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Abstract

In this paper we consider a nonlinear filtering approach to the estimation of asset
price volatility. We are particularly interested in models which are suitable for high
frequency data. In order to describe some of the typical features of high frequency data
we consider marked point process models for the asset price dynamics. Both jump-
intensity and jump-size distribution of this marked point process depend on a hidden
state variable which is closely related to asset price volatility. In our setup volatility
estimation can therefore be viewed as nonlinear filtering problem with marked point
process observations. We develop efficient recursive methods to compute approxima-
tions to the conditional distribution of this state variable using the so-called reference
probability approach to nonlinear filtering.

Key Words: Stochastic volatility models, volatility estimation, nonlinear filtering theory,
reference probability approach, filter approximations

1 Introduction

The considerable amount of empirical evidence against the Black-Scholes model of geometric
Brownian motion for asset price fluctuations has led to the development of more flexible
models which are able to cope with some of the empirical deficiencies of Black-Scholes.
In particular, there is a growing literature on stochastic volatility models (SV-models),
see e.g.[9] for a survey. SV-models are designed to mimic the stochastic nature of asset
price volatility. In this class of models the instantaneous volatility is assumed to depend
on some latent stochastic process which is not adapted to the noise driving the asset price
process. This latent process is often interpreted as rate at which new economic information
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is absorbed by the market (see e.g. [1]) or — in trader’s language — as temperature of the
market.

In the context of SV-models challenging statistical problems arise: in real markets histor-
ical asset price volatility! is not directly observable. Hence both the current level of volatility
and parameters that govern the evolution of volatility dynamics have to be estimated from
observable quantities such as the time series of past asset prices. In the present paper we
develop an approach to these estimation problems which is based on nonlinear filtering
techniques. We are particulary interested in models which are suitable for high frequency
data (tick data), i.e. for data which record every quote or every trade. To model these data
adequately we have to depart from the diffusion models routinely used in derivative asset
analysis, for the following reason:

It is well-known that on very small time-scales real world asset price processes are not
very well described by diffusions. In particular, real asset prices are piecewise constant
and jump only at discrete points in time, e.g. in reaction to trades or to significant new
information. Diffusion processes to the contrary have continuous trajectories with nonzero
quadratic variation. Moreover, the quadratic variation of a diffusion can be approximated
arbitrarily well by the sum of the squared increments. Hence in a diffusion model with
continuous observations of the asset price the current volatility level can be estimated with
arbitrary precision from past price information. This is in sharp contrast to the case of
piecewise constant processes, where quadratic variation over very small time intervals is
useless for volatility estimation. This shows that sample path properties do matter a lot
for volatility estimation. In particular, volatility estimation should not be studied in the
context of continuously observable diffusion models.

We therefore propose an alternative model, where asset prices are given by a marked
point process. Both jump-intensity and jump-size distribution of this marked point process
depend on a hidden state variable which is closely related to asset price volatility. In our
setup volatility estimation can therefore be viewed as a (nonlinear) filtering problem with
marked point process observations. We extend an approach pioneered by Kushner (see e.g.
[14]) and develop efficient recursive methods to compute approximations to the conditional
distribution of this state variable. While this leads to some new results in nonlinear filtering
theory we view the present paper more as a contribution to financial mathematics: along
with [8] and [7] this is one of the few applications of nonlinear filtering techniques in
Mathematical Finance. Marked point processes as models for high frequency data in Finance
have independently been studied by a number of authors in the recent literature. Here we
mention only the papers [17], [18] and [12]. The hedging of derivatives in our model is
studied in the companion-paper [10].

2 The Model

In this paper we assume that the asset price S changes only at discrete, random points
in time T7 < Ty < ... < T, where T represents some final time horizon for all economic

In this paper the term volatility refers always to the local variance of asset prices (the historical volatility).
Of course implied volatility, which is computed from observed market prices of derivatives is — if prices of
derivatives are available — observable by definition.



activities. These time points represent instants at which a large trade occurs or at which
a market maker updates his quotes in reaction to new information. We shall work directly
with the logarithmic asset price Y; := log S;, both for convenience and in order to be in
line with most of the econometric literature on financial time series. At time 7, the log-
price Y7, equals the value of some shadow log price process L = (L;)o<i<7. We model the
dynamics of L by a stochastic differential equation (SDE) driven by a Brownian motion

w? = (wt(2)>0<t<T' In our setup the diffusion coefficient of this SDE is influenced by an
unobservable state variable process X = (Xt)ogth which is independent of the filtration

generated by w?.

The random times 7}, are modelled as jump-times of some point process N = (Nt)ogth
whose intensity depends on the level of the state variable process. This appears reasonable
from an economic viewpoint, as the rate at which information is absorbed by the market is
very likely to have an influence on trading activity.

We assume that the state variable process X is a time-homogeneous Markov process with

RCLL trajectories defined on some underlying filtered probability space (2, F, P, {F;}). We
are particularly interested in the following two cases:

A1) (X is a diffusion) Consider a Wiener process w(!) = (’wt(l))[]gtST on (Q,F, {F:}, P),
which is independent of w®, and continuous functions @ and 8: R — R. X is a
global solution to the SDE

dX, = o Xy)dt + B(X;)dw' . (1)
Moreover, the coefficients a and ( are such that weak uniqueness holds for (1).

A2) X is a continuous-time finite-state Markov chain with state space En := {1, -+, znm}
and generator matrix R = {rj;}i j=1,....m-

Remark 2.1 In the subsequent analysis we assume that the dynamics of the state-variable
process are known. This is no restriction, as the important case where parameters of the
dynamics of X are unknown and have to be estimated from the time series of past prices
can be incorporated by modelling the state variable process as d 4+ 1-dimensional process
for some d > 0. Suppose for instance that o and f in (1) depend on a d-dimensional
parameter vector © = 0',... 0% ie. a = a(r;0) and § = B(x;0). This can be modelled
by a d + 1-dimensional state variable process X with known dynamics, if we define X by
X, := (X;,0), where X solves the SDE dX; = o(Xy; ©)dt + B(X; @)dwt(l)

We make the following assumption on the dynamics of the shadow log price process L:

A3) L solves the SDE
dLy = \/v(t, X, )dw? (2)

for a Brownian motion w® on (Q,F,{F;}, P) which is independent of {F;X}, the
filtration generated by the state variable process. The function v : [0,7] x R — R
is continuous; moreover, there are constants v and v with 0 < v <7 < oo such that
v(t,z) € [v,7] for all t € [0,T] and all z € R.



Using It6’s formula it is immediately seen that under A3) exp(L;) follows a standard
stochastic volatility model as discussed for instance in [9]. We now introduce the dynamics
of the actual log price process Y. For this purpose let N = (NV¢)o<i<7 be a point process
with {F;}- intensity A(¢, X;—) on our underlying probability space. We assume throughout
the paper that A : [0,7] x R — IR is continuous and takes its values in the interval [\, A]
for constants A and X with 0 < A < XA < oo; typically A\ will be an increasing in the
second argument.We allow for explicit time-dependency in the functions v and X in order
to incorporate seasonality effects which are typical for high frequency data. For a discussion

of the properties of high frequency data we refer to [13].

Let (T, )new be the jump-times of the point process N and note that, by definition, T,
and T,  are the times of the last jump prior to ¢t and strictly prior to t respectively. We
define the log asset price by

Yy := Ly, . (3)

Note that Y is a right continuous process with piecewise constant trajectories; by construc-
tion the jump-times of Y and N coincide P-a.s.

Besides {F; } we shall consider the filtrations {F;* }, {F} } generated by the state variable
and the observation processes respectively, as well as the filtration {G;} defined by

Gi=Fr VF . (4)

Note that X is Gp-measurable by definition, i.e. {G;} contains information about all the
future of the state variable process.

For our filtering results we need an additional assumption on the process N:

A4) Under P the process N is a doubly stochastic Poisson process (Cox process), i.e. it
admits the (P, {G;})-intensity A(¢, X;_) (see also Chapter I of [3]).

Remark 2.2 A4) implies that, given information about all the future of the state vari-
able, N is a Poisson process with conditionally deterministic intensity A(¢, X;—). This is a
stronger requirement than the assumption that N is a point process with (P, { F;})-intensity
A(t, X;—); in particular, A4) rules out the possibility that N and X have common jumps.
Put differently A4) implies that the actual trading activity - the realization of the point
process N - does not affect the law of the state-variable. In economic terms this means
that in our model trading is caused by exogenous factors such as fundamental information
and not by the observed past trading activity. Admittedly it is difficult to judge if this
assumption is met in practice; however, we are confident that our model is a useful first
approximation to reality.

We now determine the (P, {G;})-jump-size distribution of Y. Define for ¢ > 0

t T
Y= / v(s,Xs_)ds and, forn=1,2,..., X, := / v(s, Xs_)ds. (5)

TNt7 Tn—l

Suppose that the process N has a jump at time ¢. By (3) Y has a jump of size AY; = Ly —
Ly, . Equation (2) now implies that conditionally on G, we have AY; ~ ®(dz;¥;), where



®(dz; %) is shorthand for a normal distribution with mean zero and variance ;. Moreover,
the (P, {G;})-jump-intensity of Y is obviously equal to the (P, {G;})-jump-intensity of N
and hence given by A(¢, X;_). Following e.g. [3] we shall express this fact by saying that the
marked point process Y has the (P, {G;})— local characteristics (A(t, Xy—), ®(dz; 2y)).

3 The filtering problem

Our filtering problem consists of determining, for each ¢t < T', the conditional expectation
E{F(X;)|F}} where F(-) is a continuous and bounded function, X; is the unobserved state
variable process, and Y; is the observed log-price process.

This is a nonlinear filtering problem, for which an exact solution is practically impossible
to obtain. We thus determine an approximation to E{F(X;)|F} }, leading to a weak-sense
approximation for the conditional distribution pt(Xt|.7-"tY ) of Xy, given the observations of
Ys up to and including ¢. An important practical aspect of our procedure, especially for
high frequency data, will be that this approximation can be computed recursively.

Among the two major approaches to nonlinear filtering, namely the so-called innovations
approach (see [11], [16]) and the reference probability approach (see [3], [14]), the latter is
better suited for our approximations. In the next subsection we shall present its main
features.

3.1 The reference probability approach

This approach is based on the fact that, for a probability measure @ on (Q,F, G;), that is
absolutely continuous with respect to P with Radon-Nikodym derivative

dQ‘gt/dP‘gt = A, >0, (6)
we have (see e.g. Lemma L.5 in Ch. VI of [3])

EC{F(X)A A}
EQ{ATNF

EP{F(X,)| 7} = (7)
where, to avoid ambiguity, we use now E” to denote expectation with respect to P. Formula,
(7) is usually called Kallianpur-Striebel formula and is related to Bayes’ formula : A}
can in fact be interpreted as a version of the likelihood of the state variable (X,),<i,
given the observations (Ys)s<;. If a version A; L of the likelihood can be found such that,
under the corresponding measure (), the processes X and Y are independent, then the
conditional expectations on the right in (7) reduce to ordinary expectations. If the measure
transformation (6) can furthermore be chosen so that the restrictions of P and Q on F3*
coincide, these expectations can be evaluated using the original law of X. Reducing the
conditional expectation on the left in (7) to two ordinary expectations will be of great help
in computing approximate solutions to our filtering problem.

An interesting variant of our model, in which state variable and observation process
cannot be made independent under a transformation of measures, is when the state variable
process is modelled as a jump process that has common jumps with the observations. Notice



that, in this case, assumption A.4 does not hold (see Remark 2.2). For this particular case
a specific approximation methodology has been developed in [4].

We shall now construct a new measure ¢) ~ P on Gr such that the marked point process
Y admits the (Q, {G;})-local characteristics (1, ®(dz; 74)) where ®(dz; 1) stands for a normal
distribution with mean zero and variance 7; := v(t — T, ). It will be shown in Proposition
3.1 below that, under such a measure (), the observation and state variable processes are
independent and that the marginal distributions of X under P and @) coincide. Define the
function h(t, z) as quotient of the Lebesgue-densities of ®(dz; ;) and ®(dz; ¥;), i.e.

1
X\ 2 1 ta_'rt
h(t,z) = [ = —
(t,2) () exp{ T } (8)

and let the process A; be a solution to the integral equation

A=1+ /Ot /IR Ao (N5, XY (s,2) — 1) ¢ (ds x d2), 9)

where ¢¥ denotes the (P, {G;})-compensated counting measure associated to Y (see e.g. [3],
Chapter VIII). We now have

Proposition 3.1 Let Y = (Y;);>0 be a marked point process with (P,{G;})— local char-
acteristics (A(t, X¢—), ®(dz;2;)). Define Ay as solution to (9). Then A is a strictly posi-
tive martingale and ET[Ar] = 1. Moreover, defining an equivalent measure Q ~ P via
(dQ/dP)g, := Ay, we have the following :

(i) Y admits the (Q,{G:})-local characteristics (1, ®(dz;1;)).
(ii) The restrictions of P and Q on F3 coincide.

(iii) X andY are Q—independent.

Proof : A; is the semimartingale exponential of the (P, {G;})—local martingale

7, = /Ut /]R (A (s, X h(s.2) — 1) ¢ (ds x d2). (10)

As the jumps of Z are strictly larger than minus one, A is a positive local martingale.
Since ¥y /7y < /v and ¥; > 7, the argument of the exponential function in the expression
(8) of the function h is always non-positive. Moreover, A(¢, X; ) and A~!(¢, X, ) are both
bounded by our assumptions. Hence all conditions of Theorem T11 in Chapter VIII of [3]
are satisfied so that EU[Ar] = 1 and A is a (P, {G;})-martingale. Theorem T10 in Chapter
VIII of [3] now implies that ¥ admits the (Q, {G;})-local characteristics (1, h(t, z)®(dz; X))
= (1, ®(dz; 7¢)) by definition of h in (8).

To prove (ii) note that Gy = F#* and that A is a (P, {G;})—martingale. Hence we get for
any bounded measurable function g : R® > R and any 0 < ;1 < --- <, <T

EQ{Q(tha"'ath)} = EP{EP{ATQ(XtU"'ath)|g0}}
= B {g(Xu, - X0,) B” {Ar] Go} } (11)
Ep{g(tha"'ath)}a
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where it was used that E¥ {Ar| Gy} = 1.

We now turn to (iii). Using again the Gy-measurability of X we get

E© {g(th’...’th)h(Yil"”’}/tm)} :EP{g(th,---,th)h(Yil,---,Yim)AT}
= EP {g (tha"'vth)EP {h (Yi17”"nm)AT|g0}}‘ (12)

By (i) the second factor in the rhs of (12)equals E@ {h (Y}, --,Y;, )}. Hence (12) equals
E" {g (Xtu T vth)}EQ {h (Y;flﬂ T ’Yim)} = E° {g (thv"'vth)}EQ {h (Y;flﬂ T ’Yim)}?
and the claim follows.

Q.E.D.

The @Q-independence allows us to model X and Y on a product space; this will be con-
venient in the development of recursive approximations to our filtering problem in the next
sections. More precisely, we consider two filtered probability spaces (Q~, FX {FX}, Q¥)
and (QY,FY {FY},QY) supporting {F;X}- and {F} }-adapted processes (X;)o<i<r and
(Y:)o<i<T respectively, such that

e X is a Markov process on (X, FX {FX},QY) having the same law as our state
variable process on the original probability space.

e Y is a marked point process on (QY, FY {FY}, Q") with (conditional) deterministic
local characteristics (1, ®(dz;7)).

Define the product space Q = QX x QY| F = (.7-"X ®.7-"Y> AFY ={FX}2{F},Q =
QY ® QY as well as the filtration {G;} with G; = 7 ® F} and extend X and Y to
processes on 2 in the canonical manner. Then this new model is from a probabilistic
viewpoint equivalent to our original model under the measure Q).

Define L,, := Lyp,, 1, := v(Ty, — Ty—1) and recall the definition of ¥, in (5). By the
exponential formula of Lebesgue-Stieltjes calculus, A; is given by

At = HTnStA_l(TnaXTn*)h(TnaLn_Lnfl)

- exp {/Ot /]R (1 — A s, Xy )h(s, z)) A(s, X )®(dz; X) ds}

= HTnSt {)\_I(TTUXT”) \/E_n exp [_%(Ln - Lnfl)Z Zn - Tn:| }

\/ﬁ XnTn

- exp [fg (A(s, Xs-) —1) ds]

Obviously, A; is a function of X* and Y, the trajectories of the processes X and Y up to
time t; we write A; = Ay(X!, YY),



By the Kallianpur-Striebel formula (7), our filtering problem is solved once we have
determined (approximately) the functional

Vily; F) i= B9 {F(X) A7 (XY |V (w) = o'} (14)

for any possible trajectory y,, 0 < s < T of the marked point process Y. Here, Y(w) = 4
means of course that the trajectory of Y;(w) equals y up to time ¢. Using the special structure
of our product space it is immediate that

Vily; F) = B9 {F(X)A7 M (X} (15)

3.2 Approximate solution of the filtering problem

For the approzimate evaluation of the functional V;(y; F') we use an approach pioneered by
H. Kushner (see e.g. [14]) : we approximate the state variable process X by a sequence of
discrete-time, finite-state Markov chains (X}')t—0,1,..., whose piecewise constant interpola-
tions X} := X&An),lﬂ, 0 <t < T converge to X in distribution on the Skorokhod space as
n — oo and the time intervals A™ — 0; we denote this by X” = X. In this section we show
that the convergence X" = X essentially implies the convergence of the corresponding
filters; efficient recursive numerical procedures for evaluating the functional (15), applied
to the processes X", are developed in the next section. We have

Proposition 3.2 Consider a sequence X" of RCLL-processes on (X, FX {FX}, Q%) and
a bounded and continuous function F : R — IR. Define, for a typical trajectory y of the
marked point process Y and for any t € [0,T], the sequence of functionals

Vi (y; F) = B9 {F(XP)AT (X9} - (16)

Assume that X has no deterministic times of discontinuity, i.e. QX {Xy # X4} = 0 for
every t € (0,T], and that that X™ = X. Then

V" (y; F) = Vi(y; F)  as n— oo  for every t€ (0,T).

Proof : Fix t € (0,7] and some typical trajectory y of Y. Denote by Dy 1y the Skorokhod
space of all RCLL-functions on [0, T, and by p* the law of the limit process X. As X has
no deterministic times of discontinuity, the mapping

¥ Do =R, p(X)=F(X) A7 (X y")

is uX —a.s. continuous for every t € [0,7]; moreover, 9 is bounded by the assumptions
introduced in Section 2. Hence the convergence X™ = X immediately implies the result
(see Theorem 5.5 of [2]).

Q.E.D.

Remark 3.3 The hypotheses of Proposition 3.2 hold in particular for Markov processes
satisfying Assumptions Al or A2. Obviously, X has no deterministic times of discontinuity
in these cases. The construction of Markov-chain approximations to processes X satisfying
Al or A2 is nowadays standard; see e.g. the books [6], [15] for details.



4 Recursive computation of the approximating filter

We fix an approximating index n and with it the time discretization step A = A”". For
the corresponding discretized Markov chain X = {X;},_,, .. we denote by {z1, -, zm}
the set of possible values of the state and by II = {p;;}; j=1,...ms the transition probability
matrix. With the partition of the time axis into intervals of sufficiently small length, it
suffices to compute the approximating filter V™ only at the discrete time points kA.

We shall now derive a recursion for the M —vector q,‘z with components

X _
ai(@) == Via (30(z)) = BV {1 (xaza) A (X, 05 )5 (17)
this allows us to obtain u
Via(y; F) = Y F(z:) gp (z:) (18)
i=1

for any continuous and bounded F.

By (18) and the Kallianpur-Striebel formula we have

M F(x) g ()

M
j=1 QZ(%')

EP{F(Xya)|Fia} = (19)
showing that p} (z;) := g (;) / ij\il g (z;) is the filter distribution for the approximating

state variable process {X}. Consequently, g7 (z;) can be seen as a corresponding unnor-
malized filter distribution.

For the generic time step k and with T}, being the jump times (if there are) of Y in
(kA, (k + 1)A], define the matrix

EF .= diag (E;?; jzl,---,M) (20)

where

2
i

(k+1)A B
k= exp {A — / A(t,z;) dt + 3 [1 log ( V(T — Trn1) )
k

A kA< T < (k+1)A [2 S vt ) di

Proposition 4.1 For the M —vector q,‘z of unnormalized conditional expectations as defined
in (17) we have the following recursion

1 (Ln — Lin_1)?  J2m v(t,25)dt — (T — Ty
2 Ty —Tm— QfTT;n_l U(t,ZL‘j)dt

+log AT, ;)

(21)

alyr = (- E*) - qf (22)

where TIT is the transpose of the transition probability matriz of the approzimating state
variable process and E* is the diagonal matriz defined in (20), (21).



Proof : From the definition in (17) we have

X —
qz‘l‘l(xi) = B¢ {I{X(k+1)A:fEi}A(k1+1)A (X(k+1)Aay(k+1)A)}

X(k+1)A,y(k+1)A)

—1
_ X JA—1 (vEkA kA x [Aginal
— E@ {Am (k2 yk2) BQ { ) X pacn)

7

= T4 B {A (XFA04) 1)

. A(—l )A(X(kJrl)A’y(kJrl)A)
Be { k+1AEi(X’fA,y’“A) UXgopna=ei}| Xka = 25
(23)
Using the fact that X} is constant on [kA, (k + 1)A), we obtain
AL (X(k+1)A y(k+1)A)
x ) Mrena , B B K
i { Apa (XFA ykAy LXgsnya=ait| Xra = zj 0 = pji - B (24)

where pj; is the transition probability, from state z; to x; of the approximating chain {Xj}
and E;“ is as in (21). Hence we obtain

M
G () = qrlz;)? - pji- B} (25)
=1

which, written in matrix form, gives (22).

Q.E.D.

Remark 4.2 The expression for E;“ in (21) simplifies considerably, if v and X\ are time
independent; in that case E;“ itself becomes time independent. In the special case when
one neglects the information coming from the jump-heights of Y, which corresponds to
assuming v(t,r) = v = U, we obtain a known formula (see e.g. [5]) observations forming a
conditional Poisson process.
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