicated by dynamic trading in the savings
account and the m CDSs. The trading strategy θ is given as solution to the linear system
(23) with coefficients given in (24); the cash-position θ0 is determined by the equation θt,0 +∑m

k=1 θt,kṼ
CDS
t,k + Ṽ

[l,u]
t = 0.

If we plug the expressions (24) into the linear system (23), it is immediately seen that
this system reduces to the system (15) for the jump-to-default ratio (Jdef) in the Markov-
chain model. Hence in the absence of spread risk the dynamic hedging strategy is given by
θ = (Jdef

t,1 , . . . , J
def
t,m)0≤t≤T . This is quite intuitive as in that case the portfolio is only exposed to

default risk.
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In a homogeneous portfolio we obviously have θt,j ≡ θt, ∀j = 1, . . .m. Moreover, φkt,j =

G̃CDS
t,1 |τ2=t − G̃CDS

t−,1 , ∀k 6= j, φkt,k = G̃CDS
t,1 |τ1=t− G̃CDS

t−,1 and φ[l,u]
t,j = G̃

[l,u]
t |τ1=t− G̃[l,u]

t− , j = 1, . . . ,m,
and we obtain, assuming t < T1 for notational simplicity,

θt = − ∆G̃[l,u]
t |τ1=t

(m− 1)(G̃CDS
t,1 |τ2=t − G̃CDS

t−,1 ) + (G̃CDS
t,1 |τ1=t − G̃CDS

t−,1 )
. (25)

Note that the discount factor cancels, so that (25) is in fact equivalent to (16). The denominator
in (25) can alternatively be viewed as change in the gains process of the CDS index, and we
obtain the simple formula θt = ∆G̃[l,u]

t |τ1=t

/
∆G̃Ind

t |τ1=t, see also Laurent et al. (2008).

Remark 5.3 (The full-rank condition). Conditions ensuring that the full rank condition on Φt

holds (and hence market completeness) are discussed in Frey & Backhaus (2008). In particular,
it is shown that Φt is complete if the contagion effects are not too strong or if the time to
maturity T − t is not too large. A risk-minimizing strategy can of course be computed even if
Φt does not have full rank. The necessary computations are a special case of the arguments
used in Section 5.3 below, and we omit the details.

5.3 Random factor process

If Ψ is random, the gains processes of all securities involved are adapted to the filtration FYt ∨FΨ
t ,

and we may work under that filtration. With random Ψ we expect the market to be incomplete,
and the derivation of the risk-minimizing hedging strategy is based on the system (19). The
main task is to compute the quadratic covariations 〈G̃[l,u], G̃CDS

k 〉t and 〈G̃CDS
j , G̃CDS

k 〉t. This is
done in two steps.

Step 1: martingale representation. In this step we represent all gains processes as stochas-
tic integrals with respect to the compensated jump measure of the Markov chain ΓY . Recall
that SΓY = {0, 1}m × SΨ, and denote by

EΓY := {(γ1, γ2) ∈ SΓY × SΓY : γ1 6= γ2}

the set of possible transitions of ΓY ; elements of EΓY are written in the form e = (γ1, γ2). The
counting measure µΓY associated with the Markov-chain ΓY is a measure on [0,∞)× EΓY ; see
Section VIII.1 of Brémaud (1981) for the general definition. According to standard measure
theory, µΓY is uniquely defined by its values on sets of the form [0, t]×{(γ1, γ2)}, (γ1, γ2) ∈ EΓY ,
t > 0; here we have

µΓY
(
[0, t]× {(γ1, γ2)}

)
=
∑
s≤t

1{ΓYs−=γ1,ΓYs =γ2} . (26)

The predictable compensator of µΓY is a measure νΓY on [0,∞)×EΓY such that for any bounded
predictable function Z : Ω× [0,∞)× EΓY → R the process

MZ
t =

∫ t

0

∫
EΓY

Z(ω; s, e)(µΓY − νΓY )(ds× de)

is a martingale. In our case νΓY is given by

νΓY
(
[0, t]× {(γ1, γ2)}

)
=
∫ t

0
1{ΓYs−=γ1}q

ΓY

s (γ1, γ2)ds , (γ1, γ2) ∈ EΓY , t ≥ 0 , (27)
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qΓY
s (γ1, γ2) the transition rates of ΓY as introduced in Assumption 2.1. It is well-known that

every (FYt ∨ FΨ
t )-adapted martingale M has a representation of the form

Mt = M0 +
∫ t

0

∫
EΓY

ZM (ω; s, e)(µΓY − νΓY )(ds× de)

for some predictable random function ZM ; see Brémaud (1981), Chapter VIII, Theorem T8 for
details. Applying this result to the discounted gains processes G̃[l,u], G̃CDS

k , we get the existence
of predictable functions Z[l,u], ZCDS

k such that

G̃
[l,u]
t = G̃

[l,u]
0 +

∫ t

0

∫
EΓY

Z[l,u](ω; s, e)(µΓY − νΓY )(ds× de) (28)

G̃CDS
t,k = G̃CDS

0,k +
∫ t

0

∫
EΓY

ZCDS
k (ω; s, e)(µΓY − νΓY )(ds× de) ; (29)

the computation of Z[l,u] and ZCDS
k is discussed below.

Step 2: computation of the quadratic covariations. We concentrate on computing
〈G̃[l,u], G̃CDS

k 〉t; the predictable covariation between the discounted gains processes of the CDSs
can be computed analogously. As all processes involved have trajectories of finite variation, we
get that the pathwise covariation [G̃[l,u], G̃CDS

k ] is given by

[G̃[l,u], G̃CDS
k ]t =

∫ t

0

∫
EΓY

Z[l,u](s, e)ZCDS
k (s, e)µΓY (ds× de) .

Since [G̃[l,u], G̃CDS
k ]t − 〈G̃[l,u], G̃CDS

k 〉t is a martingale we thus have

〈G̃[l,u], G̃CDS
k 〉t =

∫ t

0

∫
EΓY

Z[l,u](s, e)ZCDS
k (s, e) νΓY (ds× de) (30)

=
∫ t

0

∑
γ∈SΓY ,γ 6=ΓYs−

Z[l,u]
(
s, (ΓYs−, γ)

)
ZCDS
k

(
s, (ΓYs−, γ)

)
qΓY

s (ΓYs−, γ) ds . (31)

In differential notation we therefore have d〈G̃[l,u], G̃CDS
k 〉t = ξ

[l,u],k
t dt where the predictable pro-

cess ξ[l,u],k is given by

ξ
[l,u],k
t =

∑
γ∈SΓY ,γ 6=ΓYt−

Z[l,u]
(
t, (ΓYt−, γ)

)
ZCDS
k

(
t, (ΓYt−, γ)

)
qΓY

t (ΓYt−, γ).

Using the form of the transition intensities of ΓY we get

ξ
[l,u],k
t =

m∑
i=1

(1− Yt−,i)λi(t,Ψt−, Yt−)(Z[l,u] · ZCDS
k )

(
t,
(
(Yt−,Ψt−), (Y i

t−,Ψt−)
))

+
∑

ψ∈SΨ,ψ 6=Ψt−

qΨ(Ψt−, ψ)(Z[l,u] · ZCDS
k )

(
t,
(
(Yt−,Ψt−), (Yt−, ψ)

))
. (32)

Similarly we get for the gains processes of two CDSs d〈G̃CDS
j , G̃CDS

k 〉t = ξj,kt dt, where ξj,kt is
given by (32) with Z[l,u] replaced by ZCDS

j .
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Computation of Z[l,u] and ZCDS
k . It is immediate from (28) and (29) that Z[l,u](ω; t, ·) and

ZCDS
k (ω; t, ·) are determined by the jumps of G̃[l,u]

t and G̃CDS
t,k induced by transitions of ΓY .

Recall that the discounted market values are given by

Ṽ
[l,u]
t = ṽ[l,u](t, Lt,Ψt) and Ṽ CDS

t,k = ṽCDS
k (t, Yt,Ψt) ,

for functions ṽ[l,u] : [0, T ]×(0, 1]m×SΨ → R and ṽCDS
k : [0, T ]×{0, 1}m×SΨ → R. For notational

simplicity we model spread payments by an absolutely continuous payment stream and work
with the gains processes (10) and (13). Hence we get at a transition from Yt to Y i

t

Z[l,u]
(
ω; t, ·

)
=p(0, t)∆L[l,u]

t (ω)|τi=t + ṽ[l,u]
(
t,
(
Lt,1, . . . , δi(Yt), . . . , Lt,m

)
,Ψt

)
− ṽ[l,u]

(
t, Lt,Ψt

)
,

(33)

ZCDS
k

(
ω; t, ·

)
=1{i=k}p(0, t)δi(Yt) + ṽCDS

k (t, Y i
t ,Ψt)− ṽCDS

k (t, Yt(ω),Ψt) . (34)

Similarly we obtain at a transition from Ψt to ψ̃ that

Z[l,u]
(
ω; t, ·

)
= ṽ[l,u](t, Lt, ψ̃)− ṽ[l,u](t, Lt,Ψt) , (35)

ZCDS
k

(
ω; t, ·

)
= ṽCDS

k (t, Yt, ψ̃)− ṽCDS
k (t, Yt,Ψt) . (36)

Summarizing we have

Proposition 5.4. The risk-minimizing hedging strategy θ = (θt,1, . . . , θt,m)0≤t≤T is given as
solution of the system

ξ
[l,u],j
t = −

m∑
k=1

θt,kξ
k,j
t , j = 1, . . . ,m, 0 ≤ t ≤ T , (37)

with coefficients ξ[l,u],j and ξk,j defined in (32) and (33) to (36).

Proof. It is well-known that a risk-minimizing strategy θ exists and that it is a predictable
process solving the system (19); see for instance Föllmer & Sondermann (1986). Since all
quadratic variations involved are absolutely continuous with respect to Lebesgue-measure, the
system (19) reduces to (37) and the claim follows.

Note that we have determined all ingredients necessary to set up the system (37), so that θ
is easily computed. In the homogeneous-portfolio case things simplify further since θt solves the
one-dimensional equation ξ

[l,u]
t = −θt

(
(m − 1)ξ1,2

t + ξ1,1
t

)
. The computation of risk-minimizing

hedging strategies for the case where ψ follows a diffusion process is discussed in (Backhaus
2008).

5.4 Numerical experiments.

We conclude this section with a small numerical study. Here we focus on two issues: first
we compute risk-minimizing hedging strategies for a random factor process Ψ and study the
impact of the spread-volatility on the hedging strategy; second we look at the impact of portfolio-
heterogeneity on the form and the performance of hedging strategies.
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Risk minimization when Ψ is a Markov chain. In order to illustrate the results of Sec-
tion 5.3 we compute risk-minimizing hedging strategies for the homogeneous models introduced
in Example 2.2. Table 4 gives the value θ of the risk-minimizing hedging strategy and compares
with the jump-to-default ration Jdef and with the spread delta ∆spread introduced in Section 4.
As one would expect, with low spread volatility (small range of the factor state space) the risk-
minimizing strategy is close to Jdef ; with increasing spread volatility θ comes closer to ∆spread.
Hence the risk-minimizing strategy provides a model-based endogenous interpolation between
the hedging of spread-risk and the hedging against of jump-to-default risk.

Hedging in heterogenous portfolios. While computationally convenient, the homogeneous-
portfolio assumption only an imperfect description of most real-world credit portfolios. It is
therefore interesting to study the impact of heterogeneity in the portfolio on the form and the
performance of the ensuing hedge ratios. For simplicity, we assume that Ψ is deterministic,
so that dynamic hedging strategies coincide with the jump-to-default ration as computed in
Section 4. We consider a portfolio with two industry groups of varying credit quality, indexed
by κ = 1, 2. The default intensity of firms from group κ is modelled by a function hκ(t, nκ, n)
which depends on time t, on the number of defaults in group κ, denoted nκ, and on the overall
number of defaults n. Denote by mκ the number of firms in group κ and by µκ(t) the expected
number of defaults in group κ. In our simulations we take

hκ(t, nκ, n) = λκ,0 +
λ1

λ2

{
exp

(
λ2γκ

(nκ − µκ(t))+

mκ
+ λ2(1− γκ)

(n− µ(t))+

m

)
− 1
}
, (38)

with parameters λκ,0 > 0, λ1 ≥ 0, λ2 ≥ 0 and γκ ∈ [0, 1]. The first term in the argument of
the exponential function in (38) reflects the interaction between firms from the same group; the
second term captures the global interaction between defaults in the entire portfolio. The relative
strength of these effects is governed by the parameter γκ: for γκ close to one, firms from group κ
are mainly impacted by defaults within group κ; for γκ close to zero, the global (portfolio-wide)
interaction dominates. In our analysis we compare three different portfolios/parameterizations.

A) Here we consider a homogeneous portfolio of 125 firms with fair CDS spread equal to
sk = 73bp for all k.

B) Here we consider a portfolio consisting of 100 ‘good’ names (Group 1, sk = 20bp, k =
1, . . . , 100) and 25 ‘bad’ names (Group 2, sk = 317bp, k = 101, . . . , 125); the spread of
a CDS index on the whole portfolio is sInd = 73bp so that the average credit quality is
the same as in Portfolio A. Moreover, we put γ1 = γ2 = 0 so that there is only global
interaction between defaults. Intuitively, this parameterization corresponds to a portfolio
with one-factor structure.

C) Here the portfolio consists of 25 good names (Group 1) with sk = 17.5bp and 100 medium-
quality names (Group 2) with sk = 88bp; again sInd = 73bp. We assume that there is
a strong interaction within the group of good firms and put γ1 = 0.7; γ2 is set to 0.2 so
that the medium-quality firms are mainly affected by the global portfolio state. Intuitively,
Group 1 could be viewed as a set of major financial firms, as the default of a major financial
institution typically has a strong negative impact on the remaining firms; Group 2 could
be viewed as medium-sized non-financial corporations.
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The remaining parameters in (38) have been chosen so that we get (roughly) the same CDO
spreads in all three parameterizations.

Recall that for a deterministic factor process the hedging strategy θ solves the linear system
(15) and that the coefficients of this system are given by the change in the gains process of the
tranche to be hedged and of the CDSs used as hedging instrument. Hence these changes are
largely responsible for the form of the hedge ratios. Numerical values are reported in Table 5
in the appendix: we see that the results for Parameterizations A and B are roughly similar.
Note however, that under Parametrization B the default of a bad name (a firm from Group 2)
always leads to a smaller absolute change in the gains process than a default of a good name (a
firm from Group 1). The reason for this is that in the former case the quality of the remaining
portfolio is higher than in the latter case. The results for Parametrization C on the other hand
differ widely from the homogeneous-portfolio case. In particular, for the given parameters the
default of a good name leads to a substantial deterioration of the credit quality of the overall
portfolio, as can be seen from the huge change in the gains process of the index. The hedge ratios
for all three parameterizations are given in Table 6 (for t = 0). As with the changes in the gains
processes, for Portfolio A and B the ensuing hedge ratios are qualitatively similar. However,
there are substantial quantitative differences. For Portfolio C on the other hand the strong and
asymmetric contagion effects lead to qualitatively different hedge ratios. In particular, in order
to hedge the equity- and mezzanine tranches one has to take a protection-seller position in the
CDS issued by the good names in Group 1.

An alternative way to assess the model risk due to the simplifying assumption of a homoge-
neous portfolio is to look at the performance at a default-time T1 of the homogeneous-portfolio
strategy, assuming that the actual change in the gains processes corresponds to an inhomoge-
neous situation. More precisely, we consider a portfolio consisting of a protection-seller position
in a CDO tranche or in the CDS-index and of an offsetting protection-buyer position in the
CDSs; the size of this protection-buyer position was computed using Parametrization A (see the
Portfolio A row of Table 6). Next we compute the hedging error (the change in the gains process
of this portfolio) at the first default time T1, assuming that ∆G[l,u]

T1
and ∆GCDS

k,T1
are generated by

Parameterizations B or C (see the Portfolio B and the Portfolio C row of Table 5). The results
of this exercise are contained in Table 7. We report the relative hedging error for each tranche
(the hedging error normalized by the overall notional); in this way results for different tranches
can be compared. We note the following: in case where the actual gains processes are generated
by Parametrization B, the homogeneous-portfolio strategy performs quite well. On the other
hand, if the actual gains processes are generated by Parametrization C the performance of the
homogeneous-portfolio strategy is poor, at least at a default of a firm in Group 1. In fact, the
hedging error for the equity- and the junior mezzanine tranche is in the order of 50% of total
notional.

These findings suggest that hedging strategies based on the assumption of a homogeneous
portfolio - and in particular all hedges computed within the top-down approach - might perform
well if the real portfolio is heterogeneous with respect to credit quality but relatively homo-
geneous with respect to the interaction between firms; on the other hand, if the real portfolio
exhibits strongly asymmetric contagion effects the homogeneous-portfolio assumption might
lead to poorly performing strategies. Limitations of the top-down approach for the purpose of
hedging portfolio credit derivatives are also discussed in the recent paper Bielecki, Crepey &
Jeanblanc (2009).
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6 Conclusion

This paper has studied the (dynamic) hedging of CDO tranches in a portfolio credit risk model
with default contagion and random fluctuations in credit spreads. This model was constructed
and analyzed with Markov-chain techniques. From our analysis the following findings emerged.
First, we studied the impact of default contagion on the market-standard sensitivity-based
hedging strategies. It turned out that even a small amount of default contagion has a substantial
impact on the form of the ensuing hedge ratios, essentially because of the impact of the default
event on the quality of the remaining portfolio. Second, we showed how to compute theoretically
consistent dynamic hedging strategies using incomplete-market theory, more specifically the
concept of risk-minimization. The main tool in the derivation of these strategies is stochastic
calculus for marked point processes. Third, we carried out numerical experiments to study the
properties of these strategies. It turned out that risk-minimizing hedging strategies interpolate
between the hedging of spread- and default risk in an endogenous fashion. Moreover, we showed
that deviations from the popular assumption of a homogeneous portfolio can have a substantial
impact on the form and on the performance of hedging strategies.

These are important results on dynamic hedging in credit markets. In particular, the sizeable
differences between the market-standard sensitivity-based hedging strategies computed in the
copula framework and the dynamic hedging strategies derived in our setup with spread risk and
default contagion show that the current hedging practice is subject to a substantial amount of
model risk. A systematic study of the model risk associated with the hedging of credit derivatives
is therefore a logical next step. Due to its versatility the Markov-chain model proposed in the
first part of the present paper could be a useful tool in this analysis. However, such a study is
a major undertaking and is therefore deferred to further research.
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A Tables

A1. Risk-minimization when Ψ is a Markov chain

[0,3]-tranche [3,6]-tranche [6,9]-tranche
θ Jdef ∆spread θ Jdef ∆spread θ Jdef ∆spread

SΨ
0 0.344 0.344 - 0.138 0.138 - 0.058 0.058 -
SΨ

1 0.348 0.345 0.476 0.138 0.138 0.143 0.057 0.058 0.049
SΨ

2 0.414 0.366 0.491 0.136 0.134 0.138 0.050 0.053 0.045
SΨ

3 0.469 0.414 0.526 0.127 0.126 0.128 0.041 0.045 0.038

[9,12]-tranche [12,22]-tranche
θ Jdef ∆spread θ Jdef ∆spread

SΨ
0 0.039 0.039 - 0.107 0.107 -
SΨ

1 0.039 0.039 0.031 0.106 0.107 0.082
SΨ

2 0.033 0.037 0.029 0.093 0.103 0.079
SΨ

3 0.028 0.032 0.025 0.084 0.096 0.074

Table 4: Comparison of the risk-minimizing hedging strategy θ with Jdef and ∆spread for different choices
of the state spaces SΨ; ∆spread has been computed using (14)

A2. Hedging in heterogenous portfolios

∆GCDS1 ∆GCDS2 ∆GInd ∆G[0,3] ∆G[3,6] ∆G[6,9] ∆G[9,12] ∆G[12,22]

Portfolio A 0.0161 0.0161 -2.600 -0.471 -0.582 -0.236 -0.134 -0.315

Portfolio B
default in Group 1 0.0177 0.0234 -2.752 -0.525 -0.772 -0.387 -0.233 -0.474
default in Group 2 0.0149 0.0197 -2.201 -0.467 -0.645 -0.322 -0.193 -0.392

Portfolio C
default in Group 1 0.1386 0.1019 -13.451 -0.660 -1.295 -0.929 -0.807 -2.355
default in Group 2 0.0083 0.0146 -1.617 -0.466 -0.558 -0.211 -0.113 -0.258

Table 5: Changes due to a default in the gains process of the non-defaulted CDSs, of the index and of
various CDO tranches for Portfolios A, B and C. The numbers were computed for t = 0.

Product Index [0, 3] [3, 6] [6, 9] [9, 12] [12, 22]

Portfolio A Jdef 1.000 0.181 0.224 0.091 0.051 0.121

Portfolio B Jdef
1 (good firms) 1.029 0.155 0.237 0.119 0.072 0.146
Jdef

2 (bad firms) 0.802 0.168 0.185 0.090 0.053 0.108

Portfolio C Jdef
1 (good firms) 1.039 -0.575 -0.514 -0.043 0.084 0.370
Jdef

2 (bad firms) 0.979 0.286 0.325 0.108 0.049 0.088

Table 6: Hedge-ratio (or equivalently Jdef) for the CDS index and for various CDO tranches at t = 0,
assuming that T1 > 0.
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Product Index [0, 3] [3, 6] [6, 9] [9, 12] [12, 22]

∆G[l,u], ∆GCDS as in Parametrization B
Rel. hedging error at default in Group 1 0.1% 0.2% -3.0% -3.2% -2.2% -0.9%
Rel. hedging error at default in Group 2 0.3% -0.1% -1.9% -2.4% -1.7% -0.7%

∆G[l,u], ∆GCDS as in Parametrization C
Rel. hedging error at default in Group 1 0.5% 50.5% 49.8% 9.5% -2.3% -5.2%
Rel. hedging error at default in Group 2 0.5% -1.6% -1.4% -0.2% 0.1% 0.1%

Table 7: Performance at t = T1 of the hedging strategy computed for Parametrization A, assuming that
the actual change in the gains processes is generated by Parameterizations B or C. The hedging error is
represented as percentage of the total notional of the tranche. The latter equals 125 for the index, 3.75
for the [0, 3] up to the [9, 12] tranche and 12.5 for the [12, 22] tranche

Product Index [0, 3] [3, 6] [6, 9] [9, 12] [12, 22]

Observed spread 36 bp 26% 84bp 25bp 12bp 6bp

Table 8: iTraxx-spreads from January 2006 used in the numerical examples.

A3. ITraxx spreads
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